skip to main content
10.1145/3326229.3326237acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Certified Numerical Real Root Isolation for Bivariate Polynomial Systems

Authors Info & Claims
Published:08 July 2019Publication History

ABSTRACT

In this paper, we present a new method for isolating real roots of a bivariate polynomial system. Our method is a subdivision method which is based on real root isolation of univariate polynomials and analyzing the local geometrical properties of the given system. We propose the concept of the orthogonal monotone system in a box and use it to determine the uniqueness and the existence of a simple real zero of the system in the box. We implement our method to isolate the real zeros of a given bivariate polynomial system. The experiments show the effectivity and efficiency of our method, especially for systems with high degrees and sparse terms. Our method also works for non-polynomial systems.

References

  1. O. Aberth. 2007. Introduction to precise numerical methods .Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Berberich, P. Emeliyanenko, and M. Sagraloff. 2011. An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks. In Meeting on Algorithm Engineering and Expermiments . Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Y. Bouzidi, S. Lazard, G. Moroz, M. Pouget, F. Rouillier, and M. Sagraloff. 2016. Solving bivariate systems using rational univariate representations. Journal of Complexity, Vol. 37 (2016), 34--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Burr, S. W. Choi, B. Galehouse, and C. Yap. 2012. Complete subdivision algorithms, II: Isotopic meshing of singular algebraic curves. Journal of Symbolic Computation, Vol. 47, 2 (2012), 131--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Burr, S. Gao, and E. Tsigaridas. 2017. The complexity of an adaptive subdivision method for approximating real curves. In Proceedings of ISSAC'2017. ACM, 61--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Busé, H. Khalil, and B. Mourrain. 2005. Resultant-based methods for plane curves intersection problems. In International Workshop on Computer Algebra in Scientific Computing. Springer, 75--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. S. Cheng, X. S. Gao, and J. Li. 2009a. Root isolation for bivariate polynomial systems with local generic position method. In Proceedings of ISSAC'2009. ACM, 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. S. Cheng, X. S. Gao, and C. K. Yap. 2009b. Complete numerical isolation of real roots in zero-dimensional triangular systems. Journal of Symbolic Computation, Vol. 44, 7 (2009), 768--785. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. S. Cheng and K. Jin. 2015. A generic position based method for real root isolation of zero-dimensional polynomial systems. Journal of Symbolic Computation, Vol. 68 (2015), 204--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. S. Cheng, J. Wen, and W. Zhang. 2018. Plotting Planar Implicit Curves and Its Applications. In International Congress on Mathematical Software. Springer, 113--122.Google ScholarGoogle Scholar
  11. R. M. Corless, P. M. Gianni, and B. M. Trager. 1997. A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In ISSAC, Vol. 97. 133--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. 2009. On the asymptotic and practical complexity of solving bivariate systems over the reals. Journal of Symbolic Computation, Vol. 44, 7 (2009), 818--835. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. I. Z. Emiris and E. P. Tsigaridas. 2005. Real solving of bivariate polynomial systems. In International Workshop on Computer Algebra in Scientific Computing. Springer, 150--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Garloff and A.P. Smith. 2000. Investigation of a subdivision based algorithm for solving systems of polynomial equations. (2000).Google ScholarGoogle Scholar
  15. J. Garloff and A.P. Smith. 2001. Solution of systems of polynomial equations by using Bernstein expansion. In Symbolic Algebraic Methods and Verification Methods. Springer, 87--97.Google ScholarGoogle Scholar
  16. H. Hong, M. Shan, and Z. Zeng. 2008. Hybrid method for solving bivariate polynomial system. SRATC'2008 (2008).Google ScholarGoogle Scholar
  17. R. Imbach. 2016. A Subdivision Solver for Systems of Large Dense Polynomials. arXiv:1603.07916 (2016).Google ScholarGoogle Scholar
  18. J. B. Kioustelidis. 1978. Algorithmic error estimation for approximate solutions of nonlinear systems of equations. Computing, Vol. 19, 4 (1978), 313--320.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Kobel and M. Sagraloff. 2015. On the complexity of computing with planar algebraic curves. Journal of Complexity, Vol. 31, 2 (2015), 206--236.Google ScholarGoogle ScholarCross RefCross Ref
