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ABSTRACT
The polynomial multiplication problem has attracted considerable

attention since the early days of computer algebra, and several

algorithms have been designed to achieve the best possible time

complexity. More recently, efforts have been made to improve the

space complexity, developing modified versions of a few specific

algorithms to use no extra space while keeping the same asymptotic

running time.

In this work, we broaden the scope in two regards. First, we ask

whether an arbitrary multiplication algorithm can be performed

in-place generically. Second, we consider two important variants

which produce only part of the result (and hence have less space

to work with), the so-called middle and short products, and ask

whether these operations can also be performed in-place.

To answer both questions in (mostly) the affirmative, we provide

a series of reductions starting with any linear-space multiplication

algorithm. For full and short product algorithms these reductions

yield in-place versions with the same asymptotic time complexity

as the out-of-place version. For the middle product, the reduction

incurs an extra logarithmic factor in the time complexity only when

the algorithm is quasi-linear.
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arithmetic, polynomial multiplication, in-place algorithm, self re-

duction
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1 INTRODUCTION
1.1 Polynomial multiplication
Polynomial multiplication is a fundamental problem in mathemat-

ical algorithms. It forms the basis (and key bottleneck) for other

fundamental problems such as division with remainder, GCD com-

putation, evaluation/interpolation, resultants, factorization, and

structured linear algebra (see, e.g., [10, §8–15] and [3, §2–7,10,12]).

As such, significant effort has gone to improving the time to

multiply two size-n polynomials, mainly following ideas from inte-

gers multiplication most notably with Karatsuba’s algorithm [17],
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Toom-Cook multiplication [9], and Schönhage-Strassen [22]. More

recent results have improved the complexity further with dedicated

polynomial approaches over finite field [13, 15] or over any algebra

[7], yielding the best known quasi-linear time algorithms.

1.2 Space complexity
After minimizing the runtime, an important question both in theory

and in practice is how much extra space these algorithms require.

While the classical algorithm can be made to use only a constant

number of temporary values, all the faster algorithms mentioned

above requireO(n) space to multiply two size-n polynomials. In fact,

proven time-space trade-offs in the algebraic circuit and branching

program models indicate that space at least polynomial in n is

required for any sub-quadratic multiplication algorithm [1, 21].

But in amodel where the output space admits both randomwrites

and reads, these time-space lower bounds can be broken. [20] devel-

oped a variant of Karatsuba’s algorithm using only O(logn) space.
Later, an FFT-based multiplication algorithm using O(n logn) time

and constant space was developed for the case that the coefficient

ring contains a suitable root of unity [14]. Space-saving versions of

Karatsuba’s algorithm can also be found in [6, 8, 23, 24].

1.3 Short and middle products
Besides the usual full product computation, two variants have also

been extensively studied: the short product which truncates the

output to the first n terms, and the middle product which truncates

the result on both ends. These variants are important especially

for power series, and specific variants of Karatsuba’s algorithm

and others have been developed, usually gaining a constant factor

compared to a full product followed by a truncation [11, 12, 19]. For

space efficiency, dedicated algorithms are even mandatory as using

full product increases the output size whence the space complexity.

In some specific model of straight line programs, [4] shows that

transposing full product yields a middle product with the same

time and space complexities. Nevertheless, such a result does not

directly apply to the more general context of algorithms, since their

model allows computations with fixed size inputs only.

1.4 Our work
In this paper, we develop reductions which transform any multipli-

cation algorithm which uses O(n) extra space into full, short, and

middle product algorithms which use onlyO(1) extra space. For this
we provide two kinds of reductions: time-space preserving reduc-

tions that link the different product variants; and self-reductions

for each variant that reduce space complexity to O(1). The time

complexity for full and short product is the same as that of the orig-

inal, while that for middle product incurs an additional logn factor.

This improves the O(logn) space of the most space-constrained
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Karatsuba algorithm [20], and implies for the first time: in-place

versions of Toom-Cook multiplication; in-place FFT-based multipli-

cation even when the ring does not contain a root of unity; in-place

subquadratic short and middle product algorithms.

We begin by carefully stating our space complexity model and

then defining the multiplications problems in Sections 2 and 3.

Our time-space preserving reductions and some equivalences are

presented next in Section 4, followed by the critical self-reductions

in Section 5 which prove our main results.

2 COMPLEXITY MODEL
We use the model of an algebraic-RAM that is equipped with two

kinds of registers: the standard registers store integers as in the

classical Word-RAM model, whereas the algebraic registers store
elements from the base field K of coefficients. As in Word-RAM,

we assume that the standard registers can store integers of size

O(logn) where n is the number of coefficients in the inputs.

Word-RAM machines are a classical model in computational

complexity, in particular for fine-grained complexity that classifies

the difficulty of polynomial-time problems [25]. We use it in order

to distinguish between the space needed to store indices (that is

thus hidden in the standard registers) from the space needed to

store elements from the base field.

Time complexity. Asmentioned, we use the number of arithmetic

operations as the time complexity measure since the cost of the

operations on indices is negligible with respect to arithmetic opera-

tions. Formally, we assume that any ring operation on the algebraic

registers has cost 1.

Space complexity. We divide the registers into three categories:

the input space is made of the (algebraic) registers that store the

inputs, the output space is made of the (algebraic) registers where

the output must be written, and the work space is made of (algebraic

and non-algebraic) registers that are used as extra space during the

computation. The space complexity is then the maximum number

of work registers used simultaneously during the computation. An

algorithm is said to be “in-place” if its space complexity isO(1), and
“out-of-place” otherwise.

