
ar
X

iv
:1

80
9.

10
84

8v
2

 [
m

at
h.

O
C

]
 2

2
Ja

n
20

19

A New Sparse SOS Decomposition Algorithm Based on
Term Sparsity

∗

Jie Wang, Haokun Li and Bican Xia

School of Mathematical Sciences, Peking University

wangjie212@pku.edu.cn, ker@protonmail.ch, xbc@math.pku.edu.cn

ABSTRACT

A new sparse SOS decomposition algorithm is proposed based on
a new sparsity pattern, called cross sparsity patterns. The new
sparsity pattern focuses on the sparsity of terms and thus is differ-
ent from the well-known correlative sparsity pattern which focuses
on the sparsity of variables though the sparse SOS decomposition
algorithms based on these two sparsity patterns both take use of
chordal extensions/chordal decompositions. Moreover, it is proved
that the SOS decomposition obtained by the new sparsity pattern
is always a refinement of the block-diagonalization obtained by the
sign-symmetry method. Various experiments show that the new
algorithm dramatically saves the computational cost compared to
existing tools and can handle some really huge polynomials.

Categories and Subject Descriptors

I.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation—Algebraic Algorithms

General Terms

Algorithms, Theory

Keywords

nonnegative polynomial, sparse polynomial, cross sparsity pattern,
sum of squares, chordal graph

1. INTRODUCTION
Certificates of nonnegative polynomials and polynomial opti-

mization problems (POPs) arise from many fields such as math-
ematics, control, engineering, probability, statistics and physics.
A classical method for these problems is using sums of squares
(SOS). For a polynomial f ∈R[x] =R[x1, . . . ,xn] and a given mono-
mial basis M = {xω1 , . . . ,xω r}, the SOS condition for f can be con-
verted to the problem of deciding if there exists a positive semidef-

∗This work was supported partly by NSFC under grants 61732001
and 61532019.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

inite matrix Q (Gram matrix) such that f = MT QM which can be
effectively solved by semidefinite programming (SDP) [20, 21].

When the given polynomial has many variables and a high de-
gree, the corresponding SDP problem is hard to be dealt with by
existing SDP solvers due to the very large size of the correspond-
ing SDP matrix. On the other hand, most polynomials coming from
practice have certain structures including symmetry and sparsity.
So it is very important to take full advantage of structures of poly-
nomials to reduce the size of corresponding SDP problems. In re-
cent years, a lot of work has been done on this subject.

In the literature, there are three kinds of approaches to reduce
computations by exploiting sparsity. One approach is reducing
the size of the monomial basis M; such techniques include com-
puting Newton polytopes [25], using the diagonal inconsistency
[17], the iterative elimination method [15], and the facial reduction
[23].The second approach is exploiting the non-diagonal sparsity of
the Gram matrix Q; such techniques include using the sparsity of
variables [6, 18, 19, 26, 28], using the symmetry property [9], us-
ing the split property [7], and minimal coordinate projections [24].
The third approach is exploiting the sparsity of constrained condi-
tions of corresponding SDP problems, such as coefficient matching
conditions [4, 13, 29].

In this paper, a new sparse SOS decomposition algorithm is pro-
posed based on a new sparsity pattern, called cross sparsity pat-

terns. Given a polynomial f ∈R[x] with the support A ⊆N
n and a

monomial basis M = {xω1 , . . . ,xω r}, the cross sparsity pattern as-
sociated with A is represented by an r× r symmetric (0,1)-matrix
RA whose elements are defined by

Ri j =

{
1, ω i +ω j ∈ A ∪2B,

0, otherwise,
(1.1)

where 2B = {2ω1, . . . ,2ωr}.
It can be seen that the new sparsity pattern focuses on the spar-

sity of terms and thus is different from the well-known correlative
sparsity pattern [26] which focuses on the sparsity of variables. For
example, for a polynomial f ∈ R[x], if f contains a term involving
all variables x1, . . . ,xn, then f is not sparse in the sense of correla-
tive sparsity patterns and hence the corresponding SDP matrix for
the SOS decomposition of f cannot be block-diagonalized. But f

may still be sparse in the sense of cross sparsity patterns (see Ex-
ample 3.4).

Following the chordal sparsity approaches, we associate the ma-
trix RA with an undirected graph G(VA ,EA) where

VA = {1,2, . . . ,r} and EA = {{i, j} | i, j ∈VA , i < j,Ri j = 1}

and generate a chordal extension of G(VA ,EA). Then as usual, we
use matrix decompositions for positive semidefinite matrices with
chordal sparsity patterns to construct sets of supports for a blocking

http://arxiv.org/abs/1809.10848v2

SOS decomposition. We prove that the blocking SOS decomposi-
tion obtained by cross sparsity patterns is always a refinement of
the block-diagonalization obtained by the sign-symmetry method
[17].

We test the new algorithm on various examples. It turns out
that the new algorithm dramatically reduces the computational cost
compared to existing tools and can handle really huge polynomials
which are unsolvable by any existing SDP solvers even exploiting
sparsity.

The rest of this paper is organized as follows. Section 2 intro-
duces some basic notions from nonnegative polynomials and graph
theory. Section 3 defines a cross sparsity pattern matrix and a cross
sparsity pattern graph associated with a sparse polynomial. We
show that how we can exploit this sparsity pattern to obtain a block
SOS decomposition for a sparse nonnegative polynomial. More-
over, we compare our approach with other methods to exploit spar-
sity in SOS decompositions, including correlative sparsity patterns
and sign-symmetries. We discuss in Section 4 when the sparse SOS
relaxation obtain the same optimal values as the dense SOS relax-
ation for polynomial optimization problems. The algorithm is given
in Section 5. Section 6 includes numerical results on various exam-
ples. We show that the proposed SparseSOS algorithm exhibits a
significantly better performance in practice. Finally, the paper is
concluded in Section 7.

2. PRELIMINARIES

2.1 Nonnegative polynomials
Let R[x] =R[x1, . . . ,xn] be the ring of real n-variate polynomials.

For a finite set A ⊂ N
n, we denote by conv(A) the convex hull

of A , and by V (A) the vertices of the convex hull of A . Also
we denote by V (P) the vertex set of a polytope P. A polynomial
f ∈ R[x] can be written as f (x) = ∑α∈A cα xα with cα ∈ R,xα =
x

α1

1 · · ·xαn
n . The support of f is defined by supp(f) = {α ∈ A |

cα 6= 0}, the degree of f is defined by deg(f) = max{∑n
i=1 αi : α ∈

supp(f)}, and the Newton polytope of f is defined as New(f) =
conv({α : α ∈ supp(f)}).

A polynomial f ∈ R[x] which is nonnegative over Rn is called a
nonnegative polynomial. The class of nonnegative polynomials is
denoted by PSD, which is a convex cone.

A vector α ∈ N
n is even if αi is an even number for i = 1, . . . ,n.

A necessary condition for a polynomial f (x) to be nonnegative
is that every vertex of its Newton polytope is an even vector, i.e.
V (New(f)) =V (supp(f))⊆ (2N)n [25].

For a nonempty finite set B ⊆N
n, R[B] denotes the set of poly-

nomials in R[x] whose supports are contained in B, i.e., R[B] =
{ f ∈ R[x] | supp(f) ⊆ B} and we use R[B]2 to denote the set of
polynomials which are sums of squares of polynomials in R[B].
The set of r× r symmetric matrices is denoted by Sr and the set of
r×r positive semidefinite matrices is denoted by Sr

+. Let xB be the

|B|-dimensional column vector consisting of elements xβ ,β ∈ B,
then

R[B]2 = {(xB)T QxB | Q ∈ S
|B|
+ },

where the matrix Q is called the Gram matrix.

2.2 Chordal graphs
We introduce some basic notions from graph theory. A graph

G(V,E) consists of a set of nodes V = {1,2, . . . ,r} and a set of
edges E ⊆ V ×V . A graph G(V,E) is said to be undirected if and
only if (i, j) ∈ E ⇔ (j, i) ∈ E. A cycle of length k is a sequence
of nodes {v1,v2, . . . ,vk} ⊆ V with (vk,v1) ∈ E and (vi,vi+1) ∈ E,

for i = 1, . . . ,k− 1. A chord in a cycle {v1,v2, . . . ,vk} is an edge
(vi,v j) that joins two nonconsecutive nodes in the cycle.

An undirected graph is called a chordal graph if all its cycles
of length at least four have a chord. Chordal graphs include some
common classes of graphs, such as complete graphs, line graphs
and trees, and have applications in sparse matrix theory. Note that
any non-chordal graph G(V,E) can always be extended to a chordal

graph G̃(V, Ẽ) by adding appropriate edges to E, which is called a
chordal extension of G(V,E). A clique C ⊆ V is a subset of nodes
where (i, j)∈E for any i, j ∈C, i 6= j. If a clique C is not a subset of
any other clique, then it is called a maximal clique. It is known that
maximal cliques of a chordal graph can be enumerated efficiently
in linear time in the number of vertices and edges of the graph. See
for example [5, 8, 10] for the details.

Given an undirected graph G(V,E), we define an extended set of
edges E⋆ := E ∪{(i, i) | i ∈V} that includes all selfloops. Then, we
define the space of symmetric sparse matrices as

Sr(E,0) := {X ∈ Sr | Xi j = X ji = 0 if (i, j) /∈ E⋆} (2.1)

and the cone of sparse PSD matrices as

Sr
+(E,0) := {X ∈ Sr(E,0) | X � 0}. (2.2)

Given a maximal clique Ck of G(V,E), we define a matrix PCk
∈

R
|Ck|×r as

(PCk
)i j =

{
1, Ck(i) = j,

0, otherwise.
(2.3)

where Ck(i) denotes the i-th node in Ck, sorted in the natural order-

ing. Note that Xk = PCk
XPT

Ck
∈ S|Ck| extracts a principal submatrix

defined by the indices in the clique Ck , and X = PT
Ck

XkPCk
inflates

a |Ck|× |Ck| matrix into a sparse r× r matrix. Then, the following
theorem characterizes the membership to the set Sr

+(E,0) when the
underlying graph G(V,E) is chordal.

Theorem 2.1 ([1]). Let G(V,E) be a chordal graph and {C1, . . . ,Ct}
be all of the maximal cliques of G(V,E). Then X ∈ Sr

+(E,0) if

and only if there exist Xk ∈ S
|Ck|
+ for k = 1, . . . , t such that X =

∑t
k=1 PT

Ck
XkPCk

.

3. EXPLOITING TERM SPARSITY IN SOS

DECOMPOSITIONS
A convenient but incomplete algorithm for checking global non-

negativity of multivariate polynomials, as introduced by Parrilo in
[20], is the use of sums of squares as a suitable replacement for
nonnegativity. Given a polynomial f (x) ∈ R[x], if there exist poly-
nomials f1(x), . . . , fm(x) such that

f (x) =
m

∑
i=1

fi(x)
2, (3.1)

then we say f (x) is a sum of squares (SOS). The existence of an
SOS decomposition of a given polynomial gives a certificate for its
global nonnegativity. For d ∈ N, let Nn

d
:= {α ∈ N

n | ∑n
i=1 αi ≤ d}

and assume f ∈R[Nn
2d
]. The SOS condition (3.1) can be converted

to the problem of deciding if there exists a positive semidefinite
matrix Q such that

f (x) = (xN
n
d)T QxN

n
d , (3.2)

which is a semidefinite programming (SDP) problem.
We say that a polynomial f ∈ R[Nn

2d
] is sparse if the number of

elements in its support A = supp(f) is much less than the number

of elements in N
n
2d

that forms a support of fully dense polynomials
in R[Nn

2d]. When f (x) is a sparse polynomial in R[Nn
2d], the size

of the SDP problem (3.2) can be reduced by eliminating redundant
elements from N

n
d . In fact, Nn

d in problem (3.2) can be replaced by
[25]

B = conv({
α

2
| α ∈V (A)})∩N

n ⊆ N
n
d . (3.3)

There are also other methods to reduce the size of B further, see
for example [15, 23].

3.1 Cross sparsity pattern
To exploit the term sparsity of polynomials in SOS decompo-

sitions, we introduce the notion of cross sparsity patterns, which,
roughly speaking, is measured by the different kinds of cross prod-
ucts of monomials arising in the objective polynomial f (x).

Definition 3.1. Let f (x) ∈ R[x] with supp(f) = A . Assume that

xB = {xω1 , . . . ,xω r} is a monomial basis. An r× r cross sparsity
pattern matrix RA = (Ri j) is defined by

Ri j =

{
1, ω i +ω j ∈ A ∪2B,

0, otherwise,
(3.4)

where 2B = {2ω1, . . . ,2ωr}.

Given a cross sparsity pattern matrix RA = (Ri j), the graph

G(VA ,EA) where

VA = {1,2, . . . ,r} and EA = {{i, j} | i, j ∈VA , i < j,Ri j = 1}

is called the cross sparsity pattern graph.

To apply Theorem 2.1, we generate a chordal extension G̃(VA , ẼA)
of the cross sparsity pattern graph G(VA ,EA) and use the extended

cross sparsity pattern graph G̃(VA , ẼA) instead of G(VA ,EA).

Remark 3.2. Given a graph G(VA ,EA), there may be many dif-

ferent chordal extensions and choosing anyone of them is valid for

deriving the sparse SOS decompositions presented in this paper.

For example, we can add edges to all of the connected components

of G(VA ,EA) such that every connected component becomes a

complete subgraph to obtain a chordal extension. The chordal

extension with the least number of edges is called the minimum
chordal extension. Finding the minimum chordal extension of a

graph is an NP-hard problem in general. Finding a chordal ex-

tension of a graph is equivalent to calculating the symbolic sparse

Cholesky factorization of its adjacency matrix. The resulted sparse

matrix represents a chordal extension. The minimum chordal exten-

sion corresponds to the sparse Cholesky factorization with the min-

imum fill-ins. Fortunately, several heuristic algorithms, such as the

minimum degree ordering, are known to efficiently produce a good

approximation. For more information on symbolic Cholesky factor-

izations with the minimum degree ordering and minimum chordal

extensions, see [2, 3, 12].

3.2 Sparse SOS relaxations
Given A ⊆ N

n with V (A) ⊆ (2N)n, assume that B is the sup-
port set of a monomial basis. Let the set of SOS polynomials sup-
ported on A be

Σ(A) := { f ∈ R[A] | ∃Q ∈ Sr
+ s.t. f = (xB)T QxB}.

Generally the Gram matrix Q for a sparse SOS polynomial f (x) can
be dense. Let G(VA ,EA) be the cross sparsity pattern graph and

G̃(VA , ẼA) a chordal extension. To maintain the sparsity of f (x)
in the Gram matrix Q, we consider a subset of SOS polynomials

Σ̃(A) := { f ∈ R[A] | ∃Q ∈ Sr
+(ẼA ,0) s.t. f = (xB)T QxB}.

By virtue of Theorem 2.1, the following theorem gives the block-

ing SOS decompositions for polynomials in Σ̃(A).

Theorem 3.3. Given A ⊆ N
n with V (A) ⊆ (2N)n, assume that

B = {ω1, . . . ,ωr} is the support set of a monomial basis and a

chordal extension of the cross sparsity pattern graph is G̃(VA , ẼA).