  20. R. Krawczyk. 1969. Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken. Computing, Vol. 4, 3 (1969), 187--201.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. M. Lien, V. Sharma, G. Vegter, and C. Yap. 2014. Isotopic Arrangement of Simple Curves: An Exact Numerical Approach Based on Subdivision. In ICMS 2014. Springer, 277--282. LNCS No. 8592. Download from http://cs.nyu.edu/exact/papers/ for version with Appendices and details on MK Test.Google ScholarGoogle Scholar
  22. Z. Lu, B. He, Y. Luo, and L. Pan. 2005. An algorithm of real root isolation for polynomial systems. Proceedings of Symbolic Numeric Computation (2005), 94--107.Google ScholarGoogle Scholar
  23. A. Mantzaflaris, B. Mourrain, and E. Tsigaridas. 2011. On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers. Theoretical Computer Science, Vol. 412, 22 (2011), 2312--2330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Miranda. 1940. Un'osservazione su un teorema di Brouwer .Consiglio Nazionale delle Ricerche.Google ScholarGoogle Scholar
  25. R. E. Moore. 1966. Interval analysis . Vol. 4. Prentice-Hall Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  26. R. E. Moore. 1977. A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal., Vol. 14, 4 (1977), 611--615.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. E. Moore and J. B. Kioustelidis. 1980. A simple test for accuracy of approximate solutions to nonlinear (or linear) systems. SIAM J. Numer. Anal., Vol. 17, 4 (1980), 521--529.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Mourrain and J. P. Pavone. 2009. Subdivision methods for solving polynomial equations. Journal of Symbolic Computation, Vol. 44, 3 (2009), 292--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Plantinga and G. Vegter. 2004. Isotopic approximation of implicit curves and surfaces. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. ACM, 245--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. X. Qin, Y. Feng, J. Chen, and J. Zhang. 2013. Parallel computation of real solving bivariate polynomial systems by zero-matching method. Appl. Math. Comput., Vol. 219, 14 (2013), 7533--7541. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. W. Rudin. 1976. Principles of mathematical analysis. (1976).Google ScholarGoogle Scholar
  32. S. M. Rump. 1983. Solving algebraic problems with high accuracy. In A new approach to scientific computation. Elsevier, 51--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. E. C. Sherbrooke and N. M. Patrikalakis. 1993. Computation of the solutions of nonlinear polynomial systems. Computer Aided Geometric Design, Vol. 10, 5 (1993), 379--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Smale. 1986. Newton's method estimates from data at one point. In The merging of disciplines: new directions in pure, applied, and computational mathematics . Springer, 185--196.Google ScholarGoogle Scholar
  35. A. Strzebonski. 2008. Real root isolation for exp-log functions. In Proceedings of ISSAC'2008. ACM, 303--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. Strzebonski. 2009. Real root isolation for tame elementary functions. In Proceedings of ISSAC'2009. ACM, 341--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Strzebonski. 2012. Real root isolation for exp--log--arctan functions. Journal of Symbolic Computation, Vol. 47, 3 (2012), 282--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Telen, B. Mourrain, and M. V. Barel. 2019. Truncated normal forms for solving polynomial systems. ACM Communications in Computer Algebra, Vol. 52, 3 (2019), 78--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. B. Xia and T. Zhang. 2006. Real solution isolation using interval arithmetic. Computers and Mathematics with Applications, Vol. 52, 6--7 (2006), 853--860. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Certified Numerical Real Root Isolation for Bivariate Polynomial Systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISSAC '19: Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation
      July 2019
      418 pages
      ISBN:9781450360845
      DOI:10.1145/3326229
      • General Chairs:
      • James Davenport,
      • Dongming Wang,
      • Program Chair:
      • Manuel Kauers,
      • Publications Chair:
      • Russell Bradford

      Copyright © 2019 ACM

      Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 July 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader