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The problem of pricing the cloud has attracted much recent attention due to the widespread use of cloud com-

puting and cloud services. From a theoretical perspective, several mechanisms that provide strong efficiency

or fairness guarantees and desirable incentive properties have been designed. However, these mechanisms

often rely on a rigid model, with several parameters needing to be precisely known for the guarantees to hold.

In this article, we consider a stochastic model and show that it is possible to obtain good welfare and revenue

guarantees with simple mechanisms that do not make use of the information on some of these parameters. In

particular, we prove that a mechanism that sets the same price per timestep for jobs of any length achieves at

least 50% of the welfare and revenue obtained by a mechanism that can set different prices for jobs of different

lengths, and the ratio can be improved if we have more specific knowledge of some parameters. Similarly,

a mechanism that sets the same price for all servers even though the servers may receive different kinds of

jobs can provide a reasonable welfare and revenue approximation compared to a mechanism that is allowed

to set different prices for different servers.
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1 INTRODUCTION

With cloud computing generating billions of dollars per year and forming a significant portion
of the revenue of large software companies (Columbus 2016), the problem of how to price cloud
resources and services is of great importance. On the one hand, for a pricing scheme to be used, it
is necessary that the scheme provide strong welfare and revenue guarantees. On the other hand,
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Fig. 1. Pricing scheme for virtual machines on Microsoft Azure (Azure 2016).

it is also often desirable that the scheme be simple. We combine the two objectives in this article
and show that simple pricing schemes perform almost as well as more complex ones with respect
to welfare and revenue guarantees. In particular, consider the pricing scheme for virtual machines
on Microsoft Azure shown in Figure 1. Once the user chooses the basic parameters such as region,
type, and instance size, the price is calculated by simply multiplying an hourly base price by the
number of virtual machines and number of hours desired. The question that we study can be
phrased in this setting as follows: How much more welfare or revenue could be created if instead of
this simple multiplication formula, a complex table specifying the price for each number of hours
were to be used? Our main result is that the former offers at worst a two approximation to the
latter, both in terms of welfare and revenue. Similarly, we demonstrate that setting a single price
for a group of servers, even though the servers may receive different kinds of jobs, can provide a
reasonable welfare and revenue approximation compared to setting different prices for different
servers.

In much of the prior work in this space, which focuses more explicitly on scheduling, prices
depend in a complex way on a number of parameters (typically including job length, arrival time,
deadline, and value) and the current state of the system (Azar et al. 2015; Dehghani et al. 2016;
Jain et al. 2011, 2012; Lucier et al. 2013). A weakness of such schemes is that they require these
parameters to be known up front for the desirable properties of the mechanisms, such as their ap-
proximation ratios, to hold. The availability of such information is not always realistic in practice.
Even when it is in principle possible to provide this information, there is a cost to participants in
both time and resources to figure it out. In this work, we show that good results are possible with
no up-front information.

For our initial results, we assume that there is a single server that receives jobs of various lengths
whose value per timestep is drawn from the same probability distribution regardless of length.
We compare the welfare and revenue that can be obtained by setting a price per timestep that is
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Fig. 2. Pricing scheme for defined duration spot instances on Amazon (Amazon 2017).

independent of the job length against the corresponding objective obtained by setting an individual
price for each job length. When we are allowed the freedom of setting different prices for different
job lengths, intuitively we want to set a higher price per timestep for longer jobs as a premium
for reserving the server for a longer period of time.1 However, as we show, we do not lose more
than 50% of the welfare or revenue (or any convex combination of the two) if we are only allowed
to set one price. We would like to emphasize that this is a worst-case bound over a wide range
of parameters, including the number of job lengths, the distribution over job lengths, and the
distribution over job values. Indeed, as we show, we can obtain improved bounds if we know
the value of some of these parameters. The price that we use in the single-price setting can be
chosen from one of the prices used in the multi-price setting, meaning that we do not have to
calculate a price from scratch. Moreover, all of our approximation guarantees hold generally for
arbitrary prices, meaning that for any prices that we may set in a multi-price setting (i.e., not
necessarily optimal ones), we can obtain an approximation of the welfare or revenue by setting
one of those prices alone. Finally, we emphasize that these results put no restrictions on the form
of the distribution; it can be discrete, continuous, or mixed. The only substantive constraint is that
jobs of all lengths share the same distribution of value per timestep. However, in an extension, we
show that a version of our results continues to hold even if this constraint is relaxed.

We then generalize our results to a setting where there are multiple servers, each of which
receives jobs of various lengths. The distribution over job lengths can be different for different
servers. This is conceivable, for instance, if the servers are in various geographic locations or
are utilized by various groups of users. We compare the welfare and revenue obtained by a simple
pricing scheme that sets the same price for all servers against the corresponding objective achieved
by a scheme that can set a different (single) price for each server. Roughly speaking, we show
that as long as the parameters are not too extreme (e.g., the number of servers or the job lengths
are not too large), then we do not lose too much of the welfare or revenue by setting a single
price. Combining this with our initial results, we obtain an approximation of a very restricted

1Amazon recently started offering a product called defined duration spot instances, where users can specify a duration in

hourly increments up to 6 hours. Indeed, the price per hour of this product increases as the number of hours increases. (See

Figure 2).
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pricing scheme where we must set the same price for all servers and all job lengths against one
where we can set an individual price for each job length of each server. These results require an
assumption that all servers have the same probability of not receiving a job at a timestep. Using
similar techniques, we also obtain approximation bounds when this assumption does not hold but
there is only one job length across all servers.

1.1 Related Work

Much recent work has focused on designing online scheduling mechanisms with good welfare
guarantees and incentive properties. Jain et al. (2011) exhibited a truthful mechanism for batch
jobs on cloud systems where jobs are allocated non-preemptively, and the same group of authors
came up with mechanisms for deadline-sensitive jobs in large computing clusters (Jain et al. 2012).
Lucier et al. (2013) also considered the problem of scheduling deadline-sensitive jobs; they circum-
vented known lower bounds by assuming that jobs could be delayed and still finish by their dead-
line. Zhang et al. (2013) developed a framework for truthful online cloud auctions where users with
heterogeneous demands can come and leave on the fly. More recently, Azar et al. (2015) constructed
a truthful mechanism that achieves a constant competitive ratio given that slackness is allowed,
whereas Dehghani et al. (2016) assumed a stochastic model and developed a truthful mechanism
that approximates the expected maximum welfare up to a constant factor. Wang et al. (2015) de-
signed mechanisms for selling reserved instances where users are allowed to reserve resources of
any length and from any time point in the future. Their mechanisms determine the acceptance
and payment immediately when the job arrives, and achieve a competitive ratio that is optimal to
within a constant factor with regard to welfare.

Other work in this space has dealt with comparing pricing mechanisms such as the on-demand
market and the spot market (Abhishek et al. 2012; Dierks and Seuken 2016; Hoy et al. 2016), achiev-
ing fairness in job allocation (Friedman et al. 2014), and studying models of real-time pricing with
budget constraints (Friedman et al. 2015). Kash and Key (2016) gave a survey of the current state
of research in economics and computer science with respect to cloud pricing.

From a technical perspective, our work bears a resemblance to the work of Dütting et al. (2018)
on discriminatory and anonymous posted pricing and of Disser et al. (2016) on hiring secretaries.
In particular, Dütting et al. (2018) considered the problem of selling homogeneous items to buy-
ers who arrive sequentially with values drawn independently from identical distributions. They
showed that by posting discriminatory prices, one can obtain at most 2 − k/n times as much rev-
enue as that obtained by posting the same anonymous price, wheren is the number of buyers and k
the number of items. As is the case in our work, their anonymous price can always be chosen from
one of the discriminatory prices, and their proof of tightness is also based on a discrete bimodal
distribution. Interestingly, their proof of the 2 − k/n bound relies on first comparing the revenue
from discriminatory prices to that from a lottery over two anonymous prices, then estimating this
latter revenue in relation to setting a single anonymous price. Unlike in our work, however, their
techniques only yield guarantees for revenue and not welfare. Disser et al. (2016) provided a com-
petitive online algorithm for a variant of the stochastic secretary problem, where applicants need
to be hired over time. Upon the arrival of each applicant, the cost per timestep of the applicant is
revealed, and we have to decide on the duration of the employment, starting immediately. Once
an applicant is accepted, we cannot terminate the contract until the duration of the job is over.