One can then distinguish different models depending on the

read/write permissions on the input and output registers:

(1) Input space is read-only, output space write-only;

(2) Input space is read-only, output space is read/write;

(3) Input and output spaces are both read/write.

The first model is the classical one from complexity theory [2].

Despite its theoretical interest, it does not reflect low-level compu-

tation where output is typically in some DRAM or Flash memory

on which reading is no more costly than writing. Furthermore, poly-

nomial multiplication here has a quadratic lower bound for time ×

space [1], limiting the possibility for meaningful improvements.

The second model has been used in the context of in-place poly-

nomial multiplication [14, 20]. This is a very reasonable model since

it matches the paradigm of parallel computing with shared memory.

This is the model in which we develop our algorithms.

The third model has been used in the context of straight line

programs to provide a generic approach for preserving memory

in Tellegen’s transposition principle [4]. However, this memory

model allows to erase the input registers, which can be problem-

atic especially for recursive algorithms that re-use their operands.

Hence, we will not use this too-permissive model.

Notation. The output space in our algorithms is denoted by R
and registers are indexed from 0 to n− 1. We write R[k ..ℓ[ to denote
the registers of indices k to ℓ − 1.

3 POLYNOMIAL MULTIPLICATIONS
Define the size of a univariate polynomial as the number of coef-

ficients in its (dense) representation; a polynomial of size n has

degree at most n − 1. Importantly, we allow zero padding: a size-

n polynomial could have degree strictly less than n − 1; the size

indicates only how it is represented.

Let f =
∑n−1
i=0 fiX

i
and д =

∑n−1
i=0 дiX

i
be two size-n polynomi-

als. Their product h = f д is a polynomial of size 2n − 1, what we
call a balanced full product. More generally, if f has sizem and д
has size n, their product has sizem + n − 1. We call this case the

unbalanced full product of f and д.
We now define precisely the short product, middle product, and

half-additive full product.

Definition 3.1. Let f and д be two size-n polynomials. Their low
short product is the size-n polynomial defined as

SPlo(f ,д) = (f · д) mod Xn

and their high short product is the size-(n− 1) polynomial defined as

SPhi(f ,д) = (f · д) quoX
n .

The low short product is actually the meaningful notion of prod-

uct for truncated power series. Note also that the definition of the

high short product that we use implies that the result does not

depend on all the coefficients of f and д. The rationale for this

choice is to have the identity f д = SPlo(f ,д) + XnSPhi(f ,д).

Definition 3.2. Let f and д be two polynomials sizes n +m − 1
and n, respectively. Their middle product is the size-m polynomial
made of the central coefficients of the product f д, that is

MP(f ,д) =
(
(f · д) quoXn−1

)
mod Xm .

If f =
∑
i<n+m−1 fiX

i
and д =

∑
j<n дjX

j
, then

MP(f ,д) =
∑

n−1≤i+j<n+m−1
fiдjX

i+j−n+1.

The middle product, most commonly in the special case n = m,

arises naturally in several algorithms manipulating polynomials

or power series which are based on Newton’s iteration, such as

division or square root [11].

The most efficient algorithms for middle product are obtained by

Tellegen’s transposition principle from full product algorithms [4, 11],

saving constant factor in time complexity compared to the naive

approach. It is not yet known if this transposition or similar one

can preserve space complexity. This question has been established

as an open problem in [16], and only answered partially in [4] in a

restricted model.

Definition 3.3. Let f and д be two size-n polynomials, and h be a
size-(n− 1) polynomial. The (low-order) half-additive full product of
f and д given h is FP+lo(f ,д,h) = h + f д. Similarly, their high-order
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half-additive full product is FP+hi(f ,д,h) = Xnh + f д. An in-place

half-additive full product algorithm is an algorithm computing a
half-additive full product with h initially stored in the output space.

This variant of the full product which has a partially-initialized

output space will be useful to derive other in-place algorithms.

3.1 Multiplications as linear maps
For ease of explanation, we will use the linear property of polyno-

mial multiplications when an operand is fixed. Let f =
∑n−1
i=0 fiX

i

and д =
∑n−1
i=0 дiX

i
be two size-n polynomials. If f is fixed, the

product h = f д can be described as a linear map from Kn to K2n−1.
The matrix, denoted MFP(f ), for this map is to a Toeplitz matrix

built from the coefficients of f , and the product f д corresponds to

the following matrix-vector product:

©­­­­­­­­«

f0
...

. . .

fn−1 f0
. . .

...

fn−1

ª®®®®®®®®¬︸                    ︷︷                    ︸
MFP(f )

×
©­­«
д0
...

дn−1

ª®®¬︸ ︷︷ ︸
®д

=

©­­­­­­«

h0

...

h2n−1

ª®®®®®®¬︸   ︷︷   ︸
®h

(1)

whereMFP(f ) ∈ K
(2n−1)×n

, ®д ∈ Kn and
®h ∈ K2n−1.

The low and high short products being defined as part of the

result of the full product, their corresponding linear maps are from

Kn to Kn and from Kn to Kn−1 respectively, given by submatrices

ofMFP(f ) as follows:

©­­«
f0
...

. . .

fn−1 . . . f0

ª®®¬︸                ︷︷                ︸
MSPlo(f )

©­­«
0 fn−1 . . . f1
...

. . .
...