Let C1,C2, . . . ,Ct ⊆VA denote the maximal cliques of G̃(VA , ẼA)

and Bk = {ω i ∈ B | i ∈Ck},k = 1,2, . . . , t. Then, f (x) ∈ Σ̃(A) if

and only if there exist fk(x) ∈ R[Bk]
2 for k = 1, . . . , t such that

f (x) =
t

∑
k=1

fk(x). (3.5)

Proof. By Theorem 2.1, Q ∈ Sr
+(ẼA ,0) if and only if there exist

Qk ∈ S
|Ck|
+ ,k = 1, . . . , t such that Q = ∑t

k=1 PT
Ck

QkPCk
. So f (x) ∈

Σ̃(A) if and only if there exist Qk ∈ S
|Ck|
+ ,k = 1, . . . , t such that

f (x) = (xB)T (
t

∑
k=1

PT
Ck

QkPCk
)xB

=
t

∑
k=1

(PCk
xB)T Qk(PCk

xB)

=
t

∑
k=1

(xBk)T QkxBk ,

which is equivalent to that there exist fk(x)∈R[Bk]
2 for k= 1, . . . , t

such that f (x) = ∑t
k=1 fk(x).

3.3 Comparison with correlative sparsity pat-
terns

The notion of correlative sparsity patterns was introduced by
Waki et al. [26] to exploit variable sparsity of polynomials in SOS
programming, which also takes use of chordal extensions/chordal
decompositions. An interpretation of correlative sparsity patterns
in terms of the sparsity of Gram matrices was recently given in
[30]. It should be emphasized that the angles of correlative sparsity
patterns and cross sparsity patterns to exploit sparsity are differ-
ent. Correlative sparsity patterns focus on the sparsity of variables,
while cross sparsity patterns focus on the sparsity of terms. For ex-
ample, for a polynomial f ∈R[x], if f contains a term involving all
variables x1, . . . ,xn, then f is not sparse in the sense of correlative
sparsity patterns and hence the corresponding SDP matrix for the
SOS decomposition of f cannot be block-diagonalized. But f may
still be sparse in the sense of cross sparsity patterns.

Example 3.4. Consider the polynomial f = x2y2+x2+y2+1−xy.

A monomial basis for f is {1,x,y,xy,x2 ,y2}. The correlative spar-

sity pattern graph of f is a complete graph, and hence the corre-

sponding Gram matrix of f cannot be blocked. On the other hand,

the cross sparsity pattern graph of f has three maximal cliques,

corresponding to {1,x2,y2}, {1,xy} and {x,y} respectively. Hence,

the corresponding Gram matrix of f can be blocked into one 3×3
submatrix and two 2×2 submatrices.

1 x2 x

y2 xy y

3.4 Comparison with sign-symmetries
In [17], sign-symmetries are exploited to block diagonalize sums

of squares programming ([17, Theorem 3]), which is implemented
in Yalmip. Given a polynomial f ∈ R[x] with supp(f) = A . The
sign-symmetries of f are defined by all vectors r∈ {0,1}n such that
rT α ≡ 0 (mod 2) for all α ∈ A .

By virtue of sign-symmetries, SOS programming can be blocked
as follows.

Theorem 3.5 ([17]). Given a polynomial f ∈R[x] with supp(f) =
A , assume that B = {ω1, . . . ,ωr} is the support set of a monomial

basis and the sign-symmetries of f are defined by the binary matrix

R = [r1, . . . ,rs]. Then xB can be blocked in the SOS programming

of f and xω i ,xω j belong to the same block if and only if RT ω i ≡
RT ω j (mod 2).

We show in Theorem 3.6 that the blocking decomposition ob-
tained by cross sparsity patterns is always a refinement of the block-
diagonalization obtained by sign-symmetries.

Theorem 3.6. Given a polynomial f ∈ R[x] with supp(f) = A ,

assume that B = {ω1, . . . ,ωr} is the support set of a monomial

basis and the sign-symmetries of f are defined by the binary ma-

trix R = [r1, . . . ,rs]. Then the blocking decomposition obtained by

cross sparsity patterns is a refinement of the block-diagonalization

obtained by sign-symmetries in the SOS programming of f .

Proof. The block-diagonalization obtained by sign-symmetries can
be represented by a graph G(V,E) with V = {1, . . . ,r} and (i, j)∈E

if and only if RT ω i ≡ RT ω j (mod 2). Then by Theorem 3.5, the
blocks obtained by sign-symmetries correspond to the connected
components of G(V,E). To show that the blocking decomposition
obtained by cross sparsity patterns is a refinement of the block-
diagonalization obtained by sign-symmetries, we only need to prove
that the cross sparsity pattern graph G(V,EA) is a subgraph of
G(V,E), i.e. EA ⊆ E.

By the definition of sign-symmetries, we have RT α ≡ 0 (mod 2)
for all α ∈ A . By the definition of cross sparsity pattern graphs,
(i, j)∈EA if and only if ω i+ω j ∈A ∪2B. So if (i, j)∈EA , then
either ω i+ω j ∈A or ω i+ω j ∈ 2B. In anyone of these two case,

we always have RT (ω i +ω j) ≡ 0 (mod 2), which is equivalent to

RT ω i ≡ RT ω j (mod 2). Thus (i, j) ∈ E as desired.

4. WHEN DO Σ(A) AND Σ̃(A) COINCIDE
Given A ⊆ N

n with V (A) ⊆ (2N)n, we define in Section 3.2

two sets of SOS polynomials: Σ(A) and Σ̃(A). Generally we

have Σ(A)⊇ Σ̃(A). If Σ(A) = Σ̃(A), then the sparse SOS relax-
ation and the dense SOS relaxation obtain the same optimal value
for the optimization of a polynomial f with the support A . The
following theorem shows that in the quadratic case the equality

Σ(A) = Σ̃(A) holds.

