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ABSTRACT

Public repositories for genome and proteome annotations, such as the Gene
Ontology (GO), rarely stores negative annotations, i.e. proteins not possessing a
given function. This leaves undefined or ill defined the set of negative examples,
which is crucial for training the majority of machine learning methods inferring
proteins functions. Automated techniques to choose reliable negative proteins are
thereby required to train accurate function prediction models. This study proposes
the first extensive analysis of the temporal evolution of protein annotations in the
GO repository. Novel annotations registered through the years have been analyzed
to verify the presence of annotation patterns in the GO hierarchy. Our research
supplied fundamental clues about proteins likely to be unreliable as negative
examples, that we verified into a novel algorithm of our own construction, validated
on two organisms in a genome wide fashion against approaches proposed to choose
negative examples in the context of functional prediction.
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1. Introduction

The Protein Function Prediction (PFP), which involves sophisticated computational
techniques to accurately predict the annotations of new proteins and proteomes, is an
emerging and challenging problem in the post-genomic era (Radivojac et al., 2013).
An important issue in PFP is the selection of reliable negative examples for learn-
ing accurate predictors. The Gene Ontology (GO) (The Gene Ontology Consortium,
2000), the reference repository of protein functions, usually stores positive associations
(annotations) between GO functions (also called terms) and gene products, whereas
unannotated proteins are rarely marked as negative for a given term. If a protein
is not currently annotated with a GO term, it could be either that the protein is a
negative example for that term or a positive example which has not been detected
yet due to insufficient investigations. The absence of a “gold standard” for negative
examples calls for the design of techniques for the selection of negative examples to
train accurate functional classifiers.

There has been relatively little study devoted to this issue, despite the enormous
interest toward the prediction of protein functions. These approaches mostly relied
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upon the GO hierarchical structure to define the set of negative examples. The GO
is structured as a directed acyclic graph (DAG) with different levels of specificity,
where terms describing broader functions (e.g. DNA binding) are ancestors of those
describing more specific functions (e.g. nucleosomal DNA binding). GO is composed of
three branches, named Biological Process (BP), Molecular Function (MF), and Cellular
Component (CC). Annotations follows the true path rule (TPR): a direct annotation
of a protein with a given term must be transferred to all its ancestor terms in the
hierarchy; thus, an annotation in nucleosomal DNA binding implies an annotation in
DNA binding.

On this basis, earlier approaches considered as negative examples for a term all pro-
teins with direct annotation (i.e., before applying the TPR) in neither descendant nor
ancestral terms (Eisner, Poulin, Szafron, Lu, & Greiner, 2005), since proteins anno-
tated with descendants are logically also member of the current term, and annotations
(direct) with ancestors suggest just that future experiments might supply more spe-
cialized functions, thus annotating the protein to some of its descendants. Proteins
annotated with sibling terms (i.e. terms sharing at least one parent) have also been
used as negative examples, under the assumption that proteins are rarely annotated in
more than one child of the same parent term (Mostafavi & Morris, 2009). More recent
works exploited the empirical conditional probability of annotating a protein with the
GO function of interest given all the annotations of that protein with all the other
functions (Youngs, Penfold-Brown, Bonneau, & Shasha, 2014), or just with the most
specific ones (Youngs, Penfold-Brown, Drew, Shasha, & Bonneau, 2013), in all three
branches. Lastly, in (Frasca, Lipreri, & Malchiodi, 2017) authors did not propose a
novel strategy to select negatives, but assessed the relevance of some protein features
extracted from protein networks in detecting false negatives using a GO temporal
holdout setting.

We propose here the first exhaustive study of annotation evolution through differ-
ent releases of the GO, revealing novel interesting trends about existing and newly
discovered protein functions. Our research paid attention to the distribution of novel
annotations in yeast and human organisms, and interestingly found that proteins tend
to receive novel annotations for terms having high semantic similarity with the terms
they were already annotated with. Thus, not just the hierarchical position is relevant
in selecting reliable negatives, but even the term content plays a key role. The present
study thereby provides a basilar knowledge for any future approach to detect nega-
tives in the Gene Ontology. Furthermore, by leveraging these emerging disclosures, we
designed a novel method to select negative examples for GO terms, and assessed its
effectiveness in an experimental comparison involving thousands of GO terms and the
state-of-the-art methodologies proposed for the same task.