0 fn−1

ª®®¬︸                         ︷︷                         ︸
MSPhi(f )

(2)

Lastly, the middle product corresponds to a linear map from Kn

toKm with larger operand fixed, given by them×n Toeplitz matrix

©­­­­«
fn−1 fn−2 . . . f1 f0
fn fn−1 f2 f1
...

...
...

...

fn+m−2 fn+m−3 . . . fm−2 fm−1

ª®®®®¬︸                                                   ︷︷                                                   ︸
MMP(f )

. (3)

4 TIME-SPACE PRESERVING REDUCTIONS
In this section, we compare the relative difficulties of the full prod-

uct, the half-additive full product, the low and high short products,

and the balanced middle product, in the framework of time and

space efficient algorithms. To this end, we define a notion of time
and space preserving reduction between problems.

We say that a problem A is TISP-reducible to a problem B if,

given an algorithm for B that has time complexity t(n) and space

complexity s(n), one can deduce an algorithm for A that has time

complexity O(t(n)) and space complexity s(n) + O(1). We write

A ≤TISP B isA is TISP-reducible to B andA ≡TISP B if bothA ≤TISP

B and B ≤TISP A. Note that the TISP-reduction is transitive. The

reduction we use can be defined using oracles and is an adaptation

of the notion of fine-grained reduction [25, Definition 2.1] adapted

to time-space fine-grained complexity classes [18]. In this section,

MP denotes the balanced middle product.

Theorem 4.1. Half-additive full products and short products are
equivalent under TISP-reductions, that is

FP+hi ≡TISP FP+lo ≡TISP SPhi ≡TISP SPlo.

Furthermore, if SP denotes either SPlo or SPhi,

FP ≤TISP SP ≤TISP MP.

Proof. The equivalences SPhi ≡TISP SPlo and FP+hi ≡TISP FP+lo
are proved below in Lemmas 4.3 and 4.4. The equivalence SP ≡ FP+

(where SP denotes any of SPlo and SPhi, and FP+ any of FP+lo and
FP+hi) is proved in Section 4.2. The reduction FP ≤TISP SP simply

amounts to the identity FP(f ,д) = SPlo(f ,д) + XnSPhi(f ,д). The
reduction SP ≤TISP MP follows from the following equalities where

0n denotes the zero polynomial stored in size n:

SPlo(f ,д) = MP(0n−1 + Xn−1 f ,д), and

SPhi(f ,д) = MP((f quoX ) + Xn−1
0n−2,д quoX ).

Hence, one can compute the full product, the low and high short

products of f and д simply by calling a middle product algorithm

on f padded with zeroes and д. In our model of read-only inputs,

an actual padding is not required. It is sufficient to use some kind

of fake padding where the data structure storing f is responsible

for returning 0 when needed. □

The relative order of difficulty FP ≤TISP SP ≤TISP MP makes

intuitive sense based on the size of the output compared to the size

of the inputs since the output can be used as work space: The full

product maps 2n coefficients to 2n−1 coefficients, the short products

map 2n coefficients to n coefficients and the middle product maps

3n coefficients to n coefficients. In Section 5, we shall give a partial

converse to SP ≤TISP MP: There exists a reduction from SP to

MP which preserves space and either maintains the asymptotic

complexity or increases it by a logarithmic factor.

4.1 Equivalences based on reverse polynomials
Definition 4.2. The size-n reversal of a polynomial f is defined

as revn (f ) = Xn−1 f (1/X ).

We note that any algorithm whose input is a size-n polynomial

f can be turned into a new algorithm that computes the same

function with input revn (f ), simply by replacing a query to any

coefficient with index i with one of index n − i , not affecting the

number of ring operations. Let us now prove that SPhi ≡TISP SPlo.

Lemma 4.3. Let f and д be two size-n polynomials. Then we get
SPhi(f ,д) = revn−1 (SPlo(revn−1(f quoX ), revn−1(д quoX ))).

Proof. Let
˜f = revn−1(f quoX ) and д̃ = revn−1(д quoX ). Then

SPlo( ˜f , д̃) =
∑

0≤i, j<n−1
i+j<n−1

fn−1−iдn−1−jX
i+j ,
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whence

revn−1

(
SPlo( ˜f , д̃)

)
=

∑
0≤i, j<n−1
i+j<n−1

fn−1−iдn−1−jX
n−2−(i+j).

One can change the indices of summation using k = n − 1 − i and
ℓ = n − 1− j . Then n − 2− (i + j) = k + ℓ −n and the indices i and j
such that 0 ≤ i + j < n − 1 are mapped to indices k and ℓ such that

2n − 1 > k + ℓ ≥ n. In other words,

revn−1

(
SPlo( ˜f , д̃)

)
=

∑
0<k, ℓ≤n−1
n≤k+ℓ<2n−1

fkдℓX
k+ℓ−n = SPhi(f ,д). □

Similarly, we can prove that FP+hi ≡TISP FP+lo.

Lemma 4.4. Let f and д be two size-n polynomials and h be a
size-(n − 1) polynomial. Then

FP+hi(f ,д,h) = rev2n−1

(
FP+lo(revn (f ), revn (д), revn−1(h))

)
.