Our work falls into the broader area of the design and analysis of simple mechanisms, particu-
larly posted price mechanisms. One of the motivations for studying simple mechanisms is that in
practice, designers are often willing to partially give up optimality in return for simplicity. Mech-
anisms that simply post prices on goods have received significant attention because they reflect
perhaps the most common way of selling goods in the real world, and moreover they leave no room
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for strategizing, making them easy for agents to participate in. A long line of work has investigated
how well such mechanisms can approximate optimal mechanisms with respect to various objec-
tives, including welfare (Cohen-Addad et al. 2016; Ezra et al. 2018; Feldman et al. 2015), revenue
(Babaioff et al. 2011; Blumrosen and Holenstein 2008; Chawla et al. 2010), and social costs (Cohen
et al. 2015). In Section 3.4, we show that techniques from this literature can recover some of our
results under relaxed assumptions.

2 PRELIMINARIES

We consider a system with a number of servers and discrete timesteps. Each job takes an integer
number of timesteps to complete and yields a value upon completion. The value per timestep of a
job is drawn from a distribution that is independent of the length of the job. Let F be the cumulative
distribution function of this distribution and f the probability density function with respect to a
base measure μ, and define �(x ) = x f (x ).2 We do not make any assumption on our distribution;
in particular, it need not be continuous or discrete, which is why we allow flexibility in terms of
the base measure.

When a job request is made for a job to be served by a server, there is a price p per timestep
that may depend on the job length and/or the server. If the value per timestep of the job is at least
p, the server accepts and executes the job to completion. Otherwise, the server rejects the job.
The objectives in our model are the steady-state welfare and revenue for each pricing scheme. In
particular, we will be interested in the expected welfare and revenue per timestep, given that the
job values are drawn from a probability distribution. This can also be thought of as the average
welfare and revenue per timestep that result from a pricing scheme over a long period of time.

In Section 3, we assume that there is a single server. Each timestep, either zero or one job appears.
A job with length ai appears with probability 0 < ri ≤ 1, where

∑n
i=1 ri ≤ 1 and n denotes the

number of job lengths. We are allowed to set a price pi for jobs of length ai . If a server accepts a
job of length ai , it is busy and cannot accept other jobs for ai timesteps, including the current one.
We compare the setting where we are forced to set the same price per timestep p for all job lengths
against the setting where we can set a different price per timestep pi for each job length ai . Note
that if we could set different prices for different job lengths, then to optimize welfare or revenue,
intuitively we would set a higher price per timestep for longer jobs as a premium for reserving
the server for a longer period. Put differently, once we accept a longer job, we are stuck with it
for a longer period, during which we miss the opportunity to accept other jobs. Consequently, we
should set a higher standard for accepting longer jobs. (See also Footnote 1.)

In Section 4, we assume that there are multiple servers. Each timestep, either zero or one job
appears for each server 1 ≤ j ≤ n. For server j, a job with length aji appears with probability
0 < r ji ≤ 1 for 1 ≤ i ≤ nj , where nj denotes the number of job lengths for server j. We do not
assume that the set of job lengths or the number of job lengths is identical across servers. However,
we assume that the probability of no job appearing at a timestep is the same for all servers (i.e.,∑nj

i=1 r ji is constant for any j). In Section 4.1, we assume that we can set one price per server, and
we compare the setting where we are forced to set the same price per timestep p for all servers
against that where we can set a different price per timestep pj for each server j. In Section 4.2,
we assume that we can set a different price per timestep pji for each server j and each of its job
lengths aji , and we compare that setting against the one where we are forced to set the same price
per timestep p for all servers and all job lengths.

2For technical reasons, we will deviate slightly from the usual notion of cumulative distribution function. In particular, if

y is a random variable drawn from a distribution, then we define its cumulative distribution function F (x ) as Pr[y < x ]

instead of the usual Pr[y ≤ x ]. This will only be important when we deal with discrete distributions.
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3 ONE SERVER

In this section, we assume that there is a single server, which receives jobs of various lengths.
After presenting an introductory example in Section 3.1, we consider the general setting with
an arbitrary number of job lengths in Section 3.2. In this setting, we show a 50% approximation
for both welfare and revenue (or any convex combination of the two) of setting one price for all
job lengths compared to setting an individual price for each job length, for any realization of the
parameters. Moreover, we show in Section 3.3 that our techniques provide a template for deriving
tighter bounds if we have more specific information on the parameters. In particular, when there
are two job lengths, we show for each setting of the parameters a tight approximation bound for
welfare and revenue. Our approximation results hold for arbitrary (i.e., not necessarily optimal)
pricing schemes, and the price we use in the single-price setting can be drawn from one of the
prices in the multi-price setting. Finally, in Section 3.4, we consider an extension that does not
assume independence between the job length and the value per timestep.

3.1 Warm-Up: Uniform Distribution

As a warm-up example, assume that at any timestep a job with length 1 or 2 appears with proba-
bility 50% each. The value per timestep of a job is drawn from the uniform distribution over [0, 1].
Suppose that we set a price per timestep p1 for jobs of length 1 and p2 for jobs of length 2.

Consider an arbitrary timestep when the server is free. If the job drawn at that timestep has
length 1, then with probability p1 it has value below p1 and is rejected. In this case, the server
passes one timestep without a job. Otherwise, the job has value at least p1 and is accepted. In this

case, the expected welfare from executing the job is
1+p1

2 . Similarly, if the job has length 2, then
with probability p2 it is rejected, and with probability 1 − p2 it is accepted and yields expected

welfare 2 · 1+p2

2 = 1 + p2 over two timesteps. Letting cw denote the expected welfare per timestep
assuming that the server is free at the current timestep, we have

0 =
1

2

(
−p1cw + (1 − p1)

( 1 + p1

2
− cw

))
+

1

2
(−p2cw + (1 − p2) (1 + p2 − 2cw )).

The two terms on the right-hand side correspond to jobs of length 1 and 2, which are drawn with
probability 1/2 each. In the case that a job of length 2 is drawn, with probability p2 it is rejected
and the server is idle for one timestep, during which it would otherwise have produced expected
welfare cw . With the remaining probability 1 − p2 the job is accepted, yielding expected welfare 1 +
p2 over two timesteps, during which the server would otherwise have produced expected welfare
2cw . The derivation for the term corresponding to jobs of length 1 is similar. By equating the
expected welfare with the variable denoting this quantity, we arrive at the preceding equation.

Solving for cw , we get

cw (p1,p2) =

(1−p1 )(1+p1 )
2 + (1 − p2) (1 + p2)

3 − p2
.

To maximize cw (p1,p2) over all values of p1,p2, we should set p1 = 0. (Indeed, to maximize wel-
fare, we should always accept jobs of length 1 because they do not interfere with future jobs.) Then

the value of p2 that maximizes cw (p1,p2) is p2 = 3 −
√

15
2 ≈ 0.261, yielding cw (p1,p2) = 6 −

√
30 ≈

0.522.
However, if we set the same price p = p1 = p2 for jobs with different lengths, our welfare per

timestep becomes

cw (p) =

(1−p )(1+p )
2 + (1 − p) (1 + p)

3 − p =
3(1 − p) (1 + p)

2(3 − p)
.
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This is maximized at p = 3 − 2
√

2 ≈ 0.172, yielding cw (p) = 9 − 6
√

2 ≈ 0.515. Moreover, if we use
either of the prices in the optimal price combination for the two-price setting as the single price,

we get cw (0) = 0.5 and cw (3 −
√

15
2 ) ≈ 0.510.

Next, we repeat the same exercise for revenue. We can derive the equations in the same way,
with the only difference being that the revenue from accepting a job at price p is simply p. Letting
cr denote the revenue per timestep, we have

0 =
1

2
(−p1cr + (1 − p1) (p1 − cr )) +

1

2
(−p2cr + (1 − p2) (2p2 − 2cr )) .

Solving for cr , we get

cr (p1,p2) =
(1 − p1)p1 + 2(1 − p2)p2

3 − p2
.

To maximize cr over all values ofp1,p2, we should setp1 = 0.5. (Indeed, to maximize revenue, we
should always set the monopoly price for jobs of length 1 because they do not interfere with future

jobs.) Then the value of p2 that maximizes cr (p1,p2) is p2 = 3 −
√

47
8 ≈ 0.576, yielding cr (p1,p2) =

10 −
√

94 ≈ 0.304.
However, if we set the same price p = p1 = p2 for jobs with different lengths, our revenue per

timestep becomes

cr (p) =
(1 − p)p + 2(1 − p)p

3 − p =
3(1 − p)p

3 − p .

This is maximized at p = 3 −
√

6 ≈ 0.551, yielding cr (p) = 15 − 6
√

6 ≈ 0.303. Moreover, if we use
either of the prices in the optimal price combination for the two-price setting as the single price,

we get cr (0.5) = 0.3 and cr (3 −
√

47
8 ) ≈ 0.302.

Observe that for both welfare and revenue, the maximum in the one-price setting is not far from
that in the two-price setting. In addition, in both cases, at least one of the two prices in the optimal
price combination for the two-price setting, when used alone as a single price, performs almost as
well as the maximum in the two-price setting. In the remainder of Section 3, we will show that this
is not a coincidence but rather a phenomenon that occurs for any set of job lengths, any probability
distribution over job lengths, and any probability distribution over job values.

3.2 General 50% Approximation

In this section, we consider a general setting with an arbitrary number of job lengths. We show
that even at this level of generality, it is always possible to obtain 50% of the welfare and revenue
of setting an individual price for each job length by setting just one price. Although the optimal
price in the one-price setting might be different from any of the prices in the multi-price setting,
we show that at least one of the prices in the latter setting can be used alone to achieve the 50%
guarantee.

Assume that there are jobs of lengths a1 ≤ a2 ≤ · · · ≤ an that appear at each timestep with prob-
ability r1, r2, . . . , rn , respectively. Suppose that we set a price per timestep pi for jobs of length ai .
Recall that the value per timestep of a job is drawn from a distribution with cumulative distribution
function F and probability density function f .

The following lemma gives the formulas for the expected welfare and revenue per timestep.
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Lemma 3.1. Let S = a1r1 + · · · + anrn and R = r1 + · · · + rn , and let cw and cr denote the expected

welfare and revenue per timestep, respectively. We have

cw (p1,p2, . . . ,pn ) =
a1r1

∫
x ≥p1
�dμ + · · · + anrn

∫
x ≥pn

�dμ

S − ((a1 − 1)r1F (p1) + · · · + (an − 1)rnF (pn )) + (1 − R)
(1)

and

cr (p1,p2 . . . ,pn ) =
a1r1 (1 − F (p1))p1 + · · · + anrn (1 − F (pn ))pn

S − ((a1 − 1)r1F (p1) + · · · + (an − 1)rnF (pn )) + (1 − R)
. (2)

In particular, if p1 = · · · = pn = p, then

cw (p) =
S
∫

x ≥p
�dμ

S − (S − R)F (p) + (1 − R)

and

cr (p) =
S (1 − F (p))p

S − (S − R)F (p) + (1 − R)
.

Proof. We represent the states of the server by a Markov chain. The states are categorized into
typesT0,T1, . . . ,Tn . TypeT0 consists of only one state, which is an idle state corresponding to when
the server is free. For 1 ≤ i ≤ n, type Ti consists of ai − 1 states. When the server accepts a job of
length ai , it deterministically steps through each of the ai − 1 states of type Ti before returning
to the idle state. (If ai = 1, there is no state of type Ti ; when the server accepts a job of length ai ,
it simply transitions from the idle state back to itself.) The rewards, which can be either welfare
or revenue, are collected at each transition. If the threshold for accepting a job of a certain length
is p, then the revenue collected for each transition with that job length is always p, whereas the

expected welfare gained during the transition is given by

∫
x≥p

�d μ

1−F (p ) .

By virtue of local balance, for each typeTi with ai � 1, the proportion of time spent in each of the
states of that type is the same for all ai − 1 states. Denote this proportion by qi . From the idle state,
the probability of transitioning to the first state of type Ti is ri (1 − F (pi )), so qi = ri (1 − F (pi ))q0.
Since the probabilities across all states sum to 1, we have

q0 +

n∑
i=1

(ai − 1)ri (1 − F (pi ))q0 = 1.

This yields

q0 =
1

1 +
∑n

i=1 (ai − 1)ri (1 − F (pi ))
=

1

S −∑n
i=1 (ai − 1)riF (pi ) + (1 − R)

.

We are now in a position to compute the expected welfare and revenue per timestep. For states of
type Ti , the expected revenue collected in the transitions through these states is qipiai = q0ri (1 −
F (pi ))piai . The expected revenue per timestep is therefore

n∑
i=1

q0ri (1 − F (pi ))piai =

∑n
i=1 airi (1 − F (pi ))pi

S −∑n
i=1 (ai − 1)riF (pi ) + (1 − R)

.

Similarly, for states of typeTi , the expected revenue collected in the transitions through these states

is qi ·
∫

x≥pi
�d μ

1−F (pi ) · ai = q0ri (1 − F (pi )) ·
∫

x≥pi
�d μ

1−F (pi ) · ai . The expected welfare per timestep is therefore

n∑
i=1

q0ri (1 − F (pi )) ·

∫
x ≥pi
�dμ

1 − F (pi )
· ai =

∑n
i=1 airi

∫
x ≥pi
�dμ

S −∑n
i=1 (ai − 1)riF (pi ) + (1 − R)

,

as claimed. �
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With the formulas for welfare and revenue in hand, we are ready to show the main result of this
section, which exhibits that the worst-case approximation ratio for welfare or revenue between the
single-price setting and the multi-price setting is at least 50%. As we will see later in Section 3.3,
this bound is in fact tight, and it remains tight even when there are only two job lengths. Note
that the bound holds for any number of job lengths, any distribution over job lengths, and any
distribution over job values.

Theorem 3.2. For any prices p1,p2, . . . ,pn that we set in the multi-price setting, there exists a price

pi such that we can achieve a welfare (respectively, revenue, or any convex combination of welfare and

revenue) approximation of at least 50% in the one-price setting by using pi as the single price.

To prove Theorem 3.2, we work with the ratio

max(cw (p1), . . . , cw (pn ))

cw (p1, . . . ,pn )

and show that it is at least 1/2 for any p1, . . . ,pn (and similarly for revenue or any convex combi-
nation of welfare and revenue). Using the formula (1) for cw given in Lemma 3.1, we can write the

ratio in terms of the variables Ai =

∫
x≥pi

�d μ∫
x≥p1

�d μ
and Bi = F (pi ) for 1 ≤ i ≤ n. For any fixed values of

Bi , we then deduce the values of Ai that minimize the ratio of interest. Finally, we show that the
remaining expression is always at least 1/2 no matter the values of Bi .

Proof. We first consider welfare. We wish to show that setting one of the prices pi alone
achieves an approximation of 1/2 of setting all n prices. In other words,

max(cw (p1), . . . , cw (pn )) ≥ 1

2
· cw (p1, . . . ,pn ).

To establish this inequality, we will work with the ratio

max(cw (p1), . . . , cw (pn ))

cw (p1, . . . ,pn )

and show that its minimum is at least 1/2.

Writing Ai =

∫
x≥pi

�d μ∫
x≥p1

�d μ
(in particular, A1 = 1) and Bi = F (pi ) for 1 ≤ i ≤ n, the ratio to minimize

becomes

д(A1, . . . ,An ,B1, . . . ,Bn ) :=
n

max
i=1

(
SAi

S − (S − R)Bi + (1 − R)

)

· S − ((a1 − 1)r1B1 + · · · + (an − 1)rnBn ) + (1 − R)

a1r1A1 + · · · + anrnAn
.

By dividing into cases according to the term that the max function outputs, we can deduce that
we only need to minimize the function

h(B1, . . . ,Bn ) :=
S2 − ((a1 − 1)r1B1 + · · · + (an − 1)rnBn )S + S (1 − R)

S2 − (a1r1B1 + · · · + anrnBn ) (S − R) + S (1 − R)
;

the details of this casework can be found in Appendix A. In particular, we want to show that
h(B1, . . . ,Bn ) ≥ 1

2 for any choice of B1, . . . ,Bn . This is equivalent to

S2 + S (1 − R) ≥ (2S (a1 − 1) − a1 (S − R))r1B1 + · · · + (2S (an − 1) − an (S − R))rnBn

or

S2 + S (1 − R) ≥ ((a1 − 2)S + a1R)r1B1 + · · · + ((an − 2)S + anR)rnBn .
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We consider two cases:

(1) a1 ≥ 2 (and hence a2, . . . ,an ≥ 2). All coefficients of riBi on the right-hand side are posi-
tive, so we only need to verify the inequality for B1 = · · · = Bn = 1. We have

h(B1 = 1, . . . ,Bn = 1) =
S2 − ((a1 − 1)r1 + · · · + (an − 1)rn )S + S (1 − R)

S2 − (a1r1 + · · · + anrn ) (S − R) + S (1 − R)

=
S2 − (S − R)S + S (1 − R)

S2 − S (S − R) + S (1 − R)
= 1 >

1

2
.

(2) a1 = 1.3 All coefficients of riBi on the right-hand side except the first one are positive, so
we only need to verify the inequality for B1 = 0 and B2 = · · · = Bn = 1. We have

h(B1 = 0,B2 = 1, . . . ,Bn = 1) =
S

S + r1 (S − R)
>

1

2
,

where the last line follows from r1 (S − R) < 1 · S = S .

Thus, the inequality holds in both cases, and the approximation ratio is at least 1
2 , as claimed.

Finally, we can obtain analogous results for revenue by essentially repeating the same argument

but instead writing Ai =
(1−F (pi ))pi

(1−F (p1 ))p1
for 1 ≤ i ≤ n, and for any convex combination of welfare and

revenue by writingAi as the appropriate convex combination of the two corresponding terms. �

3.3 Tighter Bounds for Specific Parameters

Assume in this section that there are jobs of two lengths a < b that appear at each timestep with
probability r1 and r2, respectively, where r1 + r2 ≤ 1. Suppose that we set a price per timestep p1

for jobs of length a and p2 for jobs of length b. Recall that the value per timestep of a job is drawn
from a distribution with cumulative distribution function F and probability density function f .

Our next result exhibits a tight approximation bound for any fixed setting of the job lengths and
their distribution.

Theorem 3.3. For any pricesp1 andp2 that we set in the two-price setting, we can achieve a welfare

(respectively, revenue, or any convex combination of welfare and revenue) approximation of at least

ρ (a,b, r1, r2) :=
(ar1 + br2) (ar1 + 1 − r1)

a(a − 1)r 2
1 + a(b − 1)r1r2 + ar1 + br2

in the one-price setting by setting either p1 or p2 alone. Moreover, this bound is the best possible even

if we are allowed to set a price different from p1 or p2 in the one-price setting.

Note that although the approximation ratios for welfare and revenue can be different for a par-
ticular distribution (see Section 3.1), Theorem 3.3 shows that the worst-case approximation over
all distributions is the same for both benchmarks.

To prove this theorem, we work with the expression in terms of Bi = F (pi ) that we have from
the proof of Theorem 3.2. We then show that the expression is minimized when we take B1 = 0 and
B2 = 1, meaning that the distribution on job values is bimodal. The proof method readily yields
an example showing that our bound is tight, where the bimodal distribution on job values puts a
large probability on a low value and a small probability on a high value.

Proof. Using the proof of Theorem 3.2, we are left with minimizing the function

h(B1,B2) :=
S2 − ((a − 1)r1B1 + (b − 1)r2B2)S + S (1 − R)

S2 − ar1 (S − R)B1 − br2 (S − R)B2 + S (1 − R)
.

3The proof proceeds similarly if there are other ai ’s equal to 1.
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Note that the numerator and the denominator are positive for all 0 ≤ B1,B2 ≤ 1. When B1 =

B2 = B, both terms are equal to

S2 − S (S − R)B + S (1 − R),

and so h(B1,B2) = 1. Moreover, using the assumption a < b, we find that

• h(B1,B2) < 1 when B1 = 0 and B2 > 0, and
• h(B1,B2) > 1 when B1 > 0 and B2 = 0.

Hence, the function h(B1,B2) is increasing in B1 for fixed B2 and decreasing in B2 for fixed B1.4

This implies that the function is minimized when B1 = 0 and B2 = 1, where its value is

h(B1 = 0,B2 = 1) =
S2 − (b − 1)r2S + S (1 − R)

S2 − br2 (S − R) + S (1 − R)

=
(ar1 + br2) (ar1 + 1 − r1)

a(a − 1)r 2
1 + a(b − 1)r1r2 + ar1 + br2

= ρ (a,b, r1, r2),

as claimed. The proof that this approximation ratio is tight is left to Appendix B.
Finally, we can obtain analogous results for revenue by essentially repeating the same argument

but instead writing A2 =
(1−F (p2 ))p2

(1−F (p1 ))p1
in the proof of Theorem 3.2, and for any convex combination

of welfare and revenue by writing A2 as the appropriate convex combination of the two corre-
sponding terms. �

Theorem 3.3 allows us to obtain the worst-case approximation ratio in arbitrary settings of the
parameters. Some examples follow:

• Suppose that r1 + r2 = 1 (i.e., a job appears at every timestep). This assumption can in fact
be made without loss of generality, because we can convert jobs not arriving to jobs arriving
with a value of 0 as long as all prices are non-zero. This only changes F and thus is irrelevant
for the calculation of ρ. In this case, the approximation ratio is

ρ (a,b, r , 1 − r ) =
(ar + b − br ) (ar + 1 − r )

a(a − b)r 2 + b (a − 1)r + b
.

• Next, we look at how the bound behaves when the job lengths are close together or far
apart. Suppose for convenience that r1 = r2 = 1/2 (i.e., a job appears at every timestep and
is of length a or b with equal probability). Then the approximation ratio is

ρ
(
a,b,

1

2
,

1

2

)
=

(a + b) (a + 1)

a2 + ab + 2b
.

The approximation ratio for a = 1, 2, 3 and different values of b can be found in Figure 3. In
particular, the approximation ratio is
— 6

7 if a = 1 and b = 2,

— 4
5 if a = 1 and b = 3,

— 15
16 if a = 2 and b = 3, and

— a+1
a+2 if b → ∞.

4To see this, observe that an arbitrary function of the form f (x ) =
p+qx

r+sx for real constants p, q, r, s is either increasing,

decreasing, or constant in any interval where the denominator is non-zero, depending on whether qr − ps is positive,

negative, or zero, respectively.
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Fig. 3. The approximation ratio ρ (a,b, 1/2, 1/2) for a = 1, 2, 3 and different values of b.

Fig. 4. The approximation ratio ρ (1,b, r , 1 − r ) for b = 2, 3, 4 and different values of r ∈ [0, 1].

Note that if b → ∞, then the ratio approaches 1 as a grows. This makes sense because
when the two job lengths are large and close to each other, there is little difference between
accepting one or the other. In addition, if we take b = a + 1, then the ratio becomes

ρ
(
a,a + 1,

1

2
,

1

2

)
=

2a2 + 3a + 1

2a2 + 3a + 2
.

This also converges to 1 as a → ∞.
• We now consider the behavior of the bound when the shorter job length is fixed. Suppose

for convenience that a = 1 (i.e., the shorter job length is 1). Then the approximation ratio is

ρ (1,b, r1, r2) =
r1 + br2

(b − 1)r1r2 + r1 + br2
.

The approximation ratio for b = 2, 3, 4 and different values of r1, r2 with r1 + r2 = 1 can be
found in Figure 4. In particular, as the longer job length grows, this ratio decreases and
approaches 1

1+r1
. This is consistent with the intuition that the approximation gets worse as

the job lengths are farther apart.
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Fig. 5. The approximation ratio ρ (a,∞, r1, r2) for a = 1, 2, 3 and different values of r1 ∈ [0, 1]. The ratio is

independent of r2.

• We next look at the “opposite” of the previous case and assume that the longer job length
is extremely large. Suppose that b → ∞. Then the approximation ratio is

ρ (a,∞, r1, r2) =
ar1 + 1 − r1

ar1 + 1
.

Note that this ratio does not depend on r2. The ratio for a = 1, 2, 3 and different values of r1

can be found in Figure 5. In particular, the ratio increases as the shorter job length grows.
Again, this is consistent with the intuition that the approximation gets worse as the job
lengths are farther apart.

If we fix the probabilities r1, r2, we can derive a tight worst-case bound over all possible job
lengths a,b.

Theorem 3.4. For fixed r1, r2, we have

ρ (a,b, r1, r2) ≥ 1

1 + r1

for arbitrary a,b. Moreover, this bound is the best possible.

Proof. From Theorem 3.3, we need to show the inequality

(ar1 + br2) (ar1 + 1 − r1)

a(a − 1)r 2
1 + a(b − 1)r1r2 + ar1 + br2

≥ 1

1 + r1
.

This simplifies to

r1 (a(a − 1)r 2
1 + (a − 1)br1r2 + ar1 + ar2) ≥ 0.

Since each term on the left-hand side is non-negative, the inequality holds.
For tightness of the bound, let a = 1 and b → ∞. The approximation ratio is

ρ (1,∞, r1, r2) =
r1 + br2

r1 (1 − r2) + br2 (1 + r1)

=
1

1 + r1
,

as desired. �
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Note that the fact that the bound is tight at a = 1 and b → ∞ is consistent with the intuition that
the further apart the job lengths are, the more welfare and revenue there is to be gained by setting
different prices for different job lengths, and consequently the worse the approximation ratio.

Finally, we show that we can obtain at least 50% of the welfare or revenue from setting two
prices by using one of those prices.

Theorem 3.5. For arbitrary a,b, r1, r2, we have

ρ (a,b, r1, r2) ≥ 1

2
.

Moreover, this bound is the best possible.

Proof. Using Theorem 3.4, we find that

ρ (a,b, r1, r2) ≥ 1

1 + r1
≥ 1

2

since r1 ≤ 1.
For tightness of the bound, let a = 1 and r2 = 1 − r1. The approximation ratio is

ρ (1,b, r , 1 − r ) =
r + (1 − r )b

r 2 + (1 − r 2)b
.

Taking b = 1
(1−r )2 , the ratio becomes

r + 1
1−r

r 2 + 1+r
1−r

=
r − r 2 + 1

r 2 − r 3 + 1 + r
,

which approaches 1/2 as r approaches 1 from below.5 �

Although we do not have a general formula for the worst-case approximation ratio for each
choice of the parameters a1, . . . ,an , r1, . . . , rn as we do for the case of two job lengths, the function
h in the proof of Theorem 3.2 still allows us to derive a tighter bound for each specific case. Note
that to find the minimum of h, it suffices to check Bi = 0 or 1 (see Footnote 4), so we only have a
finite number of cases to check.

In fact, one can show that the minimum is always attained when B1 = 0 and Bn = 1. However, as
we show next, the remaining Bi ’s may be 0 or 1 at the minimum, depending on the job lengths and
the probability distribution over them. We take n = 3 and assume for convenience that r1 = r2 =

r3 = 1/3 and (a1,a2) = (2, 3). The following examples show that B2 can be 0 or 1 at the minimum
depending on how far the longest job length a3 is from a1 and a2:

• Suppose that a3 = 6. Then we have

h(B1,B2,B3) =
121 − 11B1 − 22B2 − 55B3

121 − 16B1 − 24B2 − 48B3
.

This is minimized at (B1,B2,B3) = (0, 1, 1), where its value is 44/49.
• Suppose that a3 = 7. Then we have

h(B1,B2,B3) =
48 − 4B1 − 8B2 − 24B3

48 − 6B1 − 9B2 − 21B3
.

This is minimized at (B1,B2,B3) = (0,B2, 1) for any 0 ≤ B2 ≤ 1, where its value is 8/9.

5The approximation ratio does not necessarily converge to 1/2 for an arbitrary direction as b → ∞ and r approaches 1

from below. For instance, if we take b = 1
1−r and r approaches 1 from below, then the ratio converges to 2/3.
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• Suppose that a3 = 8. Then we have

h(B1,B2,B3) =
169 − 13B1 − 26B2 − 91B3

169 − 20B1 − 30B2 − 80B3
.

This is minimized at (B1,B2,B3) = (0, 0, 1), where its value is 78/89.

The preceding examples show that the transition point where the optimal value of B2 goes from
0 to 1 for r1 = r2 = r3 = 1/3 and (a1,a2) = (2, 3) is at a3 = 7, where h(B1,B2,B3) takes on the same
value for any 0 ≤ B2 ≤ 1.

3.4 Extension

In this section, we show that by using a single price, we can obtain 50% of the welfare not only
compared to using multiple prices but also compared to the offline optimal welfare.6 In fact, we
will also not need the assumption that the job length and the value per timestep are independent.
However, the result only works for particular prices rather than arbitrary ones, and we cannot
obtain tighter results for specific parameters using this method. The proof of this result is similar
to prophet inequality proofs of Feldman et al. (2015) and Dütting et al. (2017).

Theorem 3.6. Assume that the job length and the value per timestep are not necessarily indepen-

dent. There exists a pricep such that we can achieve a 50% approximation of the offline optimal welfare

by using p as the single price.

Proof. We prove the result for a distribution with discrete support and extend it to continuous
and mixed support later. Our approach follows that of Feldman et al. (2015). As job length and
value are not independent, assume that there are jobs of classes 1, 2, . . . ,n and that a job of class
j arrives with probability r j , has length aj and value per timestep vj . Note that aj and vj need not
be different for different classes of jobs.

We can write an “expected LP” to upper bound the maximum welfare per timestep as follows:

Opt = max
∑

j

x jvjaj subject to

x j ≤ r j∑
j

x jaj ≤ 1.

Here, Opt is the optimal long-run average welfare per timestep, and the ratio x j/r j can be
thought of as the probability that an arriving job of class j is accepted. The constraints then say
that this probability is at most 1 and that we cannot accept more jobs in expectation than, if they
arrived perfectly, would saturate the machine.

Take p = Opt/2, and consider some time t . Letyt be the probability that the server is occupied at
time t (possibly by the job arriving at time t ). Then the expected revenue at time t ispyt = (Opt/2) ·
yt . The expected consumer surplus of the job arriving at time t is at least

∑
j r j (vj − p)aj (1 − yt ),

because the probability that the server is unoccupied at time t (either by the job arriving at time t
or by an earlier job) is a lower bound on the probability that the server was not occupied when the
job at time t arrived. By the constraints of the LP, the consumer surplus is at least (Opt/2) · (1 − yt ).
Welfare is the sum of revenue and consumer surplus, so summing over all t shows that the welfare
per timestep is at least Opt/2.

6For the offline optimal welfare, we compute the limit of the expected average offline optimal welfare per timestep as the

time horizon grows.
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If the support of the distribution is not discrete, a similar argument still works. To determine
Opt , we order the jobs in decreasing order of value per timestep and take the jobs until the machine
is saturated. The rest of the proof then follows in the same way as before, with sums replaced by
integrals.

As a further extension, this argument can also be adapted to the multiple server case. We can
solve the expected LP for each server individually and compute a price pi = Opti/2. We can then
select whichever of these prices maximizes welfare to recover the 1/Hn bound from Theorem 4.2.
(For some i , the welfare from the i servers with the largest values ofOpti at price pi , which we can
lower bound as iOpti/2, must be at least 1

2Hn

∑
i Opti .) �

4 MULTIPLE SERVERS

In this section, we assume that there are multiple servers, each of which receives jobs of various
lengths. Under the assumption that the servers have the same probability of receiving no job at a
timestep, we show in Section 4.1 an approximation bound of the welfare and revenue of setting
one price for all servers compared to setting an individual price for each server. This yields a strong
bound when at least one of the dimensions of the parameters is not too extreme (e.g., the number
of servers or the job lengths are not too large). In Section 4.2, we combine the newly obtained
results with those from Section 3. Using a composition technique, we derive a general result that
compares the welfare and revenue obtained by a restricted mechanism that sets the same price
for all servers and all job lengths against those obtained by a mechanism that can set a different
price for each job length of each particular server. We show that even with the heavy restrictions,
the former mechanism still provides a reasonable approximation to the latter in a wide range of
situations. Using similar techniques, we also obtain approximation bounds when this assumption
does not hold but there is only one job length across all servers. The analysis of the latter setting
is deferred to Appendix C.

As in Section 3, our approximation results hold for arbitrary (i.e., not necessarily optimal) pricing
schemes, and the price we use in the single-price setting can be drawn from one of the prices in
the multi-price setting.

4.1 One Price per Server

Assume that at each timestep, either zero or one job appears for each server 1 ≤ j ≤ n. Server j
receives jobs of length aj1 ≤ aj2 ≤ · · · ≤ ajnj

with probability r j1, r j2, . . . , r jnj
, respectively. Sup-

pose that we set a price per timestep pj for all jobs on server j. Recall that the value per timestep
of a job is drawn from a distribution with cumulative distribution function F and probability den-

sity function f , and that we assume that
∑nj

i=1 r ji is constant. Let S j = aj1r j1 + · · · + ajnj
r jnj

and
R = r j1 + · · · + r jnj

.
Using the formula (1) for cw given in Lemma 3.1, we find that the welfare per timestep is

dw (p1,p2, . . . ,pn ) =
n∑

j=1

S j

∫
x ≥pj
�dμ

S j − (S j − R)F (pj ) + (1 − R)

=

n∑
j=1

∫
x ≥pj
�dμ

1 −
(
1 − R

Sj

)
F (pj ) +

1−R
Sj

.
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If we set the same pricep = p1 = · · · = pn for different servers, our welfare per timestep becomes

dw (p) =
n∑

j=1

∫
x ≥p
�dμ

1 −
(
1 − R

Sj

)
F (p) + 1−R

Sj

.

Similarly, we have the formulas for revenue per timestep

dr (p1,p2, . . . ,pn ) =
n∑

j=1

(1 − F (pj ))pj

1 −
(
1 − R

Sj

)
F (pj ) +

1−R
Sj

and

dr (p) =
n∑

j=1

(1 − F (p))p

1 −
(
1 − R

Sj

)
F (p) + 1−R

Sj

.

We show that if at least one dimension of the parameters is not too extreme (e.g., the number
of servers or the job lengths are bounded), then we can obtain a reasonable approximation of the
welfare and revenue in the multi-price setting by setting just one price.

Theorem 4.1. For any prices p1,p2, . . . ,pn that we set in the multi-price setting, we can achieve a

welfare (respectively, revenue, or any convex combination of welfare and revenue) approximation of

at least

max

(
1

Hn
,
M − 1

M lnM

)

in the one-price setting, where Hn = 1 + 1
2 + · · · +

1
n
≈ lnn is the nth harmonic number and M =

maxi, j
Si

Sj
.

In particular, if all job lengths are bounded above by c , then R ≤ S j ≤ cR for all 1 ≤ j ≤ n, and

so maxi, j
Si

Sj
≤ c . The theorem then implies that the approximation ratio is at least c−1

c ln c
.

The proof follows a similar outline to that of Theorem 3.2, but the details are more involved.

Proof. We first consider welfare. We will work with the ratio

max(dw (p1), . . . ,dw (pn ))

dw (p1, . . . ,pn )

and try to minimize it.

Writing Aj =

∫
x≥pj

�d μ∫
x≥p1

�d μ
(in particular, A1 = 1), Bj = F (pj ), and sj =

1
Sj

for 1 ≤ j ≤ n, the ratio to

minimize becomes

д(A1, . . . ,An ,B1, . . . ,Bn ) :=
n

max
j=1

�
�

n∑
i=1

Aj

1 − (1 − Rsi )Bj + (1 − R)si

�
�
· 1∑n

i=1
Ai

1−(1−Rsi )Bi+(1−R )si

.

Let Uj =
∑n

i=1
1

1−(1−Rsi )Bj+(1−R )sj
for 1 ≤ j ≤ n, and T =

∑n
i=1

Ai

1−(1−Rsi )Bi+(1−R )si
. We have

д(A1, . . . ,An ,B1, . . . ,Bn ) =
maxn

j=1 (AjUj )

T
.

By dividing into cases according to the term that the max function outputs, we can deduce that
we only need to minimize the function

h(B1, . . . ,Bn ) :=
1∑n

j=1
1∑n

i=1

1−(1−Rsj )Bj +(1−R )sj

1−(1−Rsi )Bj +(1−R )si

;
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the details of this casework can be found in Appendix D. In other words, the reciprocal of this
function, which we want to maximize, is

h0 (B1, . . . ,Bn ) :=

n∑
j=1

1∑n
i=1

1−(1−Rsj )Bj+(1−R )sj

1−(1−Rsi )Bj+(1−R )si

=

n∑
j=1

1∑n
i=1

1−Bj+sj (1−R+RBj )
1−Bj+si (1−R+RBj )

.

Assume without loss of generality that s1 ≥ s2 ≥ · · · ≥ sn . For 1 ≤ j ≤ n, write hj =
1∑n

i=1

1−Bj +sj (1−R+RBj )

1−Bj +si (1−R+RBj )

(i.e., the jth term of the sum that constitutes h0). The last n + 1 − j terms of

the sum in the denominator of hj are at least 1 since sj ≥ si for i ≥ j. This implies that hj ≤ 1
n+1−j

,

and therefore

h0 (B1, . . . ,Bn ) = h1 + h2 + · · · + hn

≤ 1

n
+

1

n − 1
+ · · · + 1 = Hn .

Equivalently, h(B1, . . . ,Bn ) ≥ 1
Hn

.

Next, since M = maxi, j
Si

Sj
, we have si

sj
≤ M for all i, j. Note that

1 − (1 − Rsj )Bj + (1 − R)sj

1 − (1 − Rsi )Bj + (1 − R)si
≥ 1

M

for all i, j, as both the numerator and the denominator are positive, and when seen as a function of
Bj , the expression is monotonic and takes on values at least 1

M
at Bj = 0 and Bj = 1. This implies

that

hj ≤
1

n + 1 − j + j−1
M

for all 1 ≤ j ≤ n, and therefore

h0 (B1, . . . ,Bn ) =
n∑

j=1

1

n − (j − 1)
(
1 − 1

M

)

=

n∑
j=1

1

n
· 1

1 − j−1
n

(
1 − 1

M

) .
The last sum is the left Riemann sum of the function 1

1−x (1− 1
M )

. This function is increasing in x ,

so its integral between 0 and 1 is an upper bound for our sum. Hence, we have

h0 (B1, . . . ,Bn ) ≤
∫ 1

0

1

1 − x
(
1 − 1

M

) dx = M lnM

M − 1
.

Equivalently, h(B1, . . . ,Bn ) ≥ M−1
M ln M

.
Combining the two bounds, we have

h(B1, . . . ,Bn ) ≥ max

(
1

Hn
,
M − 1

M lnM

)
,

as desired.
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Finally, we can obtain analogous results for revenue by essentially repeating the same argument

but instead writing Aj =
(1−F (pj ))pj

(1−F (p1 ))p1
for 1 ≤ j ≤ n, and for any convex combination of welfare and

revenue by writingAj as the appropriate convex combination of the two corresponding terms. �

Done with the proof of the theorem, we now address the tightness of the approximation
ratio. The upper bound Hn for h0 is the best possible in the sense that there exist values
B1, . . . ,Bn , s1, . . . , sn ,R such that h0 gets arbitrarily close to Hn . In particular, take sj = c

−2j and
Bj = 1 − c−2j+1 for some large constant c , and R = 1. We have

h0 (B1, . . . ,Bn ) =
n∑

j=1

1∑n
i=1

1−Bj+Bj sj

1−Bj+Bj si

=

n∑
j=1

1∑n
i=1

c−2j+1+c−2j−c−4j+1

c−2j+1+c−2i−c−2j−2i+1

=

n∑
j=1

1∑n
i=1

c+1−c−2j+1

c+c2(j−i )−c−2i+1

.

Taking c → ∞, we find that for j ≤ i , the fraction c+1−c−2j+1

c+c2(j−i )−c−2i+1 converges to 1, whereas for j > i ,

it converges to 0. Hence, hj → 1
n+1−j

, and consequently h0 → Hn .

Although this argument does not directly imply the tightness of the approximation ratio, we
see it as strong evidence for that claim.

4.2 Multiple Prices per Server

Assume as in Section 4.1 that at each timestep, server j receives jobs of lengthaj1 ≤ aj2 ≤ · · · ≤ ajnj

with probability r j1, r j2, . . . , r jnj
, respectively. In this section, we consider setting an individual

price not only for each server but also for each job length of that server. In particular, suppose that
we set a price per timesteppji for jobs of length aji on server j. Recall that the value per timestep of
a job is drawn from a distribution with cumulative distribution function F and probability density

function f , and that we assume that
∑nj

i=1 r ji is constant. Let S j = aj1r j1 + · · · + ajnj
r jnj

.
We will compare a setting where we have considerable freedom with our pricing scheme and

can set a different price pji for each job length aji on each server j with a setting where we have
limited freedom and must set the same price p for all job lengths and all servers. We show that by
“composing” our results on the two dimensions, we can obtain an approximation of the welfare
and revenue of setting different prices by setting a single price.

Theorem 4.2. For any prices pji , where 1 ≤ j ≤ n and 1 ≤ i ≤ nj for each j, that we set in the

multi-price setting, we can achieve a welfare (respectively, revenue, or any convex combination of

welfare and revenue) approximation of at least

1

2
·max

(
1

Hn
,
M − 1

M lnM

)

in the one-price setting, where Hn = 1 + 1
2 + · · · +

1
n
≈ lnn is the nth harmonic number and M =

maxi, j
Si

Sj
.

Proof. Consider welfare. By Theorem 3.2, for each server j we can achieve a 1
2 -approximation

of the welfare in the multi-price setting by setting a single price pj for all job lengths. However,

using Theorem 4.1, we can approximate the latter welfare by a factor of max( 1
Hn
, M−1

M ln M
) by setting
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a single price p for all servers. Therefore, setting a single price p also yields a 1
2 ·max( 1

Hn
, M−1

M ln M
)-

approximation of the original welfare.
The same argument holds for revenue and for any convex combination of welfare and

revenue. �

If we have tighter approximations for either the “different prices for different job lengths” or the
“different prices for different servers” dimension, for instance, by knowing the values of some of
the parameters, then the same composition argument yields a correspondingly tighter bound.

5 CONCLUSION

In this article, we study how well simple pricing schemes that are oblivious to certain parameters
can approximate optimal schemes with respect to welfare and revenue, and prove several results
when the simple schemes are restricted to setting the same price for all servers or all job lengths.
Our results provide an explanation of the efficacy of such schemes in practice, including the one
shown in Figure 1 for virtual machines on Microsoft Azure. Since simple schemes do not require
agents to spend time and resources to determine their specific parameter values, our results also
serve as an argument in favor of using these schemes in a range of applications. It is worth noting
that as all of our results are of worst-case nature, we can expect the guarantees on welfare and
revenue to be significantly better than these pessimistic bounds in practical instances where the
parameters are not adversarially tailored.

We believe that there is still much interesting work to be done in the study of simple pricing
schemes for the cloud. We conclude our article by listing some intriguing future directions:

• The example in Section 3.1 shows that the approximations for the uniform distribution are
significantly better than 50%. How does the shape of the distribution affect the approxima-
tion ratio that can be achieved?

• In many scheduling applications, a job can be scheduled online to any server that is not
occupied at the time. Does a good welfare or revenue approximation hold in such a model?

• Can our results be extended to models with more fluid job arrivals, such as one where
several jobs can arrive at each timestep?

• Can we approximate welfare and revenue simultaneously? A trivial randomized approach
would be to choose with equal probability whether to approximate welfare or revenue.
According to Theorem 3.2, this yields a 1/4-approximation for both expected welfare and
expected revenue of the single-price setting in comparison to the multi-price setting for job
lengths.

• As we mentioned in Section 3.4, the proof of Theorem 3.6 resembles the prophet inequality
proofs of Feldman et al. (2015) and Dütting et al. (2017). Does there exist a reduction from
one setting to the other?

APPENDICES

A MISSING DETAILS IN THE PROOF OF THEOREM 3.2

We divide into cases according to the term that the max function outputs.

Case 1. The max function outputs the first term, SA1

S−(S−R )B1+(1−R ) .

Taking into account that A1 = 1, we want to minimize the ratio

S

S − (S − R)B1 + (1 − R)
· S − ((a1 − 1)r1B1 + · · · + (an − 1)rnBn ) + (1 − R)

a1r1 + a2r2A2 + · · · + anrnAn
,

where Ai ≤ S−(S−R )Bi+(1−R )
S−(S−R )B1+(1−R ) for i ≥ 2.
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For anyAi , if we fix the remainingAj and all Bj , this is a decreasing function inAi . To minimize

it, we should set Ai =
S−(S−R )Bi+(1−R )
S−(S−R )B1+(1−R ) for all i ≥ 2. The ratio becomes

S2 − ((a1 − 1)r1B1 + · · · + (an − 1)rnBn )S + S (1 − R)

S2 − (a1r1B1 + · · · + anrnBn ) (S − R) + S (1 − R)
.

Case 2. The max function outputs the ith term, SAi

S−(S−R )Bi+(1−R ) , for some i ≥ 2. This means that

Aj ≤
S−(S−R )Bj+(1−R )
S−(S−R )Bi+(1−R ) · Ai for all j ≥ 2 with j � i , and Ai ≥ S−(S−R )Bi+(1−R )

S−(S−R )B1+(1−R ) . We want to minimize

the ratio

SAi

S − (S − R)Bi + (1 − R)
· S − ((a1 − 1)r1B1 + · · · + (an − 1)rnBn ) + (1 − R)

a1r1 + a2r2A2 + · · · + anrnAn
,

or equivalently,

SAi

a1r1A1 + · · · + anrnAn
· S − ((a1 − 1)r1B1 + · · · + (an − 1)rnBn ) + (1 − R)

S − (S − R)Bi + (1 − R)
.

For any j ≥ 2 with j � i , if we fix all terms Ak except Aj and fix all Bk , then this function is

decreasing in Aj . To minimize it, we should set Aj =
S−(S−R )Bj+(1−R )
S−(S−R )Bi+(1−R ) · Ai . The resulting function is

increasing in Ai if we fix all Bk , so we should set Ai =
S−(S−R )Bi+(1−R )
S−(S−R )B1+(1−R ) . We obtain the same ratio

as in Case 1.
Hence, in either case, we are left with minimizing the function

h(B1, . . . ,Bn ) :=
S2 − ((a1 − 1)r1B1 + · · · + (an − 1)rnBn )S + S (1 − R)

S2 − (a1r1B1 + · · · + anrnBn ) (S − R) + S (1 − R)
,

as claimed.

B MISSING DETAILS IN THE PROOF OF THEOREM 3.3

We show that the approximation ratio is tight even if we are allowed to set an arbitrary price
(i.e., not necessarily p1 or p2) in the one-price setting. To this end, consider a discrete bimodal
distribution where a high probability q1 ≈ 1 is put on a valuev1 ≈ 0 and a small probability q2 ≈ 0
is put on a value v2 ≈ 1.7 The values v1,v2 and the probabilities are chosen arbitrarily close to 0
and 1 and so that the relation

q2v2

q1v1
=

1

S − R
is satisfied.

In the two-price setting, we can set prices p1 = v1 and p2 = v2 and obtain welfare

cw (p1 = v1,p2 = v2) =
ar1 (q1v1 + q2v2) + br2 (q2v2)

S − ((a − 1)r1F (v1) + (b − 1)r2F (v2)) + (1 − R)

≈ ar1 (q1v1 + q2v2) + br2 (q2v2)

S − (b − 1)r2 + (1 − R)

=
q2v2 (ar1 (S + 1 − R) + br2)

S − (b − 1)r2 + (1 − R)
.

However, in the one-price setting, there are three price ranges that we can pick: [0,v1], (v1,v2],
and (v2,∞). If we set a price in the range (v2,∞), no job is accepted and the welfare is zero. For

7Intuitively, we want to accept all short jobs but only high-valued long jobs. We can do this in the two-price setting;

however, in the one-price setting, we are forced to either accept low-valued long jobs or reject low-valued short jobs.
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each of the other two ranges, setting any price in the range yields the same set of accepted jobs
and thus the same welfare. Hence, it suffices to consider setting prices v1 and v2. We have

cw (p = v1) =
S (q1v1 + q2v2)

S + 1 − R = Sq2v2

and

cw (p = v2) ≈ Sq2v2

S − (S − R) + (1 − R)
= Sq2v2.

We obtain the same welfare per timestep in either case. It follows that the approximation ratio
is at most

cw (p = v1)

cw (p1 = v1,p2 = v2)
=

Sq2v2 (S − (b − 1)r2 + (1 − R))

q2v2 (ar1 (S + 1 − R) + br2)

=
S (ar1 + 1 − r1)

a(a − 1)r 2
1 + a(b − 1)r1r2 + ar1 + br2

= ρ (a,b, r1, r2),

as desired.

C MULTIPLE SERVERS, ONE JOB LENGTH

Assume that at each timestep, either zero or one job appears for each server. Server j receives a
job of length a with probability r j . Suppose that we set a price per timestep pj for jobs on server j.
Recall that the value per timestep of a job is drawn from a distribution with cumulative distribution
function F and probability density function f .

Using the formula (1) for cw given in Lemma 3.1, we find that the welfare per timestep is

ew (p1,p2, . . . ,pn ) =
n∑

j=1

ar j

∫
x ≥pj
�dμ

ar j − (a − 1)r jF (pj ) + (1 − r j )

=

n∑
j=1

a
∫

x ≥pj
�dμ

(a − 1) (1 − F (pj )) +
1
r j

.

If we set the same pricep = p1 = · · · = pn for different servers, our welfare per timestep becomes

ew (p) =
n∑

j=1

a
∫

x ≥p
�dμ

1
r j
+ (a − 1) (1 − F (p))

.

Similarly, we have the formulas for revenue per timestep

er (p1,p2, . . . ,pn ) =
n∑

j=1

a(1 − F (pj ))pj

(a − 1) (1 − F (pj )) +
1
r j

and

er (p) =
n∑

j=1

a(1 − F (p))p

(a − 1) (1 − F (p)) + 1
r j

.

We will compare the welfare and revenue that can be obtained by setting a single price against
setting several prices. Similarly to Section 4, we will show that if at least one dimension of the
parameters is not too extreme (e.g., the number of servers, the job length, or the probabilities of
jobs occurrence are bounded), then we can obtain a reasonable approximation of the welfare and
revenue in the multi-price setting by setting just one price.
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Theorem C.1. For any prices p1,p2, . . . ,pn that we set in the multi-price setting, we can achieve a

welfare (respectively, revenue, or any convex combination of welfare and revenue) approximation of

at least

max

(
1

Hn
,
M − 1

M lnM
,

1

a

)

in the one-price setting, where Hn = 1 + 1
2 + · · · +

1
n
≈ lnn is the nth harmonic number and M =

maxi, j
ri

r j
.

In particular, if all probabilities of job occurrence are bounded below by c ≤ 1, then maxi, j
Si

Sj
≤

1
c

. The theorem then implies that the approximation ratio is also at least
1
c
−1

1
c

ln( 1
c )
= c−1

ln c
.