Theorem 4.1. If for any α ∈A , ∑n
i=1 αi ≤ 2, then Σ(A) = Σ̃(A).

Proof. Suppose f ∈Σ(A) is a quadratic polynomial with supp(f)=
A . Let M = [1,x1, . . . ,xn] be a monomial basis and assume f =
MT QM for a positive semidefinite matrix Q = (qi j)

n
i, j=0. Let R =

(Ri j)
n
i, j=0 be the corresponding cross sparsity pattern matrix for f .

To prove Σ(A) ⊆ Σ̃(A), we need to show Q ∈ Sn+1
+ (ẼA ,0), or

Q ∈ Sn+1
+ (EA ,0). Note that Q ∈ Sn+1

+ (EA ,0) is equivalent to the
proposition that Ri j = 0 implies qi j = 0 for all i, j. Let {ek}

n
k=1 be

the standard basis. If i = 0, j > 0, from R0 j = 0 we have e j /∈ A .
If i > 0, j = 0, from Ri0 = 0 we have ei /∈ A . If i, j > 0, i 6= j, from

Ri j = 0 we have ei + e j /∈ A . In anyone of these three cases, we
have qi j = 0 as desired.

5. ALGORITHM
According to Section 3, a sparse SOS decomposition procedure

can be easily divided into the following four steps:

1. Compute the support set of a monomial basis B;

2. Generate the cross sparsity pattern graph G(VA ,EA) and a

chordal extension G̃(VA , ẼA);

3. Compute all of the maximal cliques of G̃(VA , ẼA) and ob-
tain the blocking SOS problem;

4. Use an SDP solver to solve the blocking SOS problem.

In step 1, we compute the support set of a monomial basis B

following the method in [17].
In step 2, different chordal extensions will lead to different block-

ing SOS decompositions. When implementing this step, we obtain

a chordal extension G̃(VA , ẼA) by adding edges to G(VA ,EA)
such that every connected component becomes a complete sub-
graph.

The above procedure is formally stated as Algorithm 1 (named
SparseSOS) in the following. Obviously, since we use well-known
and popular methods and tools for Step 1 and Step 4, the efficiency
of SparseSOS essentially depends on Step 2 and Step 3. That is,
if we may decompose the original problems into smaller subprob-
lems via Step 2 and Step 3, the computation cost will certainly be
decreased because the SDP solver in Step 4 receives smaller inputs.
We will show in the next section that SparseSOS performs well on
many examples.

Algorithm 1 SparseSOS

input: a polynomial f with supp(f) = A

output: a representation f = ∑m
i=1 g2

i or unknown

1: Compute the support set of a monomial basis B =
{ω1, . . . ,ωr};

2: Generate the cross sparsity pattern graph G(VA ,EA);
3: Take the connected components {C1, . . . ,Ct} of G(VA ,EA) to

obtain a chordal extension G̃(VA , ẼA);
4: Solve the blocking SOS problem

f =
t

∑
k=1

fk, fk ∈ R[Bk]
2, (∗)

where Bk = {ω i ∈ B | i ∈Ck},k = 1,2, . . . , t;
5: If (∗) is feasible, then return f = ∑m

i=1 g2
i . Otherwise return

unknown.

6. NUMERICAL EXPERIMENTS
In this section, we give numerical results to illustrate the ef-

fectiveness of the algorithm SparseSOS. The algorithm is imple-
mented with C++ as a tool also named SparseSOS. It turns out that
SparseSOS is extremely powerful and can deal with some really
huge polynomials that cannot be handled by other tools.

6.1 Versions and Commands
Our tool SparseSOS can be downloaded at

https://gitlab.com/haokunli/sparsesos.
All the examples in the following subsections can be downloaded

there as well. We illustrate by a very simple example how to use

SparseSOS. Suppose we want to check whether the following poly-
nomial is SOS by SparseSOS:

36x10
0 x2

1 +4x10
0 x2

2 +81x2
0x8

1x2
2 −84x8

0x3
1 +18x2

0x8
1x2 +49x6

0x4
1

+x2
0x8

1 +36x4
0x4

1x2
2 +4x4

0x4
1x2 +4x6

0x2
2.

First, express the polynomial by +,−,∗,̂ , integers and variables
in a file, say example.txt, as follows:

36*x0^10*x1^2 + 4*x0^10*x2^2 + 81*x0^2*x1^8*x2^2 -

84*x0^8*x1^3 + 18*x0^2*x1^8*x2 +49*x0^6*x1^4

+ x0^2*x1^8 + 36*x0^4*x1^4*x2^2 + 4*x0^4*x1^4*x2

+ 4*x0^6*x2^2.

Then, we only need to type in:

is_sos example.txt

to run SparseSOS on the example.
SparseSOS uses mosek 8.1 as an LP solver and csdp 6.2 as an

SDP solver. In the following subsections, we compare the perfor-
mance on some examples of SparseSOS with that of Yalmip [16],
SOSTOOLS [22], and SparsePOP [27] which also exploit sparsity
in SOS decompositions. The versions of the tools and their LP
and SDP solvers are listed here: Yalmip R20181012 (LP solver:
gurobi 8.1; SDP solver: mosek 8.1), SOSTOOLS303 (SDP solver:
sdpt 3.4) and SparsePOP301 (SDP solver: sdpt 3.4).