Proof. Let f ∗ = revn (f ),д
∗ = revn (д) andh

∗ = revn−1(h). First
note that rev2n−1(h

∗) = Xnh by definition. Since rev2n−1(f
∗д∗) =

revn (f
∗) revn (д

∗)we get rev2n−1(f
∗д∗+h∗) = revn (f

∗) revn (д
∗)+

rev2n−1(h
∗) = f д + Xnh = FP+hi(f ,д,h). □

4.2 Equivalence between short products and
half-additive full products

Reduction from SP to FP+ . Let f andд be two size-n polynomials

and h be a size-(n − 1) polynomial. The half-additive full product

FP+lo(f ,д,h) equalsh+ f д. Note that f д = SPlo(f ,д)+XnSPhi(f ,д).
This already proves that the non-additive full product can be com-

puted using algorithms for low and high short products. For the

half-additive full products, it is sufficient to store an intermediate

result in the free registers of the output space.

Assuming R[0..n−1[ holds the value of h, the following instruc-

tions reduces the computation of FP+lo(f ,д,h) to two short products
plus (n − 1) additions.

1: R[n−1..2n−1[ ← SPlo(f ,д)
2: R[0..n−1[ ← R[0..n−1[ + R[n−1..2n−2[
3: Rn−1 ← R2n−1
4: R[n ..2n−1[ ← SPhi(f ,д)

Reduction from FP+ to SP. Let f and д be two size-n polynomials.

Splitting f and д by half such that f = f0 + X ⌈n/2⌉ f1 and д =

д0 + X
⌈n/2⌉д1, we have

SPlo(f ,д) = f0д0 + X
⌈n/2⌉ (f0д1 + f1д0) mod Xn .

What is needed is the full product of f0 and д0, and the low short

products of f0 and д1, and f1 and д0. Actually, since f0 is larger than
д1 when n is odd (and д0 larger than f1), one only needs the short

products SPlo(f −0 ,д1) and SP(f1,д−
0
) where f −

0
= f mod X ⌊n/2⌋

and д−
0
= д mod X ⌊n/2⌋ .

To avoid any recursive call that would imply storing a call stack,

we can actually use full products instead of short products: We

first compute f −
0
д1 + f1д

−
0
using a full product and a half-additive

full product. Then we can forget about the higher order terms, and

add f0д0 to this sum using a second half-additive full product. The

following instructions summarize this approach:

1: R[0..2 ⌊n/2⌋−1[ ← FP(f −
0
,д1) ▷ half-additivity not needed

2: R[0..2 ⌊n/2⌋−1[ ← FP+lo(f1,д
−
0
, f −

0
д1 mod X ⌊n/2⌋−1)

3: R[ ⌈n/2⌉ ..n[ ← R[0.. ⌊n/2⌋[ ▷ keep lower part of f −
0
д1 + f1д

−
0

4: R[0..2 ⌈n/2⌉−1[ ← FP+hi(f0,д0, (f
−
0
д1 + f1д

−
0
) mod X ⌈n/2⌉−1)

The correctness is clear. The complexity of the algorithm is the

cost of three full products in size approximately n/2: One non-

additive full product in size ⌊n/2⌋ and two half-additive full prod-

ucts in size ⌊n/2⌋ and ⌈n/2⌉, respectively.
As direct consequence of Lemmas 4.3 and 4.4, one obtains the

same reductions to SPhi and from FP+lo or FP
+
hi.

4.3 From half-additive full product to
unbalanced full product

The unbalanced full product can be computed using any algorithm

for the (balanced) full product. Nevertheless, the space complexity

increases since intermediate results must be stored. Given an algo-

rithm for the balanced full product of space complexity s(n), one
obtains an algorithm with space complexity s(n) + (n − 1) for the
unbalanced full product. In this section, we prove that if the original

full product algorithm is half-additive, the resulting unbalanced full
product algorithm has the same space complexity.

Let f be a size-m polynomial and д be a size-n polynomial with

m > n. Write f =
∑ ⌈m/n ⌉−1
k=0 Xkn fk , where each sub-polynomial

f0, . . . , f ⌈m/n ⌉−1 has size at most n. The computation of f ·д reduces
to the computations of each fk ·д. The following instructions prove
that using half-additivity, the intermediate results fk · д can be

computed directly in the output space.

1: R[( ⌈m/n ⌉−1)n ..m+n[ ← FP(f ⌈m/n ⌉−1,д)
2: for k from ⌈m/n⌉ − 2 down to 0 do
3: R[kn ..(k+2)n−1[ ← FP+hi(fk ,д, fk+1д mod Xn )

Note that at step 1, the size of f ⌈m/n ⌉−1 can be strictly smaller

than n. To ensure a balanced product, fake padding can be done on

this input and the output can be placed anywhere in the free output

space. Thus, the time complexity is at most ⌈m/n⌉M(n)whereM(n)
is the complexity of the half-additive full product.

5 IN-PLACE ALGORITHMS FROM
OUT-OF-PLACE ALGORITHMS

In this section, we show how to obtain in-place algorithms from

out-of-place algorithms. The theorem below summarizes the main

results described in this section.

Theorem 5.1.

(i) Given a full product algorithm with time complexityM(n) and
space complexity ≤ cn, one can build an in-place algorithm
for the half-additive full product with time complexity ≤ (2c +
7)M(n) + o(M(n)).

(ii) Given a (low or high) short product algorithm with time com-
plexity M(n) and space complexity ≤ cn, one can build an
in-place algorithm for the same problem with time complexity
≤ (2c + 5)M(n) + o(M(n)).