Proof. We first consider welfare. We will work with the ratio

max(ew (p1), . . . , ew (pn ))

ew (p1, . . . ,pn )

and try to minimize it.

Writing Aj =

∫
x≥pj

�d μ∫
x≥p1

�d μ
(in particular, A1 = 1), Bj = F (pj ), and R j = 1/r j for 1 ≤ j ≤ n, the ratio

to minimize becomes

д(A1, . . . ,An ,B1, . . . ,Bn ) :=
n

max
j=1

�
�

n∑
i=1

Aj

Ri + (a − 1) (1 − Bj )
�
�
· 1∑n

j=1
Ai

Ri+(a−1)(1−Bi )

.

Let Uj =
∑n

i=1
1

Ri+(a−1)(1−Bj ) for 1 ≤ j ≤ n, and T =
∑n

i=1
Ai

Ri+(a−1)(1−Bi ) . We have

д(A1, . . . ,An ,B1, . . . ,Bn ) =
maxn

j=1 (AjUj )

T
.

Case 1. The max function outputs the first term, A1U1.
Taking into account that A1 = 1, we want to minimize the ratio

U1

T
= �
�

n∑
i=1

1

Ri + (a − 1) (1 − B1)
�
�
· 1∑n

i=1
Ai

Ri+(a−1)(1−Bi )

,

where Ai ≤ U1

Ui
for all i ≥ 2.

For anyAj , if we fix the remainingAi and all Bi , this is a decreasing function inAj . To minimize

it, we should set Ai =
U1

Ui
for all i ≥ 2. The ratio becomes

1∑n
j=1

1∑n
i=1

Rj +(a−1)(1−Bj )

Ri +(a−1)(1−Bj )

.

Case 2. The max function outputs the jth term, AjUj , for some j ≥ 2.

This means that Ai ≤
AjUj

Ui
for all i ≥ 2 with i � j, and Aj ≥ U1

Uj
. We want to minimize the ratio

AjUj

T
= �
�

n∑
i=1

Aj

Ri + (a − 1) (1 − Bj )
�
�
· 1∑n

i=1
Ai

Ri+(a−1)(1−Bi )

.

For any i ≥ 2 with i � j, if we fix all terms Ak except Ai and fix all Bk , then this function is

decreasing in Ai . To minimize it, we should set Ai =
Aj Uj

Ui
. The resulting function is increasing in

Aj if we fix all Bk , so we should set Aj =
U1

Uj
. We obtain the same ratio as in Case 1.
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Hence, in either case, we are left with minimizing the function

h(B1, . . . ,Bn ) :=
1∑n

j=1
1∑n

i=1

Rj +(a−1)(1−Bj )

Ri +(a−1)(1−Bj )

.

In other words, the reciprocal of this function, which we want to maximize, is

h0 (B1, . . . ,Bn ) :=

n∑
j=1

1∑n
i=1

Rj+(a−1)(1−Bj )
Ri+(a−1)(1−Bj )

.

Assume without loss of generality that R1 ≥ R2 ≥ · · · ≥ Rn . For 1 ≤ j ≤ n, write hj =
1∑n

i=1

Rj +(a−1)(1−Bj )

Ri +(a−1)(1−Bj )

(i.e., the jth term of the sum that constitutes h0). The last n + 1 − j terms of the

sum in the denominator of hj are at least 1 since R j ≥ Ri for i ≥ j. This implies that hj ≤ 1
n+1−j

,

and therefore

h0 (B1, . . . ,Bn ) = h1 + h2 + · · · + hn

≤ 1

n
+

1

n − 1
+ · · · + 1 = Hn .

Equivalently, h(B1, . . . ,Bn ) ≥ 1
Hn

.

Next, since M = maxi, j
ri

r j
, we have Ri

Rj
≤ M for all i, j. Note that

Ri + (a − 1) (1 − Bi )

R j + (a − 1) (1 − Bi )
≥ 1

M

for all i, j. This implies that

hj ≤
1

n + 1 − j + j−1
M

for all 1 ≤ j ≤ n, and therefore

h0 (B1, . . . ,Bn ) =
n∑

j=1

1

n − (j − 1)
(
1 − 1

M

)

=

n∑
j=1

1

n
· 1

1 − j−1
n

(
1 − 1

M

) .

The last sum is the left Riemann sum of the function 1
1−x (1− 1

M )
. This function is increasing in x ,

so its integral between 0 and 1 is an upper bound for our sum. Hence, we have

h0 (B1, . . . ,Bn ) ≤
∫ 1

0

1

1 − x
(
1 − 1

M

) dx = M lnM

M − 1
.

Equivalently, h(B1, . . . ,Bn ) ≥ M−1
M ln M

.
Finally, one can check that since Ri ≥ 1 and 1 − Bi ≤ 1 for all i ,

Ri + (a − 1) (1 − Bi )

R j + (a − 1) (1 − Bi )
≥ 1

a
· Ri

R j
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for all i, j. It follows that

h0 (B1, . . . ,Bn ) ≤
n∑

i=1

1∑n
j=1

1
a
· Ri

Rj

= a
n∑

i=1

1∑n
j=1

Ri

Rj

= a.

Equivalently, h(B1, . . . ,Bn ) ≥ 1
a

.
Combining the three bounds, we have

h(B1, . . . ,Bn ) ≥ max

(
1

Hn
,
M − 1

M lnM
,

1

a

)
,

as desired.
Finally, we can obtain analogous results for revenue by essentially repeating the same argument

but instead writing Aj =
(1−F (pj ))pj

(1−F (p1 ))p1
for 1 ≤ j ≤ n, and for any convex combination of welfare and

revenue by writingAj as the appropriate convex combination of the two corresponding terms. �

We now address the tightness of the approximation ratio. The upper bound Hn for h0 is the best
possible in the sense that there exist values B1, . . . ,Bn ,R1, . . . ,Rn ,a such that h0 gets arbitrarily

close toHn . In particular, take R j = c
2(n−j ) and Bj = 1 − c2(n−j )+1

a−1 for some large constant c . We have

h0 (B1, . . . ,Bn ) =
n∑

j=1

1∑n
i=1

Rj+(a−1)(1−Bj )
Ri+(a−1)(1−Bj )

=

n∑
j=1

1∑n
i=1

c2(n−j )+c2(n−j )+1

c2(n−i )+c2(n−j )+1

=

n∑
j=1

1∑n
i=1

1+c
c2(j−i )+c

.

Taking c → ∞, we find that for j ≤ i , the fraction 1+c
c2(j−i )+c

converges to 1, whereas for j > i , it

converges to 0. Hence, hj → 1
n+1−j

, and consequently h0 → Hn .

Although this argument does not directly imply the tightness of the approximation ratio, we
see it as strong evidence for that claim.

D MISSING DETAILS IN THE PROOF OF THEOREM 4.1

We divide into cases according to the term that the max function outputs.
Case 1. The max function outputs the first term, A1U1.
Taking into account that A1 = 1, we want to minimize the ratio

U1

T
= �
�

n∑
i=1

1

1 − (1 − Rsi )B1 + (1 − R)si

�
�
· 1∑n

i=1
Ai

1−(1−Rsi )Bi+(1−R )si

,

where Ai ≤ U1

Ui
for all i ≥ 2.
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For anyAj , if we fix the remainingAi and all Bi , this is a decreasing function inAj . To minimize

it, we should set Ai =
U1

Ui
for all i ≥ 2. The ratio becomes

1∑n
j=1

1∑n
i=1

1−(1−Rsj )Bj +(1−R )sj

1−(1−Rsi )Bj +(1−R )si

.

Case 2. The max function outputs the jth term, AjUj , for some j ≥ 2.

This means that Ai ≤
Aj Uj

Ui
for all i ≥ 2 with i � j, and Aj ≥ U1

Uj
. We want to minimize the ratio

AjUj

T
= �
�

n∑
i=1

Aj

1 − (1 − Rsi )Bj + (1 − R)si

�
�
· 1∑n

i=1
Ai

1−(1−Rsi )Bi+(1−R )si

.

For any i ≥ 2 with i � j, if we fix all terms Ak except Ai and fix all Bk , then this function is

decreasing in Ai . To minimize it, we should set Ai =
Aj Uj

Ui
. The resulting function is increasing in

Aj if we fix all Bk , so we should set Aj =
U1

Uj
. We obtain the same ratio as in Case 1.

Hence, in either case, we are left with minimizing the function

h(B1, . . . ,Bn ) :=
1∑n

j=1
1∑n

i=1

1−(1−Rsj )Bj +(1−R )sj

1−(1−Rsi )Bj +(1−R )si

,

as claimed.
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