
Assembling a High-Productivity DSL for Computational Fluid
Dynamics

Sandra Macià
Barcelona Supercomputing Center

sandra.macia@bsc.es

Pedro J. Martínez-Ferrer
Barcelona Supercomputing Center
pedro.martinez-ferrer@bsc.es

Sergi Mateo
Barcelona Supercomputing Center

sergi.mateo@bsc.es

Vicenç Beltran
Barcelona Supercomputing Center

vicenc.beltran@bsc.es

Eduard Ayguadé
Barcelona Supercomputing Center

eduard.ayguade@bsc.es

ABSTRACT
As we move towards exascale computing, an abstraction for ef-
fective parallel computation is increasingly needed to overcome
the maintainability and portability of scientific applications while
ensuring the efficient and full exploitation of high-performance sys-
tems. These circumstances require computer and domain scientists
to work jointly toward a productive working environment. Domain
specific languages address this challenge by abstracting the high-
level application layer from the final, complex parallel low-level
code. Saiph is an innovative domain specific language designed to
reduce the work of computational fluid dynamics domain experts to
an unambiguous and straightforward transcription of their problem
equations. The high-level language, domain-specific compiler and
underlying library are enhanced to make applications developed
by scientists intuitive. Additions and improvements are presented,
designed for the significant advantage of running computational
fluid dynamics applications on different machines with no porting
or maintenance issues. Numerical methods and parallel strategies
are independently added at the library level covering the explicit
finite differences resolution of a vast range of problems. Depending
on the application, a specific parallel resolution is automatically
derived and applied within Saiph, freeing the user from decisions
related to numerical methods or parallel executions while ensuring
suitable computations. Through a list of benchmarks, we demon-
strate the utility and productivity of the Saiph high-level language
together with the correctness and performance of the underlying
parallel numerical algorithms.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
• Computing methodologies → Parallel computing methodolo-
gies; • Applied computing→ Physical sciences and engineering.

KEYWORDS
DSL, CFD, HPC, FDM

1 INTRODUCTION
High-performance computing (HPC) has a central role in scientific
research. An essential part of this research is based on simulation
of domain-specific applications. Traditionally, domain scientists
combine their knowledge with numerical methods and any gen-
eral purpose language (GPL) to write their scientific applications
and solve their problems numerically. However, HPC is evolving

rapidly: distributed machines, many-cores processors, accelerators
and emerging architectures constitute today’s complex and hetero-
geneous supercomputers. As we move towards exascale computing,
HPC users require deeper expertise in computer science and paral-
lel programming models to fully utilise and exploit heterogeneous
machines efficiently. Under this scenario, scientists find themselves
out of their domain of expertise and productivity decreases dra-
matically. At the same time, the application’s maintainability and
portability are becoming a problem. Parallel numerical methods
and algorithms are traditionally embedded in the application. In
consequence, software or hardware modifications usually lead to
a tedious work of rewriting, annotating and tuning. Therefore, a
disruptive research strategy becomes necessary to develop main-
tainable and reusable software that exploits current and future HPC
resources effectively.

Domain-specific languages (DSLs) constitute a good alternative
to GPLs to tackle the challenges derived from HPC and exascale
computing [20]. This separation of concerns through high-level
abstraction layers involves a synergy of experts from the different
parts of the HPC scene. On the one hand, domain experts describe
their applications unambiguously using a high-level, near mathe-
matical specification with all the details required to formalise the
whole simulation description. On the other hand, computer scien-
tists are in charge of the numerical methods and the complexities
related to the parallel execution. This approach breaks the program-
ming complexity into loosely-coupled specific development layers
binding each researcher to his domain of expertise.

Applied to the computational fluid dynamics (CFD) domain,
Saiph[19] is a DSL intended to solve the physical equations typi-
cally found in CFD engineering problems on HPC environments.
Through itsmodular design, Saiph dissociates the high-level applica-
tion component where partial differential equations (PDEs) describ-
ing physical phenomena are defined, from the low-level execution
component where appropriate numerical methods and execution
details are determined using domain knowledge. This way, algo-
rithms and parallel strategies are not embedded at the application
level anymore. Abstracting over numerical methods, algorithms
and hardware provide the application with a stable abstraction
layer. CFD applications written with Saiph are independent. Thus
they can be easily ported between architectures. Numerical and
parallel implementations are application-independent, prone to be
reused and tunable for the efficient exploitation of different com-
puter architectures. Saiph is currently based on the explicit Finite
Difference Method (FDM) supporting both inter and intra-node

parallelism using MPI[12] and OpenMP[5] programming models.
However, its modular design can be enhanced with other numerical
methods and parallel strategies targetting different hardware while
covering a broader range of CFD problems, giving the potential for
a long-term contribution. The DSL development platform also has
the potential to be extended to target new domains in other areas
of scientific relevance (electromagnetism, relativity, etc.).

Taking advantage of the malleability of Saiph’s framework, the
contribution of this work is the development of Saiph’s internals to
provide a productive, explicit FDM, CFD working tool. From the
high-level language to the final code the DSL internals are devel-
oped ensuring productivity, correctness and performance through
(i) automatic validation of equations, (ii) non-uniform mesh sup-
port, (iii) operators specialisation, (iv) Gmsh input mesh support
and (v) parametric binaries. Generic, high-order and stable (vi) spa-
tial schemes, (vii) TVD time schemes and (viii) specific convection
schemes, are developed to cover the explicit FDM resolution of a
vast selection of CFD applications. Finally, (ix) the automatic appli-
cation of the suitable numerical parallel method depending on the
CFD scenario, enhance the DSL usability.

This paper is structured as follows. Section 2 presents the related
work, a literature review of the state of the art and the primary mo-
tivation of Saiph. Section 3 revises the DSL design. Section 4 details
the developed Saiph’s internals making the DSL a productive work-
ing tool. The numerical methods and parallel strategies for large
applicability of the DSL are presented in Section 5 and 6, along with
the corresponding domain-specific optimisations. Finally, Section 7
evaluates the resulting tool and conclusions are given in Section 8.