(iii) Given a middle product algorithm with time complexity M(n)
and space complexity ≤ cn, one can build an in-place algorithm
for the same problemwith time complexity ≤ M(n) log c+1

c+2
(n)+

O(M(n)) if M(n) is quasi-linear, and O(M(n)) otherwise.
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Actually, our reductions work for any space bound s(n) ≤ O(n).
Smaller space bounds yield better time bounds though we do not

have a general expression in terms of s(n). Yet sublinear space
bounds still imply an increase of the time complexity by a multi-

plicative constant for full and short products.

Formally, we give self-reductions for the three problems. That

is, we use an out-of-place algorithm for the problem as building

block of our in-place version. The general idea is similar in the

three cases. In a first step, we use the out-of-place algorithm to

compute some part of the output, using the unused output space

as temporary work space. Then a recursive call finishes the work.

The (constant) amount of space needed in our in-place algorithms

correspond the space needed to process the base cases. As depicted

in section 3.1, we aim to apply some specific matrix to a vector. Our

general construction consists in first applying the top or bottom

rows of the matrix to the vector using the out-of-place algorithm,

and applying the remaining rows using a recursive call (cf. Fig. 1).
Similar techniques have been already used for in-place fast matrix

multiplication [5].

In the cases of full and short products, the diamond and triangular

shapes of the corresponding matrices imply that the recursive call

is made on two smaller inputs: For instance, to apply the first rows

of a lower triangular matrix to a vector, one only needs to apply it

to the first entries of the vector. For the middle product, the square

shape imply that one input remains of the same size in the recursive

call. This difference explains the difference in the time complexities

in Theorem 5.1.

Our complexity analyses are based on the following Proposition

which is proved in Section 5.4.

Proposition 5.2. LetT ,M : N→ R+ such thatM is super-linear.

(i) If for alln,T (n) ≤
∑
k akM(⌊λkn + µk ⌋)+bn+c+T (⌊αn + β⌋)

where ak , λk , µk ,b, c,α , β ∈ R∗+ with α < 1 and λkn+µk < n
for all k . Then

T (n) ≤
∑
k

(
akλk
1 − α

)
M(n) +

bn

1 − α
+ o(M(n)).

(ii) If for allm ≤ n, T (m) ≤ (λm/n + µ/(m − 1

1−α ) + 1)M(n) +
T (⌊αm + 1⌋) where λ, µ,α ∈ R∗+ such that α < 1. Then for
m = n,

T (n) ≤ M(n) log
1/α (n) +

λ + µα

1 − α
M(n) + o(M(n)).

(iii) If for all m ≤ n, T (m) ≤ λ( n
(1−α )m−1) + 1)((1 − α)m)γ +

T (⌊αm + 1⌋) where α ,γ , λ ∈ R∗+ such that α < 1 and γ > 1.
Then form = n, T (n) ≤ O(nγ ).

5.1 In-place full product algorithm
Our aim is to build an in-place (low-order) half-additive full product

algorithm iFP+hi based on an out-of-place full product algorithm

oFP that has space complexity cn. That is, we are given two size-n
polynomials f andд in the input space and a size-(n−1) polynomial

h in the (n − 1) low-order registers of the output space R and we

aim to compute f д + h in R. The algorithm is based on a tiling of

the matrixMFP(f ) given in Eq. (1), see Fig. 1 (left).

For somek < n to be fixed later, let f = ˆf Xk+f0 andд = д̂X
k+д0

where deg f0, degд0 < k . Then we have

h + f д = h + f0д + ˆf д0X
k + ˆf д̂X 2k . (4)

Recall that the output R has size 2n−1 with its n−1 lowest registers
containing h. Then Eq. (4) can be evaluated as follows:

1: R[0..n+k−1[ ← h + f0д

2: R[k ..n+k−1[ ← R[k ..n+k−1[ + ˆf д0

3: R[2k ..2n[ ← R[2k ..2n[ + ˆf д̂

The first two steps correspond exactly to two additive unbalanced
full products, that is unbalanced full products that must be added

to some already filled output space. One can describe an algorithm

oFP+u for this task, based on a (standard) full product algorithm oFP:

If f has size k and д has size n, n > k , we write д =
∑ ⌈n/k ⌉−1
i=0 дiX

ki

with deg(дi ) < k . Then f д =
∑
i f дi : The algorithm computes the

⌈n/k⌉ products f дi in 2k − 1 extra registers and adds them to the

output. If oFP has time complexityM(n) and space complexity cn,
the time complexity of oFP+u is ⌈n/k⌉ (M(k) + 2k − 1) and its space

complexity (c + 2)k − 1.
The last step computes h + f д and corresponds to a half-additive

full product on inputs of size n − k , since only the n − k − 1 first

registers of R[2k ..2n[ are filled: Indeed, deg(h + f0д + ˆf д0X
k ) <

n + k − 1. This last step is thus a recursive call.

In order to make this algorithm run in place, k must be chosen so

that the extra memory needed in the two calls to oFP+u fits exactly

in the unused part of R. This is the case when

(c + 2)k − 1 ≤ 2n − 1 − (n + k − 1)

which gives k ≤ n+1
c+3 . The resulting algorithm is depicted below.