All numerical examples were computed on a 6-Core Intel Core
i7-8750H@2.20GHz CPU with 16GB RAM memory and ARCH
LINUX SYSTEM.

6.2 The polynomials Bm

Let

Bm =

(
3m+2

∑
i=1

x2
i

)


(

3m+2

∑
i=1

x2
i

)2

−2
3m+2

∑
i=1

x2
i

m

∑
j=1

x2
i+3 j+1



 ,

where we set x3m+2+r = xr. Note that Bm is modified from [20].
For any m∈N\{0}, Bm is homogeneous and is an SOS polynomial.
For these Bm’s, SparseSOS dramatically reduces the problem sizes
and the computation time (see Table 2).

Remark 6.1. It is easy to see that, for m ≤ 4, SOSTOOLS and

SparsePOP cannot block-diagonalize the corresponding Gram ma-

trices for Bm while Yalmip and our tool SparseSOS reduce the

Gram matrices to smaller submatrices of the same size. That is the

reason why Yalmip and SparseSOS cost much less time on those

problems. For m ≥ 5, only SparseSOS can work out results and

Yalmip fails to obtain a block-diagonalization.

6.3 MCP polynomials Pi, j

Monotone Column Permanent (MCP) Conjecture was given in
[11]. In the dimension 4, this conjecture is equivalent to decide
whether particular polynomials p1,2, p1,3, p2,2, p2,3 are nonnegative
(the definitions of pi, j can be found in [14]). Actually, it was proved
that every pi, j multiplied by a small particular polynomial is an
SOS polynomial ([14]). Let

P1,2 = (a2 +2b2 +c2) · p1,2,

P1,3 = p1,3,

P2,2 = (a2 +2b2 +c2) · p2,2,

P2,3 = (a2 +2b2 +c2) · p2,3.

We use SparseSOS to certify nonnegativity of P1,2,P1,3,P2,2,P2,3.
The result is listed in Table 3.

Remark 6.2. When we use the ’sparse’ option, SOSTOOLS seems

to make a mistake in computing a monomial basis for P2,2 and fails

to obtain a SOS decomposition for P2,2.

6.4 Randomly generated polynomials
Now we present the numerical results for randomly generated

polynomials. A sparse randomly generated polynomial

f =
k

∑
i=1

f 2
i ∈ randpoly(n,d,k, p)

is constructed as follows: first generate a set of monomials M in the
set xN

n
d with probability p, and then randomly assign the elements

of M to f1, . . . , fk with random coefficients between −10 and 10.
We generate 18 random polynomials F1, . . . ,F18 from 6 different
classes, where

F1,F2,F3 ∈ randpoly(10,6,10,0.01),

F4,F5,F6 ∈ randpoly(10,6,10,0.015),

F7,F8,F9 ∈ randpoly(10,10,10,0.001),

F10,F11,F12 ∈ randpoly(10,8,20,0.002),

F13,F14,F15 ∈ randpoly(10,8,20,0.005)

and

F16,F17,F18 ∈ randpoly(10,8,20,0.01).

See Table 4 for the performance of Yalmip and SparseSOS on
these polynomials. Since SOSTOOLS and SparsePOP can hardly
handle these polynomials, we do not list the performance of them
in the table.

Remark 6.3. From Table 4, we can see that SparseSOS obtains

block-diagonalizations for F1, ...,F15 while Yalmip fails for all these

polynomials. For polynomials F16,F17,F18, both SparseSOS and

Yalmip cannot obtain block-diagonalizations.

For F1, ...,F6 and F10, ...,F12, SparseSOS succeeds in obtaining

the final SOS decompositions while Yalmip fails on F4,F5 and F10.

Furthermore, SparseSOS is faster than Yalmip on all these poly-

nomials except F6. We observe that the reason why Yalmip is faster

on F6 lies in the efficiency of SDP solvers. Mosek is faster on F6

than csdp.

Although we select only three polynomials from each class of

random polynomials, we notice that SparseSOS performs similarly

on polynomials from the same class. For example, for the classes

randpoly(10,6,10,0.01), randpoly(10,6,10,0.015), and randpoly

(10,8,20,0.002), SparseSOS succeeds in obtaining the final SOS

decompositions. For the classes randpoly(10,10,10,0.001) and

randpoly(10,8,20,0.005), SparseSOS can obtain block-diagonali-

zations of the corresponding Gram matrices but cannot work out

the final result. For the class randpoly(10,8,20,0.01), SparseSOS
cannot obtain block-diagonalizations.