2. Preliminaries

Given a set V = {1, . . . , n} of proteins, which are annotated to m GO terms C =
{1, . . . m}, by Y ∈ {0, 1}n×m we denote the corresponding label matrix, where Yik = 1
if protein i is annotated with term k, Yik = 0 otherwise. Terms are organized in a
DAG with different levels of specificity, where:

- The level of term k in the hierarch is defined as the number of edges on the maximum
length path from a root node;

- anc(k) ⊂ {1, . . . ,m} is the set of ancestors of k ∈ C in the hierarchy, that is all the
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GO branch Proteins Novel annotations Proteins Novel annotations

yeast human

GO releases 69, 52 GO releases 168, 151

CC 167 217 3878 9406

MF 184 261 2012 5059

BP 336 586 1460 10769

69, 40 168, 139

CC 319 437 4545 13230

MF 381 565 4483 9970

BP 601 1097 2377 19120

Table 1. Number of proteins received novel annotations in the most recent release and the corresponding
total number of novel annotations.

terms on the paths from k to the root term;
- sib(k) ⊂ {1, . . . ,m} is the set of sibling terms of k, namely terms sharing at least
one parent with k;

- desc(k) ⊂ {1, . . . ,m} is the set of descendants of k, that is terms s such that k ∈
anc(s);

Forthermore, a map φ : C × C → R is known, associating any pair of terms k, r ∈ C
with a similarity index φ(r, k). Φ := φrk|

m
k,r=1 is the resulting term similarity matrix,

with φ(r, k) := φrk.
The temporal holdout validation scheme relies on two different temporal GO releases,

denoted by Y and Y , assuming Y as the older one. Columns Y.k and Y .k represent
thereby the labels/annotations for term k in the older and later release, respectively.
Here X.r and Xi. denote the rth column and the ith row of a matrix X, respectively.
Moreover, fixed a term k, V k

np ⊂ V is the set of proteins that received novel annotations

for k in the holdout period, i.e. V k
np = {i ∈ V |Yik = 0∧Y ik = 1}. When clear from the

context, we denote V k
np simply by Vnp.

The negative selection problem consists in learning a model to accurately discrim-
inate proteins belonging to Vnp from proteins {i ∈ V |Yik = 0 ∧ Y ik = 0} (i.e. not
annotated in both releases).

3. Data

Functional annotations have been downloaded from the Gene Ontology for the
S.cerevisiae (yeast) and Homo sapiens (human) organisms. Three different tempo-
ral releases have been considered: the UniProt GOA releases 69 (9 May 2017) as novel
release, and releases 52 (December 2015) or 40 (November 2014) in turn as older re-
lease for yeast, and releases 168 (May 2017), 151 (December 2015) or 139 (November
2014) for human. Annotations include all available terms in the three GO branches.
In order not to introduce label biases, in both releases solely experimentally validated
annotations have been considered. The number of proteins in the set Vnp and the total
number novel annotations in the holdout period are reported in Table 1. The analysis
only considers the direct annotations.
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4. Analysis of novel annotations

We propose in this section an analysis of the distribution of proteins Vnp across the
GO hierarchy, with a twofold aim: verify whether novel annotations show any trend or
pattern in the hierarchy; verify the validity of hypotheses existing approaches relying
on the GO structure to select negatives build upon.

4.1. Locating novel annotations in the hierarchy

Given i ∈ V k
np, let Ci ⊂ C be the subset of GO terms the protein i is annotated in the

older release, that is Ci = {r ∈ C|Yir = 1} (k /∈ Ci by definition of V k
np). First of all,

it might happen that Ci = ∅, i.e. the protein i had no previous annotations (this case
is denoted by First). Otherwise, given s ∈ Ci, the following cases are distinguished:

Anc: k ∈ anc(s),
Desc: k ∈ desc(s),
Sib: k ∈ sib(s),
Other : k /∈ {anc(s) ∪ desc(s) ∪ sib(s)}.

Figure 1 depicts the obtained distribution of novel annotations, considering solely
direct annotations for both yeast and human organisms. First of all, around 5% of novel
annotations are for sibling terms: for instance yeast protein ADY3 (protein required for
spore wall formation) had an annotation for term GO:0030476 (ascospore wall assem-
bly) on 2002/09/20 – PMID:11973299, and on 2016/06/29 has been annotated with
GO:0032120 (ascospore-type prospore membrane assembly, PMID:11742972), sibling
of GO:0030476 via GO:1903046 (meiotic cell cycle process). Thus, strategies adopting
as negatives the proteins positive for sibling terms in these cases fail. Another relevant
problem of the sibling approach is that for several terms (those with few annotations
available) it does not find any negative example (no annotations available for sibling
terms).

Non zero is also the proportion associated with ancestor terms, especially for the MF
ontology, yeast data: this is not surprising, since a protein can receive a direct anno-
tation for an ancestor term, even when it is already annotated for a descendant term
(remind the figure refers to non-TPR annotations). For instance, the yeast protein
KAR9 (Karyogamy protein KAR9) was annotated with GO term GO:0005938 (cell
cortex) on 2002/12/02 (PMID:9442113), and later (2016/04/22 – PMID:26906737)
has been annotated also with term GO:0005737 (cytoplasm), which is ancestor of
GO:0005938. A relevant number of novel annotations is for descendant terms, espe-
cially for human data and MF ontology. This is quite obvious, since novel studies
tend to reveal more specific roles and functions of proteins. However, still around 80%
of cases do not fall into neither Anc nor Desc categories, suggesting that strategies
selecting negatives among proteins with direct annotations in neither descendant nor
ancestral terms might incur into a considerable number of false negatives. This hint is
experimentally verified in Section 5.

First annotations for yeast proteins are more frequent in the CC and MF branches
on yeast data, likely due to the higher complexity of biological processes, making more
difficult finding novel annotations. Finally, BP terms have the highest proportions in
the category ‘other’, which includes all remaining cases.

Since the category ‘other’ collect most of novel annotations, we carried on other two
experiments to understand more about them, one exploiting the semantic similarities
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Figure 1. Proportion of proteins V k
np falling in one of the five considered cases averaged across terms

k for yeast using UniProt GOA releases (a) 69 / 52 and (b) 69 / 40 and Human using UniProt GOA
releases (c) 168 - 151 and (d) 168 - 139.

between GO terms, another based on the GO hierarchical structure.

4.2. Semantic similarity analysis

Recalling Ci ⊂ C is the set of GO terms the protein i ∈ V k
np was already annotated in

the older release, and that by definition k /∈ Ci, we studied the semantic similarities
between k and terms in Ci, to detect eventual trends in their distribution. The semantic
similarities of term k are contained in the vector Φk. (see Section 2), and for each term
s ∈ Ci we are interested in the rank rks of φks within the vector Φk.: rks := q if φks is
the q-th largest value in Φk., or in other words φks occupies position q in the vector
Φk. sorted in increasing way. We then normalize the rank dividing it by m.

As map φ we considered two state-of-the-art similarity measures, the Lin (Lin, 1998)
and Jaccard (Jaccard, 1902) measures. Denoted by ν(k) the frequency of proteins
annotated with term k, and by MA(k, r) the common ancestor of terms k and r whose
frequency ν(MA(k, r)) is the lowest among all ancestors of k and r, the Lin similarity
between terms k and r is defined as follows:

φ1(k, r) =
2 log ν(MA(k, r))

log ν(k) + log ν(r)
.
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The value − log(ν(k)) in Information Theory is information content of term k, so
that the higher the frequency, the lower the information carried by the term. Thus,
the Lin similarity depends on the ratio between the information content of the least
common ancestor and the information content of k and r. Observing that by definition
MA(k, r) ≥ max{ν(k), ν(r)}, it follows that 0 ≤ φ1(k, r) ≤ 1.

Let V k
+ be the set of proteins annotated with term k, the Jaccard similarity measure

of terms k and r is:

φ2(k, r) =















∣

∣V k
+ ∩ V r

+

∣

∣

∣

∣V k
+ ∪ V r

+

∣

∣

if V k
+ ∪ V r

+ 6= ∅

0 otherwise.

