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ABSTRACT

Reachability, distance, and shortest path queries are fundamen-

tal operations in the field of graph data management with vari-

ous applications in research and industry. However, while various

preprocessing-based methods have been proposed to optimize the

computation of such queries, the integration of existing methods

into graph database management systems and processing frame-

works has been limited. In this paper, we present an implementation

of a static graph index that employs landmark embedding for Neo4j,

to enable the index-based computation of reachability, distance, and

shortest path queries on the database. We explore different strate-

gies for selecting landmarks and different schemes for storing the

precomputed landmark distances. To evaluate the efficiency of each

landmark selection strategy and each storage scheme, we conduct

an experimental evaluation using four real-world network datasets.

We measure the preprocessing cost, the query processing time, and

the accuracy of the distance estimation of different configurations

of our index structure.
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1 INTRODUCTION

Large-scale data analysis increasingly focuses on the relationships

between entities and the networks that are formed. Various appli-

cation domains such as route planning on transportation networks,

social network analysis, and web marketing require the detection

and the analysis of such relationships over very large volumes

of graph data. As a result, various graph DBMS such as Neo4j1,

DEX/Sparksee [17], and OrientDB2, and processing frameworks

such as Apache Giraph3 and GraphX4 have been developed.

A key component of graph data analysis that provides useful in-

sight in a number of different domains is the detection and analysis

of paths with certain characteristics. Path analysis is used on road

networks for navigation, on communication networks for identify-

ing crucial connections in a network, and on social network graphs

to identify relationships and interactions between users. Towards

the development of efficient solutions for computing path analyt-

ics, three important queries that have been studied extensively are

reachability, distance and shortest path queries. These queries are

not only directly useful in a number of different scenarios, e.g.,

route planning, but they can also be used as building blocks for

more complex queries, e.g., k-Nearest Neighbor queries, itinerary
planning queries, etc.

To achieve the scalable computation of reachability, distance

and shortest path queries, various preprocessing-based methods

have been proposed [2, 23, 24, 30]. Such methods precompute in-

formation incurring a relatively high yet one-time cost, and utilize

the precomputed information to process queries efficiently. How-

ever, despite the fact that the aforementioned queries are some

of the most important graph-specific operations, existing graph

DBMS do not provide indexing structures to efficiently process such

queries. While existing preprocessing-based methods support the

computation of queries in main memory, to the best of our knowl-

edge, only one preprocessing-based method has been adapted and

implemented into a graph DBMS [21].

In this paper, we present an implementation of a static graph

index for Neo4j that employs landmark embedding, a cost-efficient

preprocessing scheme for approximate distance computation. We

adapt existing algorithms to enable the index-based processing of

reachability, distance and shortest path queries. We explore differ-

ent strategies for selecting landmarks and different schemes for

storing the precomputed landmark distances. To evaluate the effi-

ciency of our static index structure, we conduct an experimental

evaluation using four real-world network datasets. For each land-

mark selection strategy and each storage scheme, we measure the

1https://neo4j.com
2https://orientdb.com
3https://giraph.apache.org
4https://spark.apache.org/graphx/
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preprocessing cost, the query processing time for reachability, dis-

tance and shortest path queries, and the accuracy of the estimation

for approximate distance queries.

The rest of the paper is organized as follows: Section 2 overviews

the related work. Section 3 introduces basic definitions along with

key notation that is used throughout the paper. Section 4 overviews

the preprocessing required for landmark embedding, different land-

mark selection strategies, and the queries we investigate. In Sec-

tion 5, we elaborate on the technical details of the implementation

of our static, landmark-based index for the Neo4j graph DBMS. In

Section 6, we present the results of our experimental evaluation.

Finally, Section 7 concludes the paper and points to future work.

2 RELATEDWORK

Approximate Distance Queries. Landmark embedding has been

studied extensively in the context of processing approximate dis-

tance queries on various types of graphs, e.g., communication net-

works [25] and social networks [28]. Towards the efficient pro-

cessing of such queries, various approaches have been proposed.

Potamias et al. [18] conduct an extensive analysis to measure the

effect of various landmark selection strategies on approximate dis-

tance computation. Gubichev et al. [11] propose a scheme for both

distance and shortest path estimation that employs landmarks to

construct path-sketches, i.e., structures that maintain the complete

path between every node and the selected landmarks. Tretyakov et

al. [26] propose a storage scheme for landmark distances that op-

timizes the computation of approximate distances and supports

dynamic updates on the graph as well. Qiao et al. [20] propose a

query-dependent local landmark scheme which finds a landmark

close to both the source and the target node, thus improving the dis-

tance estimation accuracy, without having to consider all landmarks.