2 RELATEDWORK
The vast majority of state-of-the-art CFD software used today in
scientific and industrial applications cannot fully take advantage
of current and future HPC hardware. CFD software developers
usually fail to keep up the pace with trends in HPC hardware
as it is becoming harder to write and maintain performing CFD
software with GPLs. An example of this can be found in the widely
used open-source CFD library OpenFOAM [15], which proposes its
own language syntax to represent physical equations. This library
suffers from performance bottlenecks [7] so does not appear to be
an ideal candidate for exascale computing. Regarding DSLs, popular
projects are proposing different combinations of features such as
high-level syntax, specific code generation, numerical methods,
portability and parallelism strategies. FiPy [13], OPS/OP2/PyOP2
[22, 24, 25], Liszt [8] and FEniCS [18] are good examples of DSLs
employed for the specific resolution of CFD problems. Both FiPy and
PyOP2 are based on the widely used Python language; the former
relies on the finite volume method (FVM) and can be regarded as
a smaller and simpler alternative to OpenFOAM, whilst the later
is based on the finite element method (FEM) and focuses more on
the performance that can be provided by the OPS/OP2 framework.
However, OPS/OP2 parallelism of user code requires the scientist
to modify their application and write additional serial code with
specific calls to the OPS/OP2 API library. Although this can be
seen as a feature, it forces users to modify its application making it
difficult to be maintained or ported.

On the other hand, Liszt is a DSL that allows specific domain op-
timisations but lacks abstraction and high-level syntax. Users have
the responsibility to manually discretise their physical equations
forcing them to work at the numerical level, besides the domain
level. The language is designed for code portability across hetero-
geneous platforms and provides features for distributed and shared-
memory parallelism that should be applied by users to ensure that
the Liszt compiler can infer data dependencies automatically.

The approach provided by FEniCS consists of a complete simu-
lation infrastructure for many real-world problems. It relies upon
expressing the PDEs at the mathematical level using high-level
Python and C++ interfaces. This tool uses a top-level abstraction
layer which defines a high-level language for the specification of
FEM algorithms allowing users to express the problem in terms
of PDEs and leaving the parallel MPI implementation details to
a lower-level library. FEniCS can run on multiple platforms from
laptops to HPC clusters. Although FEniCS is a compelling solution
for a large number of complex problems, it is not at all meant to be
used by scientists without deep expertise in numerical methods.

Saiph promises to solve the significant drawbacks found in other
DSLs by the innovative combination of the above list of features.
It offers a CFD high-level syntax hiding numerical and parallel
complexities. It is based on the FDM and automatically combines
suitable numerical methods and parallel strategies for the resolution
of CFD problems. Its key innovative features are: (i) unprecedented,
beyond-state-of-the-art high-level syntax not requiring any knowl-
edge on numerical methods or programming, (ii) automatic numer-
ical resolution and correctness, (iii) automatic parallel resolution,
(iv) domain-specific optimisations, (v) design focused on maximum
performance for HPC and emergent exascale applications and (vi)
reusable and easily enhanced modular design.

The resulting DSL can have a significant impact on the CFD
scientific community with the real potential to attract the interest
of a large number of users.

3 UNDERLYING DESIGN
Saiph is designed to be simple, efficient, safe and largely applicable.
Saiph reduces the work of the domain expert by carrying out the
numerical resolution and automatically mapping the resulting ap-
plication onto different HPC hardware as schematically illustrated
in Figure 1 with a CFD equation example.

Figure 1: Saiph outer design.

Internally, the DSL is designed to have two main layers, the
compiler and the library as illustrated in Figure 2. Productivity and
performance are respectively faced in each of them. This separation

2

eases tool development and allows each layer to be enhanced and
reusable. Saiph’s modular design guarantees that any new compo-
nent or optimisation implemented in the DSL platform can be used
separately thus maximising its return on investment.

The high-level domain-oriented syntax and the domain-specific
optimisations are defined and implemented at the compiler layer.
At this layer, the Saiph’s source-to-source compiler translates, spe-
cialises and optimises the input code. This compiler is embedded
in the Scala language [23] using the Lightweight Modular Staging
(LMS) [26] as a DSL development platform and the Scala Virtual-
ized Compiler [21]. At the second layer, the Saiph C++ library takes
care of the numerical and auxiliary methods and the parallel strate-
gies. The use of different parallel programming models permits
the final code to run on a multitude of platforms, from laptops to
heterogeneous HPC clusters.

Figure 2: Underlying design and technologies used during
the compilation process of a Saiph application.

Currently, the DSL offers a complete high-level syntax for an
unambiguous and straightforward transcription of CFD problems
into Saiph code as well as specific optimisations, at the first com-
piler layer. Regarding the C++ library, a set of high-order explicit
FDM algorithms has been implemented along with MPI, OmpSs [9]
and OpenMP programming models and parallelisation strategies.
However, due to its modular nature, Saiph has the potential to be
a versatile production tool; back-ends with other programming
models annotations and kernels can be easily added to map compu-
tations into different architectures such as GPUs or FPGAs. Implicit
methods, finite elements or volumes, etc. can enhance the library
layer. What is more, an entirely new syntax can be defined and
added at the compiler layer enabling work on other domains or
even coupled physics simulations.

4 BOOSTING PRODUCTIVITY
We aim to boost the productivity of Saiph domain expert users.
The generic high-level syntax, usability and interaction provided
by the tool, fit out a fast an intuitive computational modelling
process and a productive working environment. Users can give
and retrieve information to and from Saiph in an efficient and

comfortable natural way, suitable for CFD requirements and tools.
The DSL compiler, offering an internal code specialisation and early
detection of errors from the problem definition, releases the users
from decisions related to numerical methods and eases an error-free
application encoding.

4.1 Language
The language is the ultimate utensil for the user’s development and
represents the origin of the domain-specific information used by
the DSL internals. Hence, it is a source of productivity enhancement
at different levels.

4.1.1 High-level syntax. Saiph has a high-level syntax to unam-
biguously define a complete system of PDEs characterising a CFD
physical problem [19]. This scientific syntax allows specifying the
problem by directly translating the on-paper physical problem defi-
nition without requiring expertise on programming for supercom-
puters or numerical methods. From the spatial domain definition to
the system of equations, physical magnitudes and fields are defined,
initialised and related through collective and continuous spatiotem-
poral functions and operations. Units and dimensions are specified
for each of the components. Saiph supports several boundary con-
ditions, source terms, vector equations and the most required com-
ponents encountered on typical CFD problems. Code 1 presents
Saiph’s application code for the simulation of a 2D convection-
diffusion problem with source term.