7. CONCLUSIONS
We exploit the term sparsity of polynomials in SOS Program-

ming by virtue of cross sparsity patterns and prove a sparse SOS
decomposition theorem for sparse polynomials via PSD matrix de-
compositions with chordal sparsity patterns. Based on this, a new
sparse SOS algorithm is proposed and is tested on various exam-
ples. The experimental results show that the new algorithm is ef-
ficient and extremely powerful. The algorithm can be combined

Table 1: Notation
#supp the number of support monomials of a polynomial

#block the size of blocks obtained by SparseSOS

i× j i blocks of size j

* a failure information to obtain a SOS decomposition

OM an out-of-memory error

Table 2: Results for Bm

SparseSOS Yalmip SOSTOOLS SparsePOP

m #supp #block time #block time #block time #block time

1 35 5×5,10×1 0.01s 5×5,10×1 0.45s 1×35 0.95s 1×56 0.54s

2 104 8×8,56×1 0.04s 8×8,56×1 0.95s 1×120 2.59s 1×165 4.66s

3 242 11×11,165×1 0.15s 11×11,165×1 1.18s 1×286 34.00s 1×364 93.9s

4 476 14×14,364×1 0.45s 14×14,364×1 2.94s 1×560 423s 1×680 764s

5 833 17×17,680×1 1.56s 1×969 OM 1×969 OM OM

10 5408 32×32,4960×1 65.55s

Table 3: Results for Pi, j

SparseSOS Yalmip SOSTOOLS SparsePOP

#supp #block time #block time #block time #block time

P1,2 159
1×15,2×12,7×4,

0.29s
1×15,2×12,7×4,

1.86s 1×77 2.39s 1×112 2.56s
1×3,2×2,3×1 1×3,2×2,3×1

P1,3 53
1×8,4×3,

0.08s
1×8,4×3,

0.41s 1×29 0.86s 2×30,1×29 0.52s
2×2,5×1 2×2,5×1

P2,2 144
3×12,2×4,

0.27s
3×12,2×4,

0.40s 1×25 * 1×97 2.23s
8×2,2×1 8×2,2×1

P2,3 107
2×10,1×8,1×4,

0.19s
2×10,1×8,1×4,

0.40s 1×53 1.62s 1×65,1×60 1.48s
1×3,8×2,2×1 1×3,8×2,2×1

Table 4: The result for randomly generated polynomials
SparseSOS Yalmip SparseSOS Yalmip

#supp #block time #block time #supp #block time #block time

F1 590
187,5,

179.2s 248 315.60s F4 873
303,8,

1850.54s 357 OM
6×2,44×1 3×2,40×1

F2 310
83,3,

4.42s 131 16.34s F5 709
238,4,

633.51s 331 OM
4×2,37×1 4×3,12,55×1

F3 504
162,6,4,

63.86s 218 116.09s F6 927
231,3,

470.40s 261 297.40s
6×2,34×1 2×2,23×1

F7 1344
4658,7,2×5,3×4

OM 4769 OM F10 306
110,10,6,3×4,

29.95s 389 OM
7×3,16×2,29×1 5×3,22×2,192×1

F8 1392
5012,5,3,

OM 5046 OM F11 255
62,8,5,4,

32.09s 220 185.35s
3×2,20×1 2×3,2×2,131×1

F9 1845
4528,7,3,

OM 4576 OM F12 228
56,13,2×6,2×4,

11.24s 232 200.43s
5×2,28×1 4×3,12×2,107×1

F13 1446
2394,3,

OM 2450 OM F16 4777 8866 OM 8866 OM
8×2,37×1

F14 1636
2154,3,

OM 2206 OM F17 4959 8415 OM 8415 OM
4×2,43×1

F15 1085
1800,8,4,6×3,

OM 1980 OM F18 4869 8712 OM 8712 OM
23×2,104×1

In this table, 1× j is denoted by j for short. For example, the #block data 248 of Yalmip for F1 stands for one block of size 248.

with other simplification methods, e.g. [4], to reduce computa-
tional costs further. We will apply the SparseSOS algorithm to
solve large scale unconstrained and constrained polynomial opti-
mization problems in future work.

8. REFERENCES

[1] J. Agler, W. Helton, S. McCullough, L. Rodman, Positive

semidefinite matrices with a given sparsity pattern, Linear
algebra and its applications, 107, 101-149 (1988).

[2] P. R. Amestoy, T. A. Davis, I. S. Duff, Algorithm 837: AMD,

an approximate minimum degree ordering algorithm, ACM
Transactions on Mathematical Software, 30(3), 381-388
(2004).

[3] A. Berry, J. R. S. Blair, P. Heggernes, B. W. Peyton,
Maximum cardinality search for computing minimal

triangulations of graphs, Algorithmica, 39(4), 287-298
(2004).

[4] D. Bertsimas, R. M. Freund, X. A. Sun, An accelerated

first-order method for solving SOS relaxations of

unconstrained polynomial optimization problems, Optim.
Methods Softw., 28(3), 424-441 (2013).

[5] J. R. S. Blair, B. Peyton, An introduction to chordal graphs

and clique trees, in Graph Theory and Sparse Matrix
Computation, A. George, J. R. Gilbert, and J. W. H. Liu,
eds., Springer-Verlag, New York, 1-29 (1993).

[6] J. S. Campos, P. Parpas, A Multigrid Approach to SDP

Relaxations of Sparse Polynomial Optimization Problems,
SIAM Journal on Optimization, 28(1), 1-29 (2016).

[7] L. Dai, B. Xia, Smaller SDP for SOS decomposition, Journal
of Global Optimization, 63(2), 343-361 (2015).

[8] D. R. Fulkerson, O. A. Gross, Incidence matrices and

interval graphs, Pacific J. Math., 15, 835-855 (1965).