Qi et al. [19] study the landmark embedding for approximate dis-

tance computation on billion-node graphs. More recently, Bonchi et

al. [1] extended landmark embedding to process approximate dis-

tance queries on edge labeled graphs.

Distance and Shortest Path Queries. The classical solution for

processing distance and shortest path queries is Dijkstra’s algo-

rithm [7]. Despite being an elegant solution, Dijkstra’s algorithm

does not scale for large graphs. Therefore, to achieve scalability,

various preprocessing-based methods for shortest path queries have

been proposed [23]. Towards this end, Goldberg et al. [8] proposed

the ALT algorithm, a popular goal-directed preprocessing-based

method that employs landmark embedding in combination with the

triangle inequality to compute lower bounds. Then anA∗ search [12]

is employed that uses the landmark-based lower bounds as heuris-

tics to prioritize the expansion of nodes that are closer to the target

during the computation of the shortest path. As we employ the

ALT algorithm in this work for processing distance and shortest

path queries, we elaborate on it more in Section 4.

Reachability Queries. More recently, landmark embedding has

been used to process label-constraint reachability queries on labeled

graphs. Valstar et al. [27] construct a landmark-based approach that

precomputes the reachability of each landmark to all nodes of the

graph for multiple label constraints, and conduct a label-respecting

breadth-first search, while exploiting the precomputed information

to terminate the search early whenever possible.

3 PRELIMINARIES

Let G = (N , E) be a directed weighted graph with a set of nodes N
and a set of edges E ⊆ N × N . Each edge (ni ,nj ) ∈ E is assigned a

positive weightw(ni ,nj ), which captures the cost of moving from

node ni to node nj . A (simple) path p(s → t) from a source node s
to a target node t is a connected and cycle-free sequence of nodes

〈s,n1, . . . , t〉. The length �(p) of a path p is the sum of the weights

of all contained edges, i.e.,

�(p) =
∑

∀(ni ,nj )∈p

w(ni ,nj ). (1)

The shortest path psp (s → t) is the path with the lowest length

among all paths that connect nodes s and t . The distance of two
nodes is defined as the length of the shortest path between them,

i.e., d(s, t) = �(psp (s → t)).
As we have already mentioned, Dijkstra’s algorithm is the clas-

sical solution to find the shortest path while A∗ search improves

upon Dijkstra’s algorithm by employing a heuristic function to

prioritize the traversal of nodes that are closer to the target. With

Dijkstra’s algorithm, which traverses the graph expanding nodes

in increasing order of their distances from the source, A∗ search

expands nodes considering both the distance from the source and

their estimated distance to the target. The estimated cost f̂ (n) that
is used to determine the order in which the nodes are expanded is

f̂ (n) = d(s,n) + ĥ(n, t) (2)

and ĥ(n) is an estimate for the distance from n to t . To guarantee

the correctness of the result, ĥ(n, t) must always be a lower bound

for the distance from n to t , i.e., ĥ(n, t) ≤ d(n, t). Note that if ĥ(·, ·)
is always 0, then A∗ search emulates Dijkstra’s algorithm.

4 LANDMARK-BASED QUERY PROCESSING

In this section, we review landmark embedding, a cost-efficient

approach for computing upper and lower bounds, and we show

how to employ landmarks to process approximate distance, dis-

tance, shortest path, and reachability queries. Due to the fact that

landmark-based lower bounds are network-specific, i.e., they carry

some information w.r.t. the structure of the graph, they are expected

to be much tighter than heuristics such as the Euclidean distance.

4.1 Landmark-based Bounds

During the preprocessing phase, a small set of k nodes ofG is chosen

as landmarks L. Then, for each of the selected landmarks l ∈ L we

construct the tree from l to all the other nodes of the graph and

the reverse shortest path tree to l from all the other nodes of the

graph. As a result, all distances d(n, l) from each landmark l ∈ L
to a node n of the graph, and all distances d(l,n) from a node n to

each landmark l ∈ L are precomputed.

Having precomputed all d(n, l) and d(l,n) distances, by using

the triangle inequality, we are able to obtain both upper and lower

bounds for the distance from s to t .
Given a graph G = (N , E), a source node s ∈ N , a target node

t ∈ N and a landmark node l ∈ N , from the triangle inequality we



have:

d(s, t) ≤ d(s, l) + d(l, t) (3)

d(s, l) ≤ d(s, t) + d(t, l) ⇒ d(s, l) − d(t, l) ≤ d(s, t) (4)

d(l, t) ≤ d(l, s) + d(s, t) ⇒ d(l, t) − d(l, s) ≤ d(s, t) (5)

which provide both an upper and lower bound for the distance from

s to t .
Naturally, obtaining tighter bounds, i.e., upper and lower bounds

that are close to the actual distance from s to t , is preferable. Con-
sidering only a single landmark may not result in very tight bounds.

For instance, let a landmark l lie far away from both s and t while
its distance from/to s is almost equal to its distance from/to t . In
such a case, the value of the upper bound is going to be very high,

while the value of the lower bound will be very close to zero. Hence,

instead of choosing a single landmark, it is preferable to choose

a set of landmarks L to maximize the chances of obtaining tight

bounds. Therefore, following from Equation 3, the upper bound for

the distance d(s, t) obtained using a set of landmarks L is

d (s, t) =min∀l ∈L{d(s, l) + d(l, t)} (6)

while, following from Equations 4 and 5, the lower bound for the

distance d(s, t) obtained using a set of landmarks L is

d (s, t) =max∀l ∈L{d(s, l) − d(t, l),d(l, t) − d(l, s)} (7)

Figure 1 illustrates how upper and lower bounds are computed

using a set of landmarks L. Landmark l1 gives the tightest upper
bound of 6, as it lies on the shortest path between s and t , landmark

l3 gives the tightest lower bound of 6, since it lies “behind” s , and
landmark l2 gives a bad upper and lower bound for d(s, t). Land-
mark l4 demonstrates the distances stored for a landmark that is

connected to neither s nor t .

s tl1

l2

l3

l4

3

7

2 3

8

lower upper

l1 0 6

l2 1 15

l3 6 10

l4 0 ∞

Figure 1: Example of upper and lower bound computation

using a set of 4 landmarks (tightest bounds in a frame).

As we observe from our previous example, the position of the

landmarks in relation to the source and the target nodes affects

heavily the quality of the upper and lower bounds we obtain.

4.2 Landmark Selection Strategies

In order to select the set of landmarks L, different strategies have
been proposed [8, 9, 18, 26]. We concentrate on strategies that show

promising results, i.e., low distance approximation error, while

requiring relatively low preprocessing time.

Random. The k landmarks are selected uniformly at random

from the set of all nodes in the graph.

Degree. The k nodes with the highest degree are selected as

landmarks (ties are resolved arbitrarily).

Farthest. The greedy strategy proposed by Goldberg et al. [8]

picks as the next landmark, the most distant node to the previously

selected landmarks. The first landmark is selected at random.

BestCover. Potamias et al. [18] define the coverage of landmarks

w.r.t. a pair of nodes (s, t), i.e., L covers (s, t), if L ∩ psp (s→t) � ∅.

Tretyakov et al. [26] propose a greedy strategy to approximate

the optimal landmarks set w.r.t. coverage, since computing the

optimal set is NP-hard [18]. A setM of node pairs is sampled and the

shortest paths SPM that connect each pair of nodes are computed.

Landmarks are selected in an iterative fashion. At each round, a

node is chosen as the next landmark such that it covers the most

shortest paths in SPM . After the landmark is selected, the set of

covered shortest paths is then removed from SPM . This process

continues until k nodes have been selected as landmarks.

Avoid. The main idea behind this method, proposed by Gold-

berg et al. [9], is to extend a set of landmarks while minimizing

errors in parts of the graph that are not well served. Starting from

a randomly selected landmark l , i.e., L = {l}, we select a node n at

random such that n � L and we compute its shortest path tree. A

score is computed recursively for each node of the tree based on

the estimation errors of the nodes of its subtree. Then, we pick the

subtree of the root which has the highest score, we traverse the

tree expanding each child with the highest score, until a leaf node

is reached. That leaf node is selected as the next landmark. The

process is repeated until k nodes have been selected as landmarks.

4.2.1 Adapting Strategies for Directed Graphs. In a directed graph,

there are potentially two different distances between a pair of

nodes—one in each direction. Some of the landmark selection strate-

gies presented above were either explicitly or implicitly proposed

in the context of undirected graphs, i.e., Degree (w.r.t. in- and out-

degree), Farthest and Avoid. For example, the notion of “farthest

away”, e.g., as optimized by the Farthest and Avoid strategies,

is ambiguous in a directed graph. Hence, some of the selection

strategies have to be adapted for this use case. Since there are two

distances for each pair of node and landmark, the Farthest strat-

egy leaves two choices. If we search for the “nearest landmark”,

the two distances have to be consolidated right away in order to

be comparable. In contrast, if a different landmark is allowed to

be “nearest” in each direction, the consolidation can be postponed

until nodes are compared. The Avoid strategy has the option to

only calculate approximation errors in one direction, i.e., by using

only outgoing edges, relying on a fortunate initialization for the

shortest path tree for each landmark selection. However, this can

lead to a bad sample. For example, in a tree-like graph, shortest

path subtrees often only contain a small portion of all nodes. In-

stead, two spanning trees—one for outgoing and one for incoming

edges—can be combined, again yielding two distances per node.

For both Random and BestCover no changes have to be made,

since neither of them use the notion of distance between nodes. In

both Farthest and Avoid we maintain two distances and take the

average before comparison, in Degree we use the total degree.



4.3 Query Processing

Approximate Distance Queries. Following from Equations 6 and 7,

the result of an approximate distance query from s to t can be any

value in the interval [d (s, t), d (s, t)], including the upper and lower

bounds. For instance, Potamias et al. [18] return the upper bound

as the result for an approximate distance query, while Goldberg et

al. [8] employ the lower bound in their ALT algorithm.

Distance and Shortest Path Queries. To process distance and short-

est path queries we employ the ALT algorithm [8, 9], a goal-directed

method that employs the lower bound of Equation 7 as a heuristic

for A∗ search [12], i.e., ĥ(n, t) = d (n, t). Note that the computation

of a distance query d(s, t) is essentially equivalent to the computa-

tion of the shortest path psp (s→t). In fact, to compute the shortest

path psp (s→t) the ALT algorithm first computes the distance from

s to t and then backtracks its steps to retrieve the list of nodes that

form the shortest path.

Reachability Queries. Existing works for reachability query pro-

cessing using landmarks store connectivity information instead

of distances [27]. To enable the processing of reachability queries

while maintaining the capability to process distance and shortest

path queries, we express the connectivity information using dis-

tance values, i.e., reach(s, t) ⇔ d(s, t) � ∞. Hence, if a node is

not connected to a landmark l and/or vice-versa, then we store

d(s, l) = ∞ and/or d(l, s) = ∞, respectively.

To compute a reachability query reach(s, t), we do not necessar-

ily need to compute the shortest path between nodes s and t . As
long as there exists a path from s to some landmark l ∈ L and a path

from l to t , then reach(s, t) = true. However, if such a landmark

does not exist, that does not necessarily mean that t is not reachable
from s . For the connectivity between s and t w.r.t. a given landmark

l ∈ L we have:

reachl (s, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

false, if (reach(l, s) ∧ ¬reach(l, t))

∨ (reach(t, l) ∧ ¬reach(s, l)),

true, if reach(s, l) ∧ reach(l, t),

unknown, otherwise.

(8)

Following from Equation 8, the result of a reachability query

reach(s, t) can be computed using a set of landmarks L as

reach(s, t) =
∨
l ∈L

reachl (s, t) (9)

Note that only if reach(s, t) = unknown, we need to run a graph

traversal algorithm to determine whether there is a path connecting

s and t . This can be the case, e.g., if the graph is disconnected, and

s and t lie in a weakly-connected component of the graph that has

not been assigned any landmarks.

5 IMPLEMENTATION IN NEO4J

In this section, we detail how the concepts of the previous sec-

tion are transferred to the graph database Neo4j. We discuss the

technical challenges and the decisions we made to implement the

landmark selection strategies of Section 4.2 and the ALT algorithm

along with the required access methods for query processing. Since

we want to eschew Cypher parsing and execution overhead, our

implementation does not use Cypher queries internally. Instead, we

implemented all required operations for constructing the landmark-

based index and for query processing using only direct API calls.

5.1 Index Construction

The index construction consists of three phases: landmark selection,

landmark distance computation, and landmark distance storage.

5.1.1 Landmark Selection. For selecting a set of k landmarks from

the graph we implement the selection strategies of Section 4.2.

For the implementation of the Random strategy we use reservoir

sampling. For the Degree selection strategy, we retrieve the k nodes

with the maximum total degree from the database. The retrieved

nodes are maintained in a max-heap with its capacity limited to k
nodes.

The Farthest strategy tries to choose landmarks which are far

away from previously chosen landmarks. Starting from a randomly

selected landmark, we execute Dijkstra’s algorithm twice from the

selected landmark to all the nodes of the graph, once by traversing

outgoing edges and once by traversing incoming edges in reverse.

We repeat this process until k landmarks are chosen, but instead

of choosing a subsequent landmark randomly, we choose the node

with the largest distance to its nearest previously selected landmark.

The BestCover selection strategy is a greedy strategy optimiz-

ing the coverage criterion for the chosen landmarks. More specifi-

cally, we uniformly sample a large number of node pairs and com-

pute the respective shortest paths. For each node that lies on some

of the computed shortest paths, we count the number of shortest

paths that the node lies on. The node that lies on the most shortest

paths is selected as the first landmark. Then, we update the set of

the computed shortest paths by removing the paths that cross the

node that has been selected as landmark, and we repeat the process

until k landmarks are chosen.

TheAvoid selection strategy augments a set of chosen landmarks

iteratively by minimizing approximation errors in a greedy fashion.

Again, starting from a randomly selected landmark l , we compute

the distances from and to all the nodes of the graph using Dijkstra’s

algorithm. At each iteration, we chose another random node n and

compute the shortest path tree T to all other nodes of the graph.

For each node n′ ∈ N \ {l,n} we retrieve both the exact distance

and the approximate distance from n that is computed using all

previously selected landmarks. Next, for each node n′ we sum the

approximation errors of n′ and all its descendants in T , unless one
of the descendants is a landmark in which case the cumulative

approximation error is set to zero. Then, we obtain the subtree

of T that is rooted at the node with the maximum cumulative

approximation error, and we execute a depth-first search from the

root expanding every time the child with the highest cumulative

approximation error among its siblings, until a leaf node is found;

that leaf node is selected as the next landmark. This process is

repeated until k landmarks are determined.

5.1.2 Landmark Distance Computation. After the selection of the

set of landmarks L, the second phase is the computation of two

sets of landmark distances, i.e., distances from each landmark to

each node, and distances from each node to each landmark. To

compute these distances, we execute Dijkstra’s algorithm twice

from each selected landmark to all the nodes of the graph, once by



traversing outgoing edges and once by traversing incoming edges

in reverse. This results in 2 · |L| executions of Dijkstra’s algorithm.

Note that if the landmark selection strategy we employ requires

the computation of the same distances, i.e., Farthest and Avoid,

then the distances computed during the landmark selection phase

can be retained and do not have to be computed from scratch.

5.1.3 Index Storage Schemes. To store the landmark distances, we

implement three different storage options, each of which uses a

different mechanism provided by the Neo4j platform.

In-Memory Distance Storage. The first storage option we im-

plement involves the creation and maintenance of the distances

between all landmarks and nodes in main memory. We store all the

distances of nodes to and from landmarks in a three-dimensional

array of size |N | · |L| · 2. The advantage of such a storage scheme

is that it eliminates disk access. Hence, lookup operations are ex-

pected to be fast since they take place in main memory. However,

the drawback of this storage scheme is that once the database server

is restarted, landmark distances have to be either recomputed from

scratch, or recovered from external memory, possibly creating a

very long start-up time.

Distances as Node Properties. The second storage scheme stores

landmark distances as node properties. Each node of the graph

maintains two arrays, one for the distances to all landmarks and

one from all landmarks, stored as properties. This storage scheme

promises good data locality, since for each node all distances to

landmarks are stored close by. Neo4j stores these distance arrays

in a single file, i.e., the propertystore.db.arrays file where all

array-valued properties are stored.

Distances as Relationship Properties. The last storage scheme is

motivated by the observation that, conceptually, our precomputed

landmark distances connect landmarks and nodes with each other.

Relationships are a natural way to model those connections and

store their distances. Therefore, we create two relationships be-

tween each landmark and all the other nodes of the graph, and we

store the distances between landmarks and nodes as properties of

the created relationships. Obviously, if a landmark is not reachable

from a given node or vice-versa, then the respective relationship

is not created. In Neo4j, the data of this storage scheme is stored

in two separate files, i.e., the relationshipstore.db file where

all relationships are stored, and the propertystore.db file where

scalar properties are stored.

5.2 Query Processing in Neo4j

Approximate distance computation between pairs of nodes is the

main operation of our index structure and is an essential part of

the computation of distance, shortest path, and reachability queries.

Since each of the three storage schemes described in Section 5.1.3

provides a different access method to distance information, we first

explain how the index is employed to determine the approximate

distances between two nodes for each of these storage schemes.

Afterwards, we show how these approximations are applied for

distance, shortest path, and reachability query processing.

5.2.1 Approximate Distance. To compute the approximate distance

between two nodes s and t , the index employs a different access

method to compute upper and lower bounds based on the storage

scheme that is currently is use.

In-Memory Distance Storage. Conceptually, the in-memory stor-

age scheme performs a join on landmark distances for s and t . In
our implementation, we retrieve landmark distances for nodes s
and t by direct array access on the precomputed three-dimensional

array. To calculate the lower bound d (s, t), we apply Equation 7 on

the retrieved distances, while to calculate the upper bound d (s, t),
we apply Equation 6. Note that since the lookup tables store ∞ for

distances to non-reachable nodes, we have to adapt the equations

to return at minimum 0 to uphold the requirement of non-negative

estimations.

Distances as Node Properties. When storing landmark distances

as node properties, calculating the approximate distance involves

the retrieval of distances to/from landmarks for nodes s and t from
their respective node properties. Then, similar to the in-memory

storage scheme, we use Equation 7 and Equation 6 to calculate the

lower and upper bound, respectively. Again, we have to account

for infinite distances for unreachable nodes.

Distances as Relationship Properties. When landmark distances

are stored as relationship properties on directed edges between

landmarks and nodes, the approximate distance between two nodes

s and t can be concisely expressed as a Cypher query. As an example,

let L be the label for a landmark, L_REL the type for precomputed

relationships between landmarks and nodes, and dist the weight

property on these relationships. The following query computes

Equation 7 and returns the lower bound for the distance between

two nodes s and t using all landmarks in the graph:

MATCH (s)-[rsL:L_REL]->(l:L), (l:L)-[rLs:L_REL]->(s),

(t)-[rtL:L_REL]->(l:L), (l:L)-[rLt:L_REL]->(t)

WHERE s.name = 's' AND t.name = 't'

UNWIND [rsL.dist - rtL.dist, rLt.dist - rLs.dist] as est

RETURN max(est) as tightestLower

The upper bound is computed in a similar fashion by switching

the UNWIND and RETURN expressions to match Equation 6. We

implement this Cypher query in Java as a hash join to provide an

efficient implementation and eschew query execution overhead. In

the build phase of the hash join, landmark distances are retrieved

from incoming and outgoing landmark relationships of s and l . Then
in the probe phase, landmark distances for incoming and outgoing

landmark relationships between l and t are used to calculate the

lower or the upper bound.

5.2.2 Distance and Shortest Paths. To process distance and shortest

path queries, we employ the ALT algorithm [8]. We implemented

an A∗ search in Neo4j using direct API calls and abstract over the

heuristic function such that we are able to plug in estimators for

our different storage schemes easily. As mentioned before, for the

purposes of this work we do not differentiate between shortest path

and distance queries, since as soon as a distance is computed, the

shortest path can be reconstructed by backtracking or by storing it

along the way. In our implementation, we store the shortest path

in each intermediate result for low latency answers. The shortest

path is computed using our A∗ search along with the lower bounds

obtained using our our index as the heuristic.



Table 1: Datasets used in the experiments. For the non-road datasets, we retained only the largest (strongly) connected com-

ponent, indicated by (S)CC.

Dataset Direction Edge Weights Component Network Type |N | |E | Diameter DB Size

DBLP [29] Undirected None CC Social 317K 1M 21 39 MiB

Web-Google [16] Directed None SCC Web 435K 3.4M 21 118 MiB

CAL [6] Directed Travel Distance All Road 1.9M 4.7M 2.3 · 103 360 MiB

Wiki-Talk [15] Directed None SCC Communication 111K 1.4M 9 50 MiB
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Figure 2: Degree and distance distribution in evaluation datasets. Distances are sampled from 10000 random node pairs.

5.2.3 Reachability. Lastly, to process a reachability query for two

nodes s and t , approximate distances for s and t to and from land-

marks are retrieved from the index. Based on Equation 8, the answer

is computed over all landmarks. If after applying this calculation

for each landmark the answer is “unknown”, a breadth-first search

is executed to determine whether there exists a path from s to t .

6 EXPERIMENTAL EVALUATION

In this section, we present the result of our experimental evaluation

where we measure the index construction time, the space over-

head, and the running time for processing shortest path queries

for each of the storage schemes presented in Section 5.1.3. We

also report the approximation error that each landmark selection

strategy yields on approximate distance queries. Our tests run on

a server-grade machine with two AMD EPYC 7351 16-Core pro-

cessors, 512GiB 2666MHz DDR4 memory, Intel 660P NVMe SSD,

running GNU/Linux 4.15.0-46, OpenJDK 11, and Neo4j 3.5.0.

6.1 Datasets

We run the experiments using a diverse set of real-world datasets.

DBLP This dataset represents a co-authorship network, ex-

tracted from DBLP. An undirected edge exists between two

authors if they published at least one paper together.

Web-Google A hyperlink network provided by Google, in

which nodes represent websites and directed edges hyper-

links from one website to another.

CAL The directed road network of California and Nevada.

Edges are weighted by travel distance.

Wiki-Talk The nodes in this dataset represent Wikipedia

users. A directed edge is present if a user edited another

user’s talk page at least once.

Table 1 lists the structural characteristics of the networks we use,

while Figure 2 illustrates the degree and distance distributions of

each network. Note that, if the network is undirected, we only store

one edge, since Neo4j’s traversal incurs no performance cost when

traversing edges in reverse direction.

6.2 Indexing Cost

The first set of experimentsmeasure the index construction time and

the space overhead. Recall that the index construction consists of

three phases: landmark selection, landmark distance computation,

and landmark distance storage. As the time required to compute

landmark distances is invariant over the storage scheme and de-

pends solely on the number of landmarks, i.e., requires 2 · |L| runs of
Dijkstra’s algorithm, we report the time and storage requirements

for the first and the last phase only.

Landmark Selection Time. Figure 3 shows the landmark selec-

tion time for each strategy on all datasets for varying number of

landmarks. We observe in all four datasets that the selection time

using the Random and BestCover selection strategies is almost

constant with increasing number of landmarks, while for the De-

gree selection strategy we observe only a slight increase with the

number of landmarks. That is to be expected as the Random and

Degree strategies do not execute any graph traversals to deter-

mine the landmarks, while the BestCover strategies executes a

constant number of graph traversals, regardless of the number of

landmarks. In contrast, the selection time using the Farthest and

Avoid selection strategies increases with the number of landmarks,

as both strategies need to performs a number of graph traversals

proportional to the number of landmarks.
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Figure 3: Preprocessing time for landmark selection.

Landmark Distance Storage. Figure 4 reports on the storage time

for the two disk-based storage schemes. We observe that the stor-

age time required to store landmark distances as node properties

increases heavily with the number of landmarks, while the storage

time required to store landmark distances as relationship properties

increases linearly. This difference in behavior is due to the fact that

for updating distances stored as node properties we iterate repeat-

edly over all the nodes of the graph. For each node we load the

entire array of landmark distances from the associated storage file

of Neo4j, update the array by setting the new distance, and write the

table back to disk. On the contrary, for updating distances stored

as relationship properties, we simply append the new relationship

and relationship property to the associated storage files of Neo4j.

Figure 5 reports on the storage overhead of our two disk-based

storage schemes. We observe that the storage overhead incurred by

storing landmark distances as relationship properties is consistently

much more that the storage overhead incurred by storing landmark

distances as node properties/arrays. For storing distances as node

properties, we simply add more information, i.e., the array that

stores the landmark distances, on the already allocated space by

Neo4j for each node. Hence, the storage overhead is low. On the

contrary, to store distances as relationship properties, we need to

create new relationships and properties. As a result, Neo4j needs

to store additional information w.r.t. the new relationship, thus

requiring significantly more space.

6.3 Distance Approximation Error

Table 2 reports the average distance approximation error (%) for

the lower bound, i.e., avд(| d −d |/d), over 1,000 random node pairs

for each implemented landmark selection strategy using 16 and

128 landmarks. For the Random strategy, we report the median
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Figure 4: Preprocessing time for landmark distance storage.
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Figure 5: Landmark distance storage overhead.

of 9 runs to mitigate the effect of bad initialization. For the CAL

road network graph, we observe that the approximation error of

all landmark selection strategies is very low, i.e., varies between

1.5% and 6.5%. For both 16 and 128 landmarks, the Avoid strategy

demonstrates the lowest distance approximation error. For all other



Table 2: Percentage of average approximation error for the

lower bound using different selection strategies (abbrevi-

ated by their initials).

Dataset |L| R D F B A

DBLP 16 56.65 58.03 55.82 56.69 55.59

Web-Google 16 62.44 63.49 63.49 62.11 61.18

CAL 16 4.37 6.36 3.37 5.86 2.67

Wiki-Talk 16 67.20 66.81 67.5 67.92 66.91

DBLP 128 40.16 39.93 44.38 41.41 40.03

Web-Google 128 44.23 43.39 46.54 44.67 41.53

CAL 128 1.52 3.49 1.54 1.70 1.26

Wiki-Talk 128 56.73 56.49 56.82 57.26 55.53

datasets, all strategies demonstrate a very high distance approxima-

tion error varying between 40% and 70%, which confirms the results

found in previous work [1, 20]. In contrast to the road network, the

diameter of all other networks is much smaller, thus the distances

are very short as well. Hence, even a small absolute error in the dis-

tance approximation results in a large approximation error relative

to the exact distance. This explains the discrepancy between the

distance approximation error on CAL and the non road network

datasets. In all cases, the Avoid selection strategy demonstrates the

lowest average distance approximation error, with the exception of

the DBLP network for 128 landmarks where the Degree selection

strategy is slightly better.

6.4 Shortest Path Query Processing

Figure 6 shows ALT’s speedup over Dijkstra’s algorithm over 500

randomly chosen queries using our three storage schemes, varying

the number of landmarks. The execution time of Dijkstra’s algo-

rithm is depicted as a horizontal line at 1.0. In all four networks,

the speedup using the in-memory scheme is the largest. As the

in-memory storage scheme requires no disk access to determine

lower bounds, the computation cost is dominated by the disk ac-

cesses required to traverse the graph; this cost is the same for all

storage schemes. The scheme that stores distances as node proper-

ties achieves less speedup than the in-memory storage, but greater

speedup than the scheme that stores distances as relationship prop-

erties. By storing distances as node properties, for every distance

lookup we need to access the disk once to retrieve the array that

stores the landmark distances. The scheme that stores distances as

relationship properties achieves no speedup. In fact, this scheme

makes ALT slower than Dijkstra’s algorithm. Since landmark dis-

tances are stored in different relationships, each distance lookup

needs to access the disk several times to retrieve these relationships

and the respective properties where distances are stored.

7 CONCLUSION AND FUTUREWORK

In this paper, we presented an implementation of a graph index that

employs landmark embedding in Neo4j. We implemented five land-

mark selection strategies and three different storage schemes using

the primitives and the core API provided by Neo4j. We presented

access methods to enable the processing of approximate distance,
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Figure 6: Speedup of ALT versus Dijkstra’s algorithm for

each storage scheme.

reachability, distance, and shortest path queries using our index.

In our experimental evaluation, we used four diverse real-world

datasets to evaluate the performance of our index implementation

w.r.t. approximation errors, preprocessing cost, and shortest path

query processing. We also presented experiments to demonstrate

how each storage scheme affects each implemented access method.

Apart from validating existing work, our results show that storing

landmark distances as node property arrays is much more efficient

than storing them as relationship properties. Furthermore, our re-

sults indicate that the accuracy of the distance estimation is affected

by the type of the input network.

In the future, we plan to investigate how to balance between

in-memory and disk-based storage for our index structure. Further-

more, following previous work of our group on query processing on

large graphs [3–5, 10, 14, 22] and Cypher query optimization [13],

we plan to investigate which characteristics of a given graph affect

the performance of our index, and how our index should be con-

figured based on these characteristics. We also plan to extend our

landmark-based index to support dynamic updates on the under-

lying graph and query processing under label constraints, a key

functionality of modern graph DBMS. Our long term goal is to

implement and evaluate a variety of indexing structures on graph

DBMS, and then investigate formal methods to analyze an input

graph and select the optimal index structure and configuration

automatically.
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