Algorithm 1 iFP+hi_from_oFP

Input: f and д of size n in the input space, h of size n − 1 in the

output space R
Output: R contains f д + h
Required: Full product algorithm oFP of space complexity ≤ cn
1: if n < c + 2 then
2: R← R + f д ▷ using a naive algorithm

3: else
4: k ← ⌊(n + 1)/(c + 3)⌋
5: R[0..n+k−1[ ← oFP+u (f0,д,h) ▷ work space: R[n+k−1..2n[
6: R[k ..n+k−1[ ← oFP+u (f ,д0,h + f0д) ▷ same work space

7: R[2k ..2n[ ← iFP+hi_from_oFP(f quoX
k ,д quoXk )

Complexity analysis. The algorithm uses two calls to oFP+u with

inputs of sizes (k,n) and (n−k,k) respectively. The total complexity

amounts to ⌈n/k⌉M(k) + (⌈n/k⌉ − 1)M(k) + (2 ⌈n/k⌉ − 1)(2k − 1)
plus a recursive call in size n − k . Let T (n) be the complexity of

iFP+hi, we thus have

T (n) = T (n − k) + (2⌈n/k⌉ − 1) [M(k) + (2k − 1)] .

Note that k depends upon n, this implies that the analysis must

be done without k . Since k = ⌊(n + 1)/(c + 3)⌋, ⌈n/k⌉ ≤ c + 4 for
n ≥ (c + 2)(c + 4). Therefore,

T (n) ≤ T
( ⌊ c+2

c+3 (n + 1)
⌋ )
+ (2c + 7)

[
M

( ⌊ n+1
c+3

⌋ )
+ 2 n

c+3 −
c+1
c+3

]
.

Proposition 5.2(i) yields T (n) ≤ (2c + 7)M(n) + o(M(n)).
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Figure 1: Tilings of the matricesMFP(f ) (left),MSPlo(f ) (center) andMMP(f ) (right).

5.2 In-place short product algorithm
Our goal is to describe an in-place (low) short product algorithm

based on an out-of-place one. It corresponds to tilingMSPlo(f ) given

in Eq. (2), see Fig. 1 (center). Let f =
∑n−1
i=0 fiX

i
and д =

∑n−1
i=0 дiX

i
,

and let h =
∑n−1
i=0 hiX

i = SPlo(f ,д). The idea is to fix some k < n
and to have two phases. The first phase corresponds to the bottom k
rows ofMSPlo(f ) and computes hn−k to hn−1 using the out-of-place
algorithm on smaller polynomials. The second phase corresponds

to the top (n − k) rows and is a recursive call to compute h0 to

hn−k−1: Indeed, h mod Xn−k = SPlo(f mod Xn−k ,д mod Xn−k ).

For the second phase, we remark that the bottom k rows can be

tiled by ⌈n/k⌉ lower triangular matrices (denoted L0, . . . , L ⌈n/k ⌉−1
from the right to the left), and ⌈n/k⌉ − 1 upper triangular matri-

ces (denoted U0, . . . , U ⌈n/k ⌉−2). One can identify the matrices Li
and Ui as matrices of some low and high short products. More

precisely, the coefficients that appear in the lower triangular ma-

trix Li are the coefficients of degree ki to k(i + 1) − 1 of f . Thus,

Li = MSPlo(fki,k (i+1)) where fki,k (i+1) =
∑k(i+1)−1
j=ki fjX

j−ki
. Simi-

larly, Ui = MSPhi(fki,k (i+1)). The matrices L ⌈n/k ⌉−1 and U ⌈n/k ⌉−2
must be padded if k does not divide n. Altogether, this proves that
this part of the computation reduces to ⌈n/k⌉ low short products

and ⌈n/k⌉ − 1 high short products, in size k .
In order for this algorithm to actually be in place, k must be small

enough. If the out-of-place short product algorithm uses ck extra

space, since we also need k free registers to store the intermediate

results, k must satisfy n − k ≥ (c + 1)k , that is k ≤ n/(c + 2).

Complexity analysis. The algorithm performs ⌈n/k⌉ low short

products and ⌈n/k⌉ − 1 high short products plus one recursive call

in size n − k . Let M(k) be the complexity of a low short product

algorithm. Then the high short product can be computed in time

M(k−1). LetT (n) be the complexity of the recursive algorithm. Then

T (n) = ⌈n/k⌉M(k)+(⌈n/k⌉−1)M(k−1)+(2 ⌈n/k⌉−1)k+T (n−k) (the
linear time is for the additions). Since k = ⌊n/(c + 2)⌋, ⌈n/k⌉ ≤ c+3
for n ≥ (c + 3)(c + 2) and n − k ≤ c+1

c+2n + 1. Thus,

T (n) ≤ (c+3)M
( ⌊ n

c+2
⌋ )
+(c+2)M

( ⌊ n
c+2 − 1

⌋ )
+2n+T

( ⌊ c+1
c+2n + 1

⌋ )
.

Proposition 5.2(i) implies T (n) ≤ (2c + 5)M(n) + o(M(n)).

Algorithm 2 iSPlo_from_oSP

Input: f and д of size n
Output: R contains SPlo(f ,д)
Required: Two short product algorithms oSPlo and oSPhi of space

complexity ≤ cn
1: if n < c + 2 then
2: R← SPlo(f ,д) ▷ using a naive algorithm

3: else
4: k ← ⌊n/(c + 2)⌋
5: for i = 0 to ⌈n/k⌉ − 1 do ▷ work space: R[k ..n−k [
6: R[0..k [ ← oSPlo(fki,k(i+1),дn−k (i+1),n−ki))
7: R[n−k ..n[ ← R[n−k ..n[ + R[0..k [

8: for i = 0 to ⌈n/k⌉ − 2 do ▷ same work space

9: R[0..k [ ← oSPhi(fki,k (i+1),дn−k(i+2),n−k (i+1))
10: R[n−k ..n[ ← R[n−k ..n[ + R[0..k [

11: R[0..n−k [ ← iSPlo_from_oSP(f mod Xn−k ,д mod Xn−k )

5.3 In-place middle product algorithm
To build an in-place (unbalanced) middle product algorithm, we

assume that we have an algorithm for the (balanced) middle product

that uses cn extra space for inputs of size 2n − 1 and n respectively.