Use-case 1. Advection-diffusion problem
The spatial domain considered is a square of dimensions 0 ≤ x ≤ 1,
0 ≤ y ≤ 1 meters, periodic in the x-direction, in SI units
Governing equation

∂T

∂t
= −v · ∇T + d · ∇2T + S(t) (1)

Constants
v = (0m/s, 1m/s)

d = 0.001m2/s

Initial condition

T (x ,y) = e
−

(
x2
2 +

y2
2

)
K

Boundary conditions
T (0,y) = T (1,y)
T (x , 0) = 0K
∂T (x,1)

∂y = 0K/m

Heat source at (x ,y) = (0.1m, 0.2m)

S(t) =

{
300K/s at

�� t < 0.2s
0K/s at

�� t ≥ 0.2s

// 2D Spatial domain definition

val mesh = CartesianMesh(1 * Meters, 1 * Meters)

// Space discretisation factors

mesh.discretize(1 * mm, 1 * mm)

// Mesh boundary condition

mesh.setPeriodic(DirX)

// Constants

val v = Constant(Speed)("Velocity", Vector(0 * m/s, 1 * m/s),

"Vx, Vy")

3

val d = Constant(Meters2/Seconds)("Diff coeff", 0.001 * m2/s)

// f(x, y) defining a Gaussian pulse, ICs

val T = Variable(Temperature)("T", mesh, (x, y, z) => {

exp(-(pow(x, 2)/2.0 + pow(y, 2)/2.0)) * K })

// T Boundary conditions

T.setDirichlet(CFaceYMIN, 0 * Kelvins)

T.setNeumann(CfaceYMAX, 0 * Kelvins/Meters)

// Heat source

// At (x=0.1m, y= 0.2m), a f(t) defines an inlet heat flux.

val S = Source(Temperature/Seconds)(mesh, (0.1*m, 0.2*m),

(t) => { if(t < 0.2*s) 300.0*K/s

else 0.0*K/s })

// Governing equation

val AdvDiffEq = Equation(dt(T), -v*grad(T) + d*lapla(T) + S)

// Problem Definition

val prob = Problem(mesh)(AdvDiffEq)

// Solver

Stepper(prob, DT, NSTEPS, IntegrationMethod.RK3)("ADVDIFF2D",

OutputFormat.VTI, SamplingMethod.Flush)

Code 1: 2D Advection-diffusion Saiph application code.

The whole modelling process is achieved with a few lines of
code transcribing the original problem, the number of time-steps
to simulate and the spatiotemporal discretisation factors.

4.1.2 Internal validations. The user provides units and dimensions
of the variables of its system. Using this information, Saiph inter-
nally checks that definitions, initialisation of variables, boundary
conditions, operations and equations are valid. Descriptive com-
pilation errors prevent the user from performing illegal problem
specifications allowing him to identify and correct mistakes.

Different units can be utilised to represent the same magnitude:
miles and kilometres to express a length or Kelvins and Celsius
degrees for temperatures. Internally, units are stored in the Inter-
national System of Units (SI), and numerical values are accordingly
transformed to ensure correct computations while applying unity-
type-check. Equations and some operators have left, and right-hand
side expressions with units that must match, otherwise Saiph would
emit an error. For this test, the DSL creates an internal tree rep-
resentation of each equation, whose leaves are the variables and
constants of the problem. Units are checked and computed for each
node of the equation tree, bottom up, according to the internally
defined operator rules on units.

Regarding spatial dimensions, some operators are restricted to
be applied to scalar or vector fields. In contrast, the right-hand
side of the equation is only allowed to be a scalar careless of the
nature of the left-hand side, which can be either a scalar or vector.
This syntax restriction allows defining vector equations efficiently
and unambiguously through the use of the component or subscript
operators. Similarly to units, node’s dimensions, characterised from
the nature of the tree leaves and the operator rules, are checked
and computed for each equation tree node, in a bottom-up way.

Figure 3 illustrates the way Saiph tests the validity of equation (2)
by checking dimensions and units of their child and characterising
nodes. For instance, the addition node emits and error whether the
nature of its operands differs on dimensions or units. If the match
occurs, the addition node takes the characteristics of its children.
The gradient node on the other hand, is defined as a vector node
and only accepts scalar child nodes. Since it performs a spatial

derivative, its units are computed by dividing the units of its only
operand, by meters.

Figure 3: Units and dimensions validation on operators and
equation.

4.1.3 External meshes. Spatial domains are not always easily de-
scribed through continuous functions. However, more generic ge-
ometries with finner discretised regions (using non-uniform spatial
discretisation factors) or non-regular spatial regions can be set
through the use of external meshes as input for Saiph. The already
discretised input meshes are defined giving the path to the mesh
file and the base unit of its length dimension (by default, the length
unit is Meters).

def Cartesian(path: string, baseUnit: Length) : Cartesian

Code 2: External mesh constructor.

The use of external meshes eases the spatial domain definition.
It allows for the discretisation refinement of zones of interest and
defines spatial regions with label identifiers that can be later on used
within the application, for the initialisation or boundary conditions
of constants and variables, as illustrated in Code 3.

val T = Variable(Temperature)("Temp", mesh, 300* K)

T.setIC("airfoil", 0*K)

T.setNeumann("outlet", 0*K/m)

Code 3: Use of mesh labels as spatial regions.

4.1.4 Operators specialisation. Herein we present Saiph optimi-
sations which are specific of the CFD domain. They occur at the
first stage of the compilation process and aim to ensure the correct
use of the underlying numerical methods. From the analysis of the
problem and its equations, the Saiph compiler generates specific IR
operators nodes.

4

Saiph’s syntax has a complete set of mathematical operators
available to combine variables and constants, either scalars or vec-
tors, to build the system of equations. Each of them has been inter-
nally overloaded to perform a suitable operation depending on the
nature of the problem and the operands involved.

Spatial differentiation operators are specifically generated de-
pending on the nature of the mesh. The spatial operator emitted
for non-uniform meshes involves the coefficient derived from the
chain rule ∂ϵ/∂x needed to take into account the variations of the
spatial discretisation factor ∆x .

Other operators such as the product operator ()∗(), are translated
depending on the dimensions of their operands. Any combination
is possible, so the operations are unambiguously defined. Code 4
presents the operation specialisation: a dot product is generated
when both operands are vectors, a scalar product for scalar operands
and a scaling factor otherwise.

def infix_*(x: vector, y: vector) : scalar // Dot product

def infix_*(x: scalar, y: scalar) : scalar // Scalar product

def infix_*(x: vector, y: scalar) : vector // Scaling factor

Code 4: Product operator overload.

The DSL is also capable of applying numerical domain-specific
optimisations. Some of those optimisations aim to ensure numerical
stability through the analysis of the problem equations. For exam-
ple, the convective term of equation (2) is identified and a specific
convective gradient operator emitted. The specific spatial differenti-
ation operator involves skew, upwind differentiation schemes to
avoid numerical instabilities instead of default central schemes.
Operator overload permits the users to code a CFD application
unambiguously. As in a hand-written manner, users would not
need to take care of using the precise, particular operators for each
case. Instead, specification and stability optimisations are internally
performed ensuring a productive, correct and stable utilisation of
the underlying numerical methods.

4.2 Gmsh support
The DSL enhancement has also been devoted to easing the task of
either getting data from the users and giving information to them.

Externally generatedmeshes can be defined and discretised using
the popular mesh generator, Gmsh [10], to, later on, be used as input
within the Saiph application. This significant contribution permits
simulating both uniform and non-uniform meshes. First of all, the
Gmsh output mesh is converted to a .saiph.mesh file by a provided
Perl script. From the .saiph.msh input file the mesh information can
be read in parallel by Saiph: number of dimensions 1D, 2D or 3D,
axes coordinate arrays X, Y, Z and spatial regions predefined and
labelled in Gmsh. Figure 4 illustrates this input mesh process.

Figure 4: External mesh input process.

4.3 Working methodology
After the compilation process, Saiph generates a binary specific
to the application and ready to be executed in parallel. Usually,
CFD domain experts work across a range of numerical and execu-
tion parameters of the CFD application under study. To provide a
productive research methodology, the generated binary accepts a
bunch of numerical and output parameters as run-time arguments
and is currently ready to run sequentially or with a valid parallel
configuration making use of inter and intra-node processes.

The run-time numerical and output arguments are the input
mesh file, its length and time discretisation factors, the number of
time-steps, the order of the time-integration method, the spatial
accuracy, output simulation name, format and sampling method.

Regarding the parallel execution, the configuration is also set at
run-time through the environment variables and job scripts of the
machine under use. The underlying resources involved are specified
by the user through the desired number of inter and intra-processes.

Once the modelling and compilation process is accomplished, an
exhaustive parametric study and performance analysis can be done
over the same application with no need to rewrite or recompile it.

5 NUMERICAL RESOLUTION
In general, PDE systems describing fluid dynamics cannot be solved
analytically. By using numerical methods, continuous functions and
equations are spatiotemporally discretised so approximate solutions
can be obtained. The internal Saiph CFD library’s goal is to give
high-order accuracy approximation to flows described by initial and
boundary conditions using high-order generic FDM schemes. Spe-
cial attention on consistency, stability and convergence, covering a
large Courant-Friedrichs-Lewy (CFL) range has been taken. At the
application level, users select the order of accuracy of spatial and
temporal schemes for their applications while numerical resolution
and assembly details are internally and automatically handled.

5.1 Spatial schemes
The continuous spatial dimensions are discretised through the use
of Cartesian meshes. Spatial differentiation operators are derived
from Taylor series expansions and polynomial fitting up to order
eight for the approximation of the first and second spatial derivative
functions. By default, central schemes with a truncation error of
O(∆x4) are used. When using high-order schemes, the approxima-
tions for near-boundary nodes require special treatment. Saiph uses
adaptive stencils based on forward and backward schemes, biased
towards the interior of the solution domain, to maintain the global
accuracy order. The coefficients for those approximations have
been derived through the method of undetermined coefficients [17]
for approximations up to order eight. Similarly, Neumann bound-
ary conditions, derived from spatial differentiation formulas, use
the corresponding skewed schemes to avoid the generation and
propagation of errors from the boundaries to the rest of the mesh.
For non-uniform grids, a set of coefficients ∂ϵ/∂xi derived from
the chain rule 1

∂xi
= ∂ϵ−1(∂ϵ

∂xi
) with ∂ϵ = cst are added to the

coefficients of the schemes for the non-uniform specific operators.
Saiph aims to offer a controlled spatial accuracy. Users can pre-

select the order of accuracy. Differentiation operators, adaptive
5

stencils and boundary conditions are automatically defined to be
consistent with each other and with the given order of accuracy.

5.2 Temporal schemes
Saiph uses explicit time integration methods. Available schemes
are the first-order forward Euler method and the Runge-Kutta fam-
ily of methods, up to order fourth. Explicit methods suffer from
instability if the time step is larger than a certain CFL condition
number. Runge-Kutta methods are suggested as they effectively use
a smaller step size. Moreover, the implemented schemes correspond
to the high-order Total Variation Diminishing (TVD) Runge-Kutta
methods [11] with better stability when solving hyperbolic con-
servation equations. The system of algebraic equations defining
CFD problems is commonly composed of equations of different
nature, time-derivative (as conservation laws) and non-time deriva-
tive (as the equation of state) internally stored using tree structures
as illustrated in Figure 3. To maintain the order of accuracy, the
available time integration methods for first and second PDEs are
automatically combined with the resolution of non-time deriva-
tive equations. Figure 5 illustrates Saiph work-flow in which the
most consuming part corresponds to the update unknowns function,
going across equation trees at each spatial point.

Figure 5: Saiph time-advancing work-flow.

Similarly to the spatial accuracy, the temporal accuracy is set
by the user and internally ensured through the coordinated time
advancing work-flow.

5.3 Convection schemes
The convective term represents the propagation of a certain quan-
tity in a flow field in the direction of the flow velocity. It is mathe-
matically translated as the dot product of the fluid velocity u and
the gradient of the scalar property ϕ being transported u · ∇ϕ.

Saiph takes special care of this term, as it commonly induces
numerical instabilities or excessive numerical diffusion incurring
in non-physical results or a drop of the global order of accuracy.

The DSL can identify this term and compute it according to its re-
quirements. Different schemes are internally applied depending on
the uniformity of the mesh, the dimensionality of the problem, the
sign and space variability of the velocity vector and the smoothness
of the profile of the magnitude being transported. The goal is to
output stable and physical results of this term covering a vast range
of CFL condition values under those scenarios.