This is the ratio between the number of proteins annotated with both terms and
the number of proteins annotated with at least one term. The higher the number of
shared annotations, the higher the similarity (up to 1). When two terms do not share
any positive example, their similarity is zero. In a hierarchy of terms like GO, terms
with many annotations are usually closer to the root (less specific). In this case the
denominator of φ2 tends to reduce the similarity between the two terms as opposed to
the case in which terms have few annotations. Indeed, sharing annotations between two
specific terms (closer to leaves) is more informative than sharing annotations between
two more general terms.

Figure 2 depicts the boxplots of the obtained ranks for all proteins V k
np, averaged

across terms k, considering both Lin and Jaccard similarity measures. As further in-
formation, the rank means are also drown as red horizontal segments. Lin and Jaccard
measures led to much different rankings in all ontology and organisms. Indeed, Lin
ranks are often below 0.5 in 3/4 of cases, which does not provide clear clues about fu-
ture annotations of protein i. Moreover, rank means in this case are often higher than
medians, meaning that the ranks are distributed toward lower values, with some high
rank outliers. As opposite, according to the Jaccard similarity at least three terms out
of four have a rank higher than 0.5: in all experiments more than half of terms in Ci

are in among the 10% of terms most similar to term k. On human data (Figure 2 (d),
(e), (f)) such trend is still more marked. In other words, given a protein i annotated
for a set of terms Ci in the older release, in average every novel annotation of i in the
later release is for terms k such that at least half of terms Ci results in the top 10%
terms most similar to k. As further confirm, rank means in this case are always lower
than medians, denoting the presence of some outliers with low rank, a large minority
of terms Ci, whereas remaining terms tend to be very similar to k. We propose a
strategy for selecting negatives exploiting this results in Section 5.

4.3. Distance from the closest path split

Given i ∈ V k
np, we also investigated how the term k is located with respect to terms

Ci. In particular, for any term s ∈ Ci, the novel annotation for i with term k falls in
one of the following cases:

1. k ∈ anc(s). No novel annotation path is generated;
2. k ∈ desc(s). The previous path from the root to s is extended till k;
3. k ∈ sib(s). A new path fork is generated from a common parent term of k and s to

term k;
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Figure 2. Empirical distribution of term similarity rankings between the terms Ci and term k, for
proteins i ∈ V k

np. Solely direct annotations are considered. Figures (a), (b) and (c) and Figures (d), (e),
(f) correspond to yeast and human data, respectively.

4. k /∈ {anc(s) ∪ desc(s) ∪ sib(s)}. In this case, there is a common ancestor q ∈
anc(k) ∩ anc(s) where a new annotation path fork is created, namely from q to k.
For consistency, we assume the three branch roots have a parent ‘dummy’ node
assumed as root of the DAG.

By annotation path we intend here a path (sequence of connected nodes) in the GO
DAG such that protein i is annotated with each node on the path (with TPR functional
transfer). Since GO terms are specializations of their parents, the distance on a given
path between GO terms is related to a semantic relatedness of the corresponding
functions. Accordingly, if the distance from q to s (intended as the number of edges
on the longest path between q and s) is large, terms s and k tend to correspond to
more different concepts; on the contrary, when q and s are closer, s and k are expected
to describe concepts more semantically related. We adopted the maximum distance
between s and q in order to consider the worst case results. Furthermore, since multiple
paths in a DAG might be available from the root to a given node, and in principle there
could be more than one q ∈ anc(k) ∩ anc(s) generating a new annotation path fork,
we chose in this case that with the highest level – thus more specific, see Section 2.

Figure 3 reports the empirical distribution of distances between q and s. We found
that the maximum level observed in the GO is 16, which accordingly is also the
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Figure 3. Distribution of distances between terms s ∈ Ci generating a new annotation path fork (with
reference to term k) for protein i ∈ V k

np, and the term q where the fork is located. (yeast (a), (b), (c),
human (d), (e), (f)). Red segments represent the distribution mean.

maximum possible distance between s and k. The median of distances between q and
s span from 2 (MF–yeast) to 5 (BP–yeast, human), with the lowest values in the MF
branch for yeast and in CC and MF branches for human. The maximum distance in
CC and MF is 7, with few exceptions (outliers in the plot), whereas the minimum is 1,
meaning that the fork tend to be located relatively close to s, with at least 3/4 of cases
within a distance 5. On the other side, in the BP branch the fork tend to be sensibly
more far from s in the hierarchy: in both organisms the distance between q and s can
be even 13, meaning that terms s and k reside in two regions semantically less related
or unrelated. Fortunately, this case represents a large minority, with 3/4 of forks being
far from s not more that 6 edges. BP is the most numerous and complex among the
GO branches, and accordingly it does not surprise obtaining different trends on this
branch.