The in-place algorithm is based on a tiling of MMP(f ) given

in Eq. (3), see Fig. 1 (right) : The top k rows correspond to the

matrix MMP(f mod X k ) and the bottomm − k rows to the matrix

MMP(f quoX k ). The algorithm computesMMP(f mod X k ) ®д using the

out-of-place algorithm and thenMMP(f quoX k ) ®д using a recursive

call.

To make this algorithm work in place, the value of k has to

be adjusted so that the work space is large enough. The result

of a middle product in size k has degree < k and needs ck extra

work space by hypothesis. Therefore, ifm − k ≥ (c + 1)k , that is
k ≤ m/(c + 2), the computation can be performed in place.

Complexity analysis. Let M(k) be the cost of an out-of-place

balanced middle product algorithm. The cost of an unbalanced

middle product is thus ⌈n/k⌉M(k) fork < n. The in-place algorithm
computes first a middle product using an out-of-place algorithm

and then makes a recursive call on the remaining part. Note that
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Algorithm 3 iMP_from_oMP

Input: f and д of size n +m − 1 and n respectively

Output: R contains MP(f ,д)
Required: Middle product algorithm oMP of space complexity ≤ cn
1: if m < c + 2 then
2: R← oMP(f ,д) ▷ using a naive algorithm

3: else
4: k ← ⌊m/(c + 2)⌋
5: R[0..k[ ← oMP(f mod Xn+k ,д) ▷ work space: R[k ..m[
6: R[k ..m[ ← iMP_from_oMP(f quoXk ,д) ▷ recursive call

n does not change during the algorithm and can be viewed as a

large constant, whilem is the parameter that varies. Then the cost

of the algorithm verifies T (m) ≤ ⌈n/k⌉M(k) + T (m − k). Since
k = ⌊m/(c + 2)⌋, ⌈n/k⌉ < n(c + 2)/(m − c − 2) + 1 and m − k ≤
(c + 1)m/(c + 2) + 1. Furthermore, M(k) ≤ m/n(c + 2)M(n), thus
⌈n/k⌉M(k) ≤ (m/(m − c − 2) +m/n(c + 2))M(n). That is,

T (m) ≤

(
m

n(c + 2)
+

c + 2

m − c − 2
+ 1

)
M(n) +T

( ⌊ c+1
c+2m + 1

⌋ )
.

Proposition 5.2(ii) implies T (n) ≤ M(n) log c+2
c+1
(n) + O(M(n)) for

m = n, and T (n) ≤ O(M(n)) if M(n) is not quasi-linear.
If M(n) ≤ λnγ for some γ > 1, M(k) ≤

( m
c+2

)γ
and the re-

currence becomesT (m) ≤
(
n(c+2)
m−c−2 + 1

)
λ
( m
c+2

)γ
+T (

⌊ c+1
c+2m + 1

⌋
).

Proposition 5.2(iii) implies T (n) ≤ O(nγ ) form = n.

Reduction from short products to middle product. The middle prod-

uct of f and д can be computed as the sum of the low short product

of f quoXn
with д and the high short product of f mod Xn

with д.
Yet this reduction does not preserve the space complexity since one

needs to store the results of the two short products in two zones of

size n before summing them. Actually, the reduction given above

from oMP to iMP can easily be adapted to a reduction from SP to

MP that is space-preserving. Yet, the complexity also worsens with

a logarithmic factor. Thus, we cannot conclude that MP ≤TISP SP.

5.4 Proof of Proposition 5.2
Lemma 5.3. Let T (n) be a function satisfying T (n) ≤ f (n) +

T (⌊αn + β⌋) for some α < 1, β and non-decreasing f . Then

T (n) ≤ T (⌊nK ⌋) +
K−1∑
i=0

f (ni )

where ni = α in + β 1−α i+1
1−α and K ≤ log

1/α (n).

Proof. By definition of ni , n = n0 and T (⌊ni ⌋) ≤ f (ni ) +
T (⌊ni+1⌋). Then by recurrence,T (n) ≤ T (⌊ni+1⌋)+

∑i
j=0 f (ni ). □

Lemma 5.4. Let ni = α in + β 1−α i+1
1−α . Then

K−1∑
i=0

ni ≤
n + βK

1 − α
.

Proof. Since 0 < α < 1,

∑K−1
i=0 α i <

∑∞
i=0 α

i = 1/(1 − α). Also,∑K−1
i=0 (1 − α

i+1)/(1 − α) ≤
∑K−1
i=0 1/(1 − α) = K/(1 − α). □

Lemma 5.5. Let ni = α in + β 1−α i+1
1−α . Then

K−1∑
i=0

1

ni − β/(1 − α)
=

α(α−K − 1)

(1 − α)n − αβ
.

Proof. Since ni = α i (n− βα/(1−α))+ β/(1−α), ni − β/(1−α)
is a multiple of α i . Thus,

K−1∑
i=0

1

ni − β/(1 − α)
=

1

n − βα/(1 − α)

K−1∑
i=0

α−i .

Then,

∑
i α
−i = (1 − α−K )/(1 − 1/α) = α(α−K − 1)/(1 − α), and∑

i 1/(ni − β/(1 − α)) = α(α−K − 1)/((1 − α)n − αβ). □

Lemma 5.6. If M(n)/n is non-decreasing, and ni = α in + β(1 −
α i+1)/(1 − α) for some α < 1, then

K−1∑
i=0

M(⌊λni + µ⌋) =
λ

1 − α
M(n) + o(M(n))

for K ≤ log
1/α (n) and any λ and µ such that λni + µ ≤ n for all ni .

Proof. SinceM(n)/n is non-decreasing, we getM(⌊λni + µ⌋) ≤
λni+µ

n M(n). Therefore,
∑
i M(⌊λni + µ⌋) ≤ M(n)/n

∑
i (λni + µ). By

Lemma 5.4,

∑
i M(⌊λni + µ⌋) ≤ λM(n)/(1 − α) + λβKM(n)/n(1 −

α) + µKM(n)/n. Since K = O(logn), KM(n)/n = o(M(n)). □

Proof of Proposition 5.2. Proof of (i): By hypothesis, we have

T (n) ≤
∑
k akM(⌊λkn + µk ⌋)+bn+c+T (⌊αn + β⌋)with α < 1 and

λkn + µk < n for all k . By Lemma 5.3, T (n) ≤ T (⌊nK ⌋) +
∑
i f (ni )

with ni defined as in the lemma and f (n) =
∑
k akM(⌊λkn + µk ⌋)+

bn + c . Then
K−1∑
i=0

f (ni ) =
∑
k

ak

K−1∑
i=0

M(⌊λkni + µk ⌋) + b
K−1∑
i=0

ni + Kc

≤
∑
k

ak

(
λk

1 − α
M(n) + o(M(n))

)
+ b

n + βK

1 − α
+ Kc

=
∑
k

akλk
1 − α

M(n) +
bn

1 − α
+ o(M(n))

since K = o(M(n)) and the sum over k is of fixed size.

Proof of (ii): Since T (m) ≤ (λm/n + µ/(m − 1

1−α ) + 1)M(n) +
T (⌊αm + 1⌋) with α < 1 andm ≤ n, Lemma 5.3 implies

T (m) ≤ T (⌊mK ⌋) +M(n)
∑
i

(
λmi
n
+

µ

mi − 1/(1 − α)
+ 1

)
wheremi = α im+ (1−α i+1)/(1−α). By Lemma 5.4,

∑
imi ≤

m+K
1−α

and by Lemma 5.5,

∑
i 1/(mi −

1

1−α ) ≤ α−K+1/((1 − α)m − α).
Altogether,

T (m) ≤ T (⌊mK ⌋) + KM(n) +
λ(m + K)

n(1 − α)
M(n)

+
µα

1 − α
·
(1/α)K

m − α/(1 − α)
M(n).

If we plug K = log
1/α (m) and fixm = n, we get

T (n) ≤ T (⌊nK ⌋) +M(n) log1/α n +
λ + µα

1 − α
M(n) + o(M(n)).
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Proof of (iii): Let T (m) ≤ λ(n/((1 − α)m − 1)) + 1)((1 − α)m)γ +
T (⌊αm + 1⌋). We claim that there exist constants µ and ν such that

T (m) ≤ µmγ−1n + νmγ +o(mγ−1n +mγ ) and prove it by induction.

Using the recurrence relation and the induction hypothesis,

T (m) ≤ λn((1− α)m)γ−1 + λ((1− α)m)γ + µ(αm)γ−1n + ν (αm)γ

+ o(mγ−1n +mγ )

The result follows as soon as λ(1 − α)γ−1 + µαγ−1 ≤ µ and λ(1 −
α)γ + ναγ ≤ ν . We can thus fix

µ =
λ(1 − α)γ−1

1 − αγ−1
and ν =

λ(1 − α)γ

1 − αγ
.

Finally, takingm = n, we conclude thatT (n) ≤ (µ +ν )nγ +O(nγ−1).
□

6 PERSPECTIVES
We have presented algorithms for polynomial products which are

efficient in terms of both time and space. Our results show that

any algorithm for the full and short products can be turned into

another algorithm with the same asymptotic time complexity while

using onlyO(1) extra space. We obtain similar results for the middle

product but only proved it for algorithms that do not have a quasi-

linear time complexity. In the latter case, an increase of the time

complexity by a logarithmic factor occurs. We provided analysis

of our reductions that make their constants explicit. In particular,

their values ensure that our reductions are practicable.

In a future work, we plan to address some remaining issues. By

examining the constants in the already known algorithms, we can

choose the algorithms to use as starting points of our reductions to

optimize the complexity. For instance three variants of Karatsuba’s

algorithmwith different time and space complexities are known [17,

20, 24]. Furthermore, it seems possible to improve on the complexity

of low-space versions of Karatsuba’s and Toom-Cook’s algorithm,

yielding faster in-place algorithms through our reductions. Another

promising approach is to slightly relax the model of computation

andwork inmodel in which one canwrite on the input space as long

as the original inputs are restored by the end of the computation.

Preliminary results for Karatsuba’s algorithm suggest that this could

also yield a lower constant in the time complexity.

Finally, we have started to explore the design of in-place algo-

rithms for a broader range of problems of polynomials, such as

division or evaluation/interpolation. The use of in-place middle

and short products becomes crucial since one needs to avoid any

increase in the size of the intermediate results.
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