5.3.1 Upwind schemes. To simulate the propagation of information
in the direction determined by the velocity vector, adaptive finite
difference skewed schemes are used. They compute the gradient of
the property being transported and are based on a differentiation
biased in the direction determined by the sign of the flow velocity.
They are called upwind schemes because they skew the derivative
computation in the direction the data is "coming from", therefore
using points in the direction of convection determined by the sign
of the vector velocity components. The available upwind schemes
in Saiph are the first-order one-point upstream scheme and the
third-order Leonard scheme [16], both capable of dealing with non-
uniform meshes while maintaining the spatial order of accuracy.

5.3.2 Corner transport upstream. For multi-dimensional convec-
tion, the Corner Transport Upstream (CTU) method [6] is applied
to correctly combine the convection for each of the propagation
directions successively. Saiph implements this strategy whenever
the velocity vector has more than one non-zero component, as
a local dimension splitting. Using this splitting methodology, the
stability range is enlarged since the CFL condition must be ensured
in each one of the spatial directions, separately. The CTU method
is combined in Saiph with any upwind scheme.

5.3.3 Total Value Diminishing constraint. Solutions of the convec-
tive term have a non-increasing variation. Numerical methods used
to solve this kind of hyperbolic terms must prevent numerical os-
cillations around flow discontinuities, regardless of the smoothness
of the profile being convected. This requirement is translated as
the variation of the solution being diminishing. To satisfy the TVD
criteria [14], a limiting function is introduced to the convection
schemes [2]. The magnitude of the limiting function depends on
the smoothness of the profile. It is computed using the ratio of the
consecutive gradients so, the TVD constraint has no impact for con-
tinuous smooth profiles. Otherwise, it prevents from non-physical
instabilities at the expense of a decrease in spatial accuracy.

5.3.4 Method of characteristic lines. The method of characteristic
lines [1] is a semi-Lagrangian scheme [3] constituting a good al-
ternative to the previously described methods when dealing with
constant propagation velocities. In such scenarios, a one-to-one
relationship can be established for each spatial coordinate. The
quantities for a certain coordinate xi are transported to another
one x j at each time-step. With a suitable time-space discretisation
where the "simulation velocity" is proportional to the fluid velocity,
∆x/∆t = k · v with k ∈ Z, the transport can be done by directly
copying the values of the transported quantities. For these suitable
meshes the method is, therefore, free of truncation errors and non-
restrictive with the time-discretisation factor: the new constraint
associated with the convection term is given by CFL = k with
k ∈ Z. When the discretisation factor ratio is not proportional to

6

the constant velocity of the fluid, the method introduces interpola-
tion functions carrying spatial truncation errors. Those functions
use values from the neighbour of the spatial coordinate being trans-
ported, which does not correspond to a real grid point. Since no
explicit integration is used when applying this scheme, the CFL
constraint does not apply. Moreover, this scheme does not generate
numerical instabilities, even for discontinuous profiles.

5.3.5 Combining schemes. As well as for space and time schemes,
Saiph deals with the combination of convection methods. From the
term detection, the most suitable scheme is applied. Constant veloc-
ities are early detected, and the method of characteristic lines used.
For that, the convection term is removed from its original equation.
At each time step, the rest of the equation is regularly computed,
and the transported quantities added to the result. In such scenarios,
the convection term does not restrict the CFL anymore. Thus, larger
CFL ranges are supported. Regarding non-constant velocities sce-
narios, the one-point upstream or the Leonard schemes are selected
depending on the spatial accuracy set by the user. The velocity
characteristics and the profiles being transported determine the
application of CTU and TVD methods. Local dimension splitting
and limiter functions ensure a stable computation of the convec-
tion term. Convection of continuous and non-continuous profiles
with multi-dimensional velocities covering a large CFL range is
automatically applied and combined in Saiph internals.

6 PERFORMANCE FEATURES
Saiph has been designed to take advantage of HPC by applying
knowledge of the specific domain. Hence, all the DSL features have
underlying parallel support allowing Saiph applications to run on
HPC environments. Performance optimisations are also transpar-
ently applied to produce a specific efficient parallel execution. The
modular tool permits to enhance performance by easily adding
optimisations maintaining the high-level application unchanged.

6.1 Parallel approach
Inter and intra-node parallelism are harmoniously combined in
Saiph internals. For the inter-node parallelism, the mesh is par-
titioned by the last dimension. Regarding intra-node parallelism,
partial differential equations are integrated in parallel at every time-
step. Differential equations are solved in parallel for all the points
of the local mesh. Figure 6 illustrates Saiph’s parallel work-flow
running on an HPC cluster.

6.2 Perfomance optimisations
The DSL compiler also applies performance optimisations such as
computations and storage reduction and data locality improvements
to enhance the efficiency of the final generated code.

Nested operations can be simplified by identifying the operators
and the nature of the operands involved. Constants and variables
can be redefined depending on their initialisation and use [19].

Another example of performance optimisation is the distribution
of the mesh across the available MPI processes. The mesh partition
is done through a single dimension (the "last" one, e.g. z-dimension
in a 3D app) so that boundaries are contiguous in memory and thus
efficiently communicated. To ensure maximising the number of

Figure 6: Saiph parallel work-flow.

partitions and minimising the communication cost, Saiph can in-
ternally permute spatial dimensions. The distribution occurs along
the mesh direction with the highest workload.

7 EVALUATION
We evaluate Saiph’s productivity, output results, numerical methods
and scalability for various CFD applications. The chosen bench-
marks combine different phenomena and scenarios: 1D, 2D and
3D uniform and non-uniform meshes are tested for continuous
and discontinuous fluid profiles. External sources, different bound-
ary conditions and flow discontinuities have also been combined
through different systems of equations, coupling first, second and
non-derivative equations. Mathematical specifications, Saiph codes,
evaluations and output results can be looked up at https://github.
com/EulerStokes/CFD-benchmarkApp. Here we present two appli-
cations illustrating Saiph utilisation and performance.

7.1 Gaussian pulse convection
This application illustrates the use of external non-uniform meshes
and the error-free simulation of flow transport.