Overall, this experiment shown that previous and novel annotations for a protein
tend to be located, at least in the half of cases, within a maximum distance 5 from the
common ancestor where an annotation path fork is formed. Nevertheless, we believe
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such a result needs to be further investigated, to better understand whether the outliers
in different branches share common features. For instance, it would be interesting to
assess whether forks much distant from s in Figure 3 are to some extent related to
low rank cases in Figure 2, since distant terms in the ontology are expected to have a
low similarity – at least in terms of Lin similarity, which also takes into account the
hierarchical relationships among terms.

5. Evaluation of negative selection

By exploiting the results shown in Section 4, we propose a novel negative sample
selection algorithm, Negative Selection through Functional Similarity (NSFS), lever-
aging the semantic similarities among protein functions to discriminate whether that
protein is a reliable negative example or not. Then, in order to provide a reference
for the quality of our algorithm’s negative examples, we carried out an experimental
validation including the state-of-art heuristics used for negative example selection in
the GO hierarchy.

5.1. Experimental setting

We employed the temporal holdout setting for validating the quality of negative selec-
tion algorithms (see Section 2): namely, algorithms infer negatives using the old release
of annotation (Y ), and their predictions are evaluated on the later release (Y ). The
performance is measured in terms of number of false negatives averaged across terms,
where a protein i ∈ V is a false negative for the term k if the algorithm selected i
as negative for k and Y ik = 1. GOA releases 69 − 52 for yeast and 168 − 151 for
human are employed. To have a fair comparison, a negative selection method is given
a budget B which is the number of negatives the method must choose: if the method
is not able to select enough negatives for a given term, the remaining negatives are
selected randomly with uniform distribution (strategy Random). This setting is the
same adopted in the benchmark evaluation (Youngs et al., 2014). In order not to av-
erage across terms without proteins received novel annotations in the holdout period,
we selected the terms k for which |V k

np| > 0, obtaining 96 (resp. 383), 150 (770) and
481 (2374) CC, MF and BP terms in yeast (resp. human).

5.2. NSFS

The Negative Selection through Functional Similarity (NSFS) heuristic relies upon the
current annotation matrix Y and the functional/semantic similarities Φk. between the
current function/term k and the other available terms C. Recalling that Ci = {s ∈
C|Yis = 1} is the set of terms a protein i is already annotated with, and fixed a
parameter K ∈ (0, 1), NSFS selects as negative examples for term k the proteins i
such that:

1. Yik = 0,
2. Yis = 0 for each s ∈ Ci such that the similarity value φks is above the K-th quantile

of the similarity vector Φk.. Informally, i is not annotated with terms most similar
to k.

This approach is motivated by the results shown in Section 4.1, where we found that
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Figure 4. Average number of false negatives of NSFS when tuning parameter K on yeast data (BP,
GOA releases 69-52) using (a) Jaccard and (b) Lin similarity measures.

novel annotations for a given protein tend to fall on terms very similar to the terms the
protein was already annotated with. NSFS thereby depends on the similarity matrix
Φ, and consequently in the validation experiments we tested two variants: NSFS-J
and NSFS-L, where Φ stores the Jaccard (φ = φ2) and Lin (φ = φ1) similarities,
respectively. Furthermore, the method depends also on the parameter K, which we
learn from the training data through internal cross validation. Nevertheless, to provide
an idea of the impact this parameter has on the performance of the method, we
supply in Figure 4 the results of NSFS on yeast data and BP ontology when setting
K ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. On the other data sets we obtained similar results
(data not shown).

NSFS is more sensitive to K when using the Jaccard instead of the Lin similarity,
where the method obtains almost the same number of false negatives when k varies.
This is coherent with the differences in the distributions of similarities these two mea-
sure shown in Figure 2, and with the fact that the ranks of terms Ci are much closer
when the Lin similarity is adopted (boxplots more compressed). Results in Figure 4 (a)
instead show that the accuracy of NSFS tends to increase with K, except for K = 0.95,
where the method is likely to become too selective, and consequently the remaining
negatives to reach the budget have to be chosen randomly. Clearly, the optimal K is
related to both B and the number of proteins |V | in the organism.