[9] K. Gatermann, P. A. Parrilo, Symmetry groups, semidefinite

programs, and sums of squares, Journal of Pure and Applied
Algebra, 192(1), 95-128 (2002).

[10] M. C. Golumbic, Algorithmic Graph Theory and Perfect

Graphs, Academic Press, New York (1980).

[11] J. Haglund, K. Ono, D. G. Wagner, Theorems and

conjectures involving rook polynomials with real roots, In:
Proceedings of Topics in Number Theory and
Combinatorics, 207-221 (1997).

[12] P. Heggernes, Minimal triangulations of graphs: a survey,
Discrete Mathematics, 306(3), 297-317 (2006).

[13] D. Henrion, J. Malick, Projection methods in conic

optimization, in Handbook on Semidefinite, Conic and
Polynomial Optimization, Springer, New York, 565-600
(2012).

[14] E. Kaltofen, Z. Yang, L. Zhi, A proof of themonotone column

permanent (mcp) conjecture for dimension 4 via

sums-of-squares of rational functions, In: Proceedings of the
2009 Conference on Symbolic Numeric Computation, 65-70,
ACM, New York (2009).

[15] M. Kojima, S. Kim, H. Waki, Sparsity in sums of squares of

polynomials, Math. Program., 103, 45-62 (2005).

[16] J. Löfberg, YALMIP: a toolbox for modeling and
optimization in MATLAB, In 2004 IEEE International
Conference on Robotics and Automation (IEEE Cat.
No.04CH37508), 284-289.

[17] J. Löfberg, Pre- and Post-Processing Sum-of-Squares

Programs in Practice, IEEE Transactions on Automatic
Control, 54(5), 1007-1011 (2009).

[18] A. Marandi, E. D. Klerk, J. Dahl, Solving sparse polynomial

optimization problems with chordal structure using the

sparse bounded-degree sum-of-squares hierarchy, Discrete
Applied Mathematics (2017).

[19] J. Nie, J. Demmel, Sparse SOS Relaxations for Minimizing

Functions that are Summations of Small Polynomials, SIAM
Journal On Optimization, 19(4), 1534-1558 (2008).

[20] P. A. Parrilo, Structured semidefinite programs and

semialgebraic geometry methods in robustness and

optimization, Ph.D. Thesis, California Institute of
Technology (2000).

[21] P. A. Parrilo, B. Sturmfels, Minimizing Polynomial

Functions, Proceedings of the Dimacs Workshop on
Algorithmic and Quantitative Aspects of Real Algebraic
Geometry in Mathematics and Computer Science, 32(1),
83-100 (2001).

[22] A. Papachristodoulou, J. Anderson, G. Valmorbida, S.
Prajna, P. Seiler and P. A. Parrilo, SOSTOOLS: Sum of

squares optimization toolbox for MATLAB, available from
http://www.mit.edu/~parrilo/sostools, 2013.

[23] F. Permenter, P. A. Parrilo, Basis selection for SOS programs

via facial reduction and polyhedral approximations,
Decision and Control. IEEE, 6615-6620 (2014).

[24] F. Permenter, P. A. Parrilo, Finding sparse, equivalent SDPs

using minimal coordinate projections, In 54th IEEE
Conference on Decision and Control, CDC 2015, Osaka,
Japan, December 15-18, 7274-7279 (2015).

[25] B. Reznick, Extremal PSD forms with few terms, Duke Math.
J., 45, 363-374 (1978).

[26] H. Waki, S. Kim, M. Kojima, M. Muramatsu, Sums of

squares and semidefinite program relaxations for polynomial

optimization problems with structured sparsity, SIAM
Journal on Optimization, 17(1), 218-242 (2006).

[27] H. Waki, S. Kim, M. Kojima, M. Muramatsu and H.
Sugimoto, SparsePOP: a Sparse Semidefinite Programming

Relaxation of Polynomial Optimization Problems, ACM
Transactions on Mathematical Software, 35(2), 1-13 (2008).

[28] T. Weisser, J. B. Lasserre, K. C. Toh, Sparse-BSOS: a

bounded degree SOS hierarchy for large scale polynomial

optimization with sparsity, Mathematical Programming
Computation, 10(1), 1-32 (2018).

[29] Z. Yang, G. Fantuzzi, A. Papachristodoulou, Exploiting

Sparsity in the Coefficient Matching Conditions in

Sum-of-Squares Programming Using ADMM, IEEE Control
Systems Letters, 1(1), 80-85 (2017).

[30] Z. Yang, G. Fantuzzi, A. Papachristodoulou, Sparse

sum-of-squares (SOS) optimization: A bridge between

DSOS/SDSOS and SOS optimization for sparse polynomials,
2018, arXiv:1807.05463.

	1 Introduction
	2 Preliminaries
	2.1 Nonnegative polynomials
	2.2 Chordal graphs

	3 Exploiting term sparsity in SOS decompositions
	3.1 Cross sparsity pattern
	3.2 Sparse SOS relaxations
	3.3 Comparison with correlative sparsity patterns
	3.4 Comparison with sign-symmetries

	4 When do (A) and "0365(A) coincide
	5 Algorithm
	6 Numerical Experiments
	6.1 Versions and Commands
	6.2 The polynomials Bm
	6.3 MCP polynomials Pi,j
	6.4 Randomly generated polynomials

	7 Conclusions
	8 References