7.1.1 Problem specification. Code 5 presents the Saiph implemen-
tation of the 2D convection of a Gaussian pulse.

Use-case 2. 2D Gaussian Pulse Convection

The spatial domain considered is a square of dimensions −6 ≤ x ≤ 6,
−6 ≤ y ≤ 6 meters, periodic in the x and y-directions, in SI units

Governing equation
∂T

∂t
= −v · ∇T (2)

7

https://github.com/EulerStokes/CFD-benchmarkApp
https://github.com/EulerStokes/CFD-benchmarkApp

Constants
v = (1, 0)

Initial condition

T (x ,y) = e
−

(
x2
2 +

y2
2

)
K

The application is coded in Saiph as follows.

1 // Cartesian mesh input

2 val mesh = CartesianMesh("path/mesh.saiph.msh", Meters)

3 mesh.setPeriodic(DirX)

4 mesh.setPeriodic(DirY)

5 // ICs

6 val T = Variable(Temperature)("T", mesh, (x, y, z) => {

7 exp(-(pow(x, 2)/2.0 + pow(y, 2)/2.0)) * K })

8 val u = Constant(m/s)("u", Vector(1*m/s, 0*m/s), ("X", "Y"))

9 // Equation definition

10 val convEq = Equation(dt(T), -u * grad(T))

11 // Problem definition

12 val probConv = Problem(mesh)(convEq)

13 // Time parameters

14 val Dt = 0.04*s

15 val nsteps = 300

16 // Solver

17 Stepper(probConv, 0.04*s, 900, IntegrationMethod.Euler)("2

DGaussianPulse", OutputFormat.Binary, SamplingMethod.

Periodic, 1)

Code 5: 2D Gaussian Pulse application code.

7.1.2 Simulation results. The problem has been set with a 2D ex-
ternal non-uniform Cartesian mesh using 249 ∗ 27 grid points.
The Gaussian pulse suffers a constant net transport along the x-
direction, so the initial profiles are conserved during the simulation.
Several convection cycles have been simulated using Euler’s time-
integration method. By analysing the convective velocity and the
smoothness of the profile, Saiph has applied the method of charac-
teristics lines for the computation of the convection term. Figure 7
shows the final results which have been validated against the initial
flow conditions. This simulation has no truncation error L2 = 0K
according to the fact that the DSL identifies the problem as linear
and applies the analytic-solution method of characteristic lines.

Figure 7: Output grid points for the 2D Gaussian Pulse con-
vection on a non-uniform mesh, after n-convection cycles.

7.2 Inviscid vortex convection problem
For this second test case, we present the specification and resolu-
tion of a system of coupled equations. A numerical and scalability
evaluation is performed over this application example.

7.2.1 Problem specification. At the user level, Code 6 illustrates the
direct map from the high-level syntax to the domain-specific con-
structs. Around 30 lines of code are enough to encode the following
mathematical problem specification.

Use-case 3. 2D Euler Equations - Inviscid Vortex Convection
The spatial domain considered is a square of dimensions 0 ≤ x ≤ 10,
0 ≤ y ≤ 10 meters, periodic in the x and y-directions (SI units).
Governing equation: Euler equations

∂ρ

∂t
= −v · ∇ρ − ρ∇ · v (3)

∂(ρvi)

∂t
= −v · ∇(ρvi) − (ρvi)∇ · v − (∇p)i (4)

∂(ρE)

∂t
= −v · ∇(ρE) − (ρE)∇ · v − v · ∇p − p∇ · v (5)

p = (γ − 1)
(
ρE −

1
2
ρv2

)
(6)

Adiabatic index γ = 1.4
Vortex strength b = 0.5
Vortex initial center (xc ,yc) = (5, 5)
Distance from the vortex center r =

[(
(x − xc)

2 + (y − yc)
2)]1/2

Problem unknown and initial conditions

ρ =

[
1 −

(γ − 1)b2

8γπ 2 e1−r
2
] 1
γ −1

vx =
b

2π
e
1
2 (1−r

2)(y − yc)

vy = 0.1 −
b

2π
e
1
2 (1−r

2)(x − xc)

p = 1
The application is coded in Saiph as follows.

1 // 2D uniform regular Cartesian mesh and BCs

2 val mesh = CartesianMesh(10*m, 10*m)

3 mesh.discretize(0.01953125*m, 0.01953125*m)

4 mesh.setPeriodic(DirX)

5 mesh.setPeriodic(DirY)

6 // Parameters

7 val adiabaticIdx = 1.4

8 val vStrenght = 0.5

9 val v_x = Vector(1.0 * m/s, 0.0 * m/s)

10 val v_y = Vector(0.0 * m/s, 1.0 * m/s)

11 // Variables and constants

12 val gamma_minus1 = Constant(Unitless)("AdiabaticIndex -1",

13 (adiabaticIdx -1)*Unitless)

14 val v = Variable(Speed)("Velocity", mesh, (x, y, z) => {

15 ((vStrenght / (2.0 * PI)) * exp(0.5 * (1.0-(pow((x.value -

5.0), 2) + pow((y.value - 5.0), 2)))) * (y.value - 5.0))

* v_x + (1.0 - ((vStrenght / (2.0 * PI)) * exp(0.5 *
(1.0 - (pow((x.value - 5.0), 2) + pow((y.value - 5.0),

2)))) * (x.value - 5.0))) * v_y }, ("X", "Y"))

16 val p = Variable(Pressure)("Pressure", mesh, (x, y, z) => {

8

17 pow(pow(1 - (((adiabaticIdx -1.0) * vStrenght * vStrenght) /

(8.0 * adiabaticIdx * PI * PI)) * exp(1.0 - (pow((x.

value - 5.0), 2) + pow((y.value - 5.0), 2))), (1.0 / (

adiabaticIdx - 1.0)))*Unitless, adiabaticIdx) * Pascals

})

18 val rho = Variable(kg/m3)("Density", mesh, 1.0*kg/m3)

19 val rhoU = Variable(kg/m2/s)("Rho*U", mesh, Vector(0 * kg/m2/s,

0 * kg/m2/s), ("X", "Y"))

20 val rhoE = Variable(kg/m/s2)("Rho*E", mesh, 0.0 * kg/m/s2)

21 // Initialization equations

22 val init_rhoe = Equation(rhoE, (p/(adiabaticIdx -1*Unitless))

+ (0.5*Unitless) * rho * v * v)

23 val init_rhou = Equation(rhoU, rho * v.i)

24 // Euler Equations

25 val density = Equation(dt(rho), -v * grad(rho) - rho * div(v))

26 val momentum = Equation(dt(rhoU), -v * grad(rhoU.i) - rhoU.i *
div(v) - grad(p).i)

27 val energy = Equation(dt(rhoE), -v * grad(rhoE) - rhoE * div(v

) - v * grad(p) - p * div(v))

28 val velocity = Equation(v, rhoU.i/rho)

29 val state = Equation(p, (adiabaticIdx -1*Unitless)*(rhoE -

(0.5*Unitless)*rhoU*v))

30 // Problem definition. (Init equations)(Governing equations)

31 val prob = Problem(mesh)(init_rhoe, init_rhou)(density,

momentum, energy, velocity, state)

32 // Solver

33 Stepper(prob, 3.125*ms, 3200, IntegrationMethod.RK3)("

InviscidcVortex", OutputFormat.VTK, SamplingMethod.

FinalState)

Code 6: 2D Inviscid Vortex Saiph application code.

7.2.2 Simulation results. The application has been set with a 2D
uniform Cartesian mesh using 512 ∗ 512 grid points. The vortex
suffers a net transport on the y-direction, so the initial profiles are
conserved along the simulation. Initial conditions can thus be seen
as analytic solutions of the problem. 3200 time-steps have been
computed to complete a full convection cycle. A default spatial
accuracy of O(∆x4) is set, while the TVD-RK3 time-integration
method (O(∆t3)) is selected at the user level. By analysing the
convection velocity and the smoothness of the profiles the Leonard
scheme (O(∆x3)) combined with CTU and TVD methods is applied
for the computation of the convection terms. Figure 8 shows the
final results validated against the initial flow conditions.

After one convection cycle, the L2 norm of the pressure quantity,
taking the initial conditions as reference results is L2 = 4 · 10−6Pa.

7.2.3 Evaluation of numerical methods. The aim of this analysis
is to calculate the order of accuracy of the numerical methods
used. We run the application several times, changing discretisation
factors and the time-step parameter. At each run, the values of
∆x and ∆t are divided by two. The L2 norm is computed taking
initial and final results, always reporting the error at one convection
cycle. Figure 9 illustrates the tendency of the error depending on
the spatial discretisation factor. The logarithmic fitting loд(y(x)) =
a + 2.3 ∗ loд(x) shows a slope of 2.3. This number corresponds to
the real order of the global truncation error which differs from the
theoretical one (O(∆x3)). The difference is explained by the use
of the TVD method when dealing with convection phenomena.

0.9910.9920.9930.9940.9950.9960.9970.9980.9991

0 1 2 3 4 5 6 7 8 9 10

Pr
es
su
re

(P
a)

y-Axis (m)

Initial
Final

2.975
2.98
2.985
2.99
2.995

3
3.005

0 1 2 3 4 5 6 7 8 9 10Rh
o*
E
(K
g/
(m

s2
))

y-Axis (m)

Initial
Final

-0.08-0.06-0.04-0.020
0.020.040.060.08

0 1 2 3 4 5 6 7 8 9 10Rh
o*
Vx

(K
g/
(m

2s
))

y-Axis (m)

Initial
Final

Figure 8: Variable profiles after one convection cycle for the
Inviscid Vortex Convection application.

0.000001

0.000010

0.000100

0.001000

 0.1

L
2
 n

o
rm

 (
P

a
)

∆x (m)

RK3 O(∆ t
3
) Leonard TVD O(∆x

3
)

log fitting

Figure 9: Order of accuracy analysis.

This mechanism induces the slight drop of the order of accuracy
favouring the stability of the result.

7.2.4 Scalability evaluation. To evaluate the parallel scalability of
Saiph, we run the application on BSC’s MareNostrum 4 supercom-
puter [4]. This supercomputer integrates 3,456 general purpose
nodes with a total of 165, 888 processor cores and 390 terabytes
of main memory. Each compute node is equipped with two Intel
Xeon Platinum 8160 CPU sockets with 24 cores each. A high-speed
Omnipath network connects all the components. We analyse the
strong scalability of the inviscid vortex convection problem involv-
ing the computation of 3.9 million grid points - 2D mesh of 512
points per direction, 5 unknowns and 3 RK3-intermediate-steps:
(512 · 512) · (5 · 3) ≈ 3.9M - and 3200 time-steps to perform a full
convection cycle of 10s . To leverage the hybrid parallelisation strat-
egy, each simulation has been performed using OpenMPI, binding
each MPI process to a node making use of its 48 cores through
OpenMP threads. A linear speedup has been obtained up to 192

9

cores. Scalability results are shown in Table 1, taking as base-line
the execution time of the application when running on a single
node with 48 OpenMP threads. The quasi-linear speedup degrades
as more processors involved due to the increase of the replicated
data (boundaries) and their communications.

#nodes #cores Speedup

1 48 1
2 96 2.01
4 192 4.0
8 384 7.8
16 768 15.5
32 1536 29.8
48 2304 45.2

Table 1: Saiph scalability results

The aim of this evaluation is to demonstrate the parallel nature of
Saiph’s generated code. Although the design and parallel capability
to automatically run on HPC environments are fully functional,
efforts have not yet been devoted to boost the efficiency of the
code. To this end, approaches are planned to be developed and
added to the library layer such as generation of kernels to run on
GPUs, SIMD exploitation, locality enhancement, computation and
communication overlap, etc. A deep parallel and efficiency study is
contemplated as future work.

8 CONCLUSIONS
The work presented has been explicitly developed for boosting the
productivity of CFD scientists on HPC environments by improving
the degree of abstraction and usability of Saiph’s high-level syntax
to suit the productivity demands of the scientific community. Saiph
internally applies and combines suitable parallel numerical schemes
for the stable computation of a large set of CFD problems that can
be solved through explicit FDMs. We have shown that Saiph out-
puts accurate results of CFD applications while having the ability to
exploit modern supercomputers. We believe that Saiph contributes
toward an efficient expression of CFD applications that dramati-
cally reduces the demand of knowledge on numerical methods and
parallel programming and, at the same time, eases portability and
maintainability tasks. Likewise, Saiph is presented as a supporting
infrastructure in which improvements and enhancements at dif-
ferent levels can be easily added to enlarge the applicability range.
The DSLs philosophy arises as a promising research methodology
for facing the exascale era.