5.3. State-of-the-art comparison

We compared the following heuristics for negative selection proposed for the GO hi-
erarchy:

Sibling (Mostafavi & Morris, 2009). Negative examples for term k are the proteins

{i ∈ V |Yik = 0 ∧ ∃ s ∈ sib(k) s.t. Yis = 1};

NoAncDesc (Eisner et al., 2005). Negative examples for term k are the proteins i
with no annotation in any ancestor or descendant term of k, i.e.:

i ∈ {V |Yik = 0 ∧ ∀s ∈ {anc(k) ∪ desc(k)} Yis = 0};
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Figure 5. Number of false negative averaged across GO terms for yeast (a) CC, (b) MF, (c) BP) and
human (d) CC, (e) MF, (f) BP.

SNOB (Youngs et al., 2014). To compute negative examples for a given term k, this
heuristic is based on the conditional probability p̂(k|r) of seeing an annotation for
k given an annotation for r. Each protein i ∈ {j ∈ V |Yjk = 0} is associated with
a score σi =

1
|Ci|

∑

s∈Ci
p̂(k|s), and proteins i with the lowest score σi are selected

as negative examples. SNOB has been the top method in a recent evaluation of
negative selection algorithms for GO functions (Youngs et al., 2014).

Random. The negative examples are uniformly selected from the set {i ∈ V |Yik = 0}.
This method is used as a baseline.

The budget has been set to B ∈ {500, 750, 1000, 1250, 1500}, considering that the
number of annotations (positives) for most terms is already lower than 500, and that
machine learning algorithms need more balanced input data, since usually they show a
sharp decline in their performance when input labeling are highly unbalanced toward
negatives (Japkowicz & Stephen, 2002).

The comparison results are presented in Figure 5. Sibling strategy poorly performs
in all the experiments, confirming results found by Youngs et al. (2014). The best per-
formance is achieved by NSFS-J on CC and BP branches in both yeast and human,
with improvements statistically significant according to the Wilcoxon signed rank test,
p-value < 0.05 (Wilcoxon, 1945). On the MF branch, NSFS-L performs slightly bet-
ter than NSFS-J, but with negligible and not statistically significant improvements.
The SNOB heuristic achieves competitive results on yeast, mainly for higher budgets:
when B = 1500, it has the lowest average number of false negative predictions. Never-
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theless, on human data its performance dramatically declines, being in some settings
still worse than sibling and random heuristics. This is quite in contrast with results
proposed in Youngs et al. (2014), where SNOB always performed better than this two
methods; this difference is likely due to the fact that authors in that study used also
GO annotations with IEA evidence (inferred through electronic annotation), thus ob-
taining a set of enriched annotations but more noisy. Indeed, author observed that the
SNOB performance decayed on more specific terms, i.e. those having less annotations
(information): thus removing the (even noisy) information coming from IEA anno-
tations might cause the performance decline of SNOB. Moreover, the subset of GO
terms they adopted was different, namely the terms with 3–300 annotations, which
are partially included in our GO terms (those having at least one novel annotation
in the holdout period). Finally, the NoAncDesc strategy performs similarly to NSFS-
L, always outperforming sibling and random heuristics, and with worse results that
NSFS-J on CC and BP branches.

Overall, these results confirm the insights provided by the analysis conducted in
Section 4 about the distribution of reliable negative examples, and show that NSFS is
able in effectively embedding them into a negative selection strategy.

Conclusion

This work extensively investigated the evolution of protein annotations in different
successive temporal releases of the Gene Ontology (GO) repository, with the aim
of detecting reliable negative examples for automated algorithms that infer protein
functions. We found that novel annotations for a given protein tend to appear on
terms with high semantic similarity with the terms the protein was already annotated
with in the previous GO release. We experimentally verified this annotation trend on
yeast and human organisms, and designed a novel method, NSFS, leveraging it to
effectively select negative examples. NSFS favorably compared with the state-of-the-
art heuristics for negative selection in GO when selecting negatives on two organisms
and for thousands of functions.
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