ACKNOWLEDGMENTS
Thiswork is supported by theMinistry of Economy of Spain through
Severo Ochoa Center of Excellence Program (SEV-2015-0493), by
the Spanish Ministry of Science and Innovation (contract TIN2015-
65316-P) and by the Generalitat de Catalunya (2017-SGR-1481).

REFERENCES
[1] Muhammad Adeel Ajaib. 2013. Numerical Methods and Causality in Physics.

arXiv preprint arXiv:1302.5601 (2013).
[2] Roumen Anguelov, Jean M-S Lubuma, and Froduald Minani. 2010. Total varia-

tion diminishing nonstandard finite difference schemes for conservation laws.
Mathematical and Computer Modelling 51, 3-4 (2010), 160–166.

[3] JR Bates and A McDonald. 1982. Multiply-upstream, semi-Lagrangian advective
schemes: Analysis and application to a multi-level primitive equation model.
Monthly Weather Review 110, 12 (1982), 1831–1842.

[4] BSC-CNS. [n. d.]. MareNostrum. Available at https://www.bsc.es/marenostrum.
[5] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. 2008. Using OpenMP:

portable shared memory parallel programming. Vol. 10. MIT press.
[6] Phillip Colella. 1990. Multidimensional upwind methods for hyperbolic conser-

vation laws. J. Comput. Phys. 87, 1 (1990), 171–200.
[7] Massimiliano Culpo. 2011. Current bottlenecks in the scalability of OpenFOAM

on massively parallel clusters. PRACE (2011).
[8] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat

Medina,Mike Barrientos, Erich Elsen, FrankHam, AlexAiken, Karthik Duraisamy,
et al. 2011. Liszt: a domain specific language for building portable mesh-based
PDE solvers. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 9.

[9] Alejandro Duran, Eduard Ayguade, Rosa M Badia, Jesús Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. 2011. OmpSs: A proposal for programming
heterogeneous multi-core architectures. Parallel processing letters 21, 2 (2011).

[10] Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A 3-D finite
element mesh generator with built-in pre-and post-processing facilities. Interna-
tional journal for numerical methods in engineering 79, 11 (2009), 1309–1331.

[11] Sigal Gottlieb and Chi-Wang Shu. 1998. Total variation diminishing Runge-Kutta
schemes. Mathematics of computation of the American Mathematical Society 67,
221 (1998), 73–85.

[12] William Gropp, Ewing Lusk, and Anthony Skjellum. 1999. Using MPI: portable
parallel programming with the message-passing interface. Vol. 1. MIT press.

[13] Jonathan E Guyer, Daniel Wheeler, and James A Warren. 2009. FiPy: Partial
differential equations with Python. Computing in Science & Engineering 11, 3
(2009).

[14] Ami Harten. 1983. High resolution schemes for hyperbolic conservation laws.
Journal of computational physics 49, 3 (1983), 357–393.

[15] Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. 2007. OpenFOAM: A C++
library for complex physics simulations. In International workshop on coupled
methods in numerical dynamics, Vol. 1000. IUC Dubrovnik, Croatia, 1–20.

[16] Liu Jianchun, Gary A Pope, and Kamy Sepehrnoori. 1995. A high-resolution
finite-difference scheme for nonuniform grids. Applied mathematical modelling
19, 3 (1995), 162–172.

[17] Randall J LeVeque. 2004. Finite volume methods for hyperbolic problems. Cam-
bridge Texts in Applied Mathematics 39, 1 (2004), 88–89.

[18] Anders Logg, Kent-Andre Mardal, and Garth Wells. 2012. Automated solution
of differential equations by the finite element method: The FEniCS book. Vol. 84.
Springer Science & Business Media.

[19] Sandra Macià, Sergi Mateo, Pedro J Martínez-Ferrer, Vicenç Beltran, Daniel
Mira, and Eduard Ayguadé. 2018. Saiph: Towards a DSL for High-Performance
Computational Fluid Dynamics. In Proceedings of the Real World Domain Specific
Languages Workshop 2018. ACM, 6.

[20] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to
develop domain-specific languages. ACM computing surveys (CSUR) 37, 4 (2005).

[21] Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. 2012. Scala-
virtualized (PEPM ’12). ACM, New York, NY, USA, 117–120. https://doi.org/10.
1145/2103746.2103769

[22] Gihan R Mudalige, IZ Reguly, and Michael B Giles. 2016. Auto-vectorizing a
large-scale production unstructured-mesh CFD application. In Proceedings of the
3rd Workshop on Programming Models for SIMD/Vector Processing. ACM, 5.

[23] Martin Odersky, Lex Spoon, and Bill Venners. 2010. Programming in Scala, Second
Edition. Artima.

[24] Florian Rathgeber, Graham R Markall, Lawrence Mitchell, Nicolas Loriant,
David A Ham, Carlo Bertolli, and Paul HJ Kelly. 2012. PyOP2: A high-level
framework for performance-portable simulations on unstructured meshes. In
SCC, 2012 SC Companion:. IEEE, 1116–1123.

[25] István Z Reguly, Gihan R Mudalige, Michael B Giles, Dan Curran, and Simon
McIntosh-Smith. 2014. The OPS domain specific abstraction for multi-block
structured grid computations. In WOLFHPC, 2014 Fourth International Workshop
on. IEEE, 58–67.

[26] Tiark Rompf andMartin Odersky. 2010. Lightweightmodular staging: a pragmatic
approach to runtime code generation and compiled DSLs (GPCE ’10). ACM, New
York, NY, USA, 127–136. https://doi.org/10.1145/1868294.1868314

10

https://www.bsc.es/marenostrum
https://doi.org/10.1145/2103746.2103769
https://doi.org/10.1145/2103746.2103769
https://doi.org/10.1145/1868294.1868314

	Abstract
	1 Introduction
	2 Related work
	3 Underlying design
	4 Boosting productivity
	4.1 Language
	4.2 Gmsh support
	4.3 Working methodology

	5 Numerical resolution
	5.1 Spatial schemes
	5.2 Temporal schemes
	5.3 Convection schemes

	6 Performance features
	6.1 Parallel approach
	6.2 Perfomance optimisations

	7 Evaluation
	7.1 Gaussian pulse convection
	7.2 Inviscid vortex convection problem

	8 Conclusions
	References

