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ABSTRACT
Based on a case study at a national science lab, this paper outlines 
strategies for demonstrating the value of technical communication 
research when working with subject matter experts in both data and 
domain sciences. This paper argues that technical communicators 
can find common goals with experts in highly technical fields using 
UX methods as the medium of identification, particularly i n the 
realm of scientific c omputing. T his p aper o utlines a  qualitative 
usability method created for data scientists at the lab to validate 
highly specialized scientific visualization applications.
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1 INTRODUCTION
Technical communicators often inhabit a liminal space between 
computational systems-centered STEM fields and human-centered 
goals. The boundaries between these two stances are unproduc-
tively constructed in ways that can put technical communicators 
epistemologically at odds with the high-tech environments in which 
they work, and vice versa. This tension plays out in very real ways 
when technical communicators work in data-centric fields where 
they must argue for the value of human-centered, qualitative meth-
ods among their quantitatively-driven colleagues [21].

In the midst of this apparent divide lies common ground. Data 
visualization experts and technical communicators are both ulti-
mately concerned with meaning: how to make it, how to curate 
it, and how to communicate it effectively. Of course in systems-
centered work—defined here as activity primarily concerned with 
the functionality of computational systems—meaning can take 
many forms. Semantics and coding languages, computational work-
flows, and concerns with how inputs are transformed into outputs 
are only a few ways that machines participate in meaning-making. 
Particularly with the rise of neural networks and deep learning, it
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can appear as if high-tech environments are moving further and
further away from considering human meaning making in these
computational processes.

One of the fundamental “big data" challenges deals with the
growing gap between the amount of data able to be processed and
the ability for humans to make meaning out of it [11]. Essentially,
there is too much data and too little cognitive bandwidth of the
experts who read it. This is particularly true in scientific work
that requires multiple runs of petabytes of data and large-scale
simulations. On the systems side, significant amounts of funding
and expertise is poured into parallel computing [12] and in situ data
processing strategies [See section 2.2, In Situ Visualization]. Both of
these processes save computational time and power, but research in
these areas has also begun to build strategies that consider human
productivity and meaning [16] as part of the complex knowledge
economy.

This gap between data and meaning making forces usability and
visualization experts to forge new computational methods that pro-
cess larger amounts of data in shorter time frames, and to design
interfaces that attend to the ways humans make knowledge with
data [1]. As user advocates [17] [18] and professionals poised to
understand arrangement, invention, and discourse as epistemic [19]
[13], technical communicators can find ways to enter data-centric
areas of research and industry where such professionals are sorely
needed. Because the end goal of scientific computation is always
to create or uncover meaningful information, and such meaning
is co-constructed by computers, data ecologies, and scientists, hu-
man users still remain central to the shared concerns of technical
communication and scientific data work.

Over the course of ten weeks embedded in a team of data scien-
tists and experts in computational visualization at a national science
lab, a method was developed for conducting qualitative user test-
ing with domain scientists to better understand fit and usability of
custom-made scientific applications. In doing so, it became clear
that technical communication research and qualitative UX methods
could be insightful components of the team’s development process,
even in such quantitatively-driven fields.

This paper first outlines some cursory knowledge of large-scale
scientific data visualization, and then goes on to discuss one partic-
ular research group and the method developed for eliciting quali-
tative user feedback. Additionally, this paper considers strategies
for demonstrating the value of technical communication research
when working with subject matter experts in both data and do-
main sciences by finding common goals, using UX methods as the
medium of identification.
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2 DATA SCIENCE FOR TECHNICAL
COMMUNICATORS

Data science is a burgeoning field that has not yet reached matu-
rity. Academic programs are emerging in universities around the
country while data buzzwords infiltrate all manner of business and
industry job descriptions. In fact, in 2015, the National Research
Council called for nation-wide educational initiatives that focus on
digital curation and “meaningful use" of digital objects, specifically,
quantitative big data [5]. While STEM programs may easily house
the technological skills required for such data initiatives, techni-
cal communication as a field has an opportunity to explore what
meaningful data practices might entail.

According to the National Science Foundation (NSF), data science
is defined by its focus on “the processes and systems that enable the
extraction of knowledge or insights from data" [2]. It is no surprise
that a systems-centered approach is highlighted in their definition,
considering data science’s close couplingwith computer science and
statistics. Just as importantly, if not more so, is the NSF’s focus on
insight and knowledgemaking as a key component of the field. Data
science is a combination of data mining and curation, computation,
and visualization, in ways that help make data meaningful to a
human viewer.

While big data has been critiqued for its tendency to flatten
and decontextualize information, it is no more and no less than
curated collections of granular information, which then must be
read, arranged and interpreted with the help of computation. A
data set, no matter the size, is an object of digital curation. An
archive. It resists finitude and invites exploration and interpretation
[23]. Data are not objects, but rhetorical processesâĂŤmutually
constitutive relationships between bits of information, technology,
communication, and human knowledge practices.

For example, early 20th century climate data was recorded man-
ually but when scientists, data collection methods, and instrumen-
tation changed over time, so did the ways researchers formatted
and organized their data [7]. Historic data cannot be re-collected
using contemporary methods, and such data does not get automati-
cally updated in kind or format when new techniques emerge. The
process of curation and formatting takes large amounts of time and
human effort. The data used in much of big data work, but espe-
cially in climate science, is generated over long periods of time, by
many different people with a wide range of training and expertise.

Our current knowledge of climate science is essentially built on
historical traces, a process Edwards terms, “data friction" [7]. The
work of constructing present or future knowledge from large or
historic data consists of a lot of piece work that requires interpreta-
tion and various forms of inscription, whether it be in collecting,
curating, or interpreting a dataset. Data are never raw—they are
productions [8]. At each point in its life cycle, data is constructed
through interpretation.

2.1 The Role of Visualization
Visualization is a key component for working with data, but espe-
cially when working with data that are too large to make sense of
without computation. It is more than just a step in the sensemaking
process when it comes to so-called big data. Visualization is the

fulcrum upon which humans and computers collaborate to identify
relationships and make insight.

There are clear implications for technical communication schol-
arship when it comes to visual rhetoric, infographics and data
visualizations that are created to help audiences make meaning.
Often, technical communication work focuses on public-facing vi-
sualizations and visual information for nonexpert users. However,
the users for most scientific data visualizations are the scientists
themselves, not an outside audience. Nonetheless, visualization
formats and platforms have to be designed rhetorically, with an
audience in mind, and scientific visualization applications still need
to be designed with communication and meaning in mind, even if
it is only for a single expert user.

2.2 In Situ Visualization
Large scale physics simulations and other visualizations require
high performance computing (HPC), which is becoming more and
more accessible for scientists with enough clout and grant money.
However, even with access to the most powerful supercomputers
in the world, massive scientific datasets can take months and hun-
dreds of iterative runs between data input and visual output. While
loss of time is a factor in scientific research, the cost to rent time
on the machines, as well as the ecological impact of running and
cooling such massive computers are additional bottlenecks that
HPC communities are currently attempting to address [6].

For many experimental scientists, the most problematic issue
is not waiting months for their data, as much as waiting for data
only to find that there were malfunctions with experimental instru-
mentation or methods that rendered the data unusable [22]. In this
instance, current post-processing methods cost more than compute
time. For researchers who collect data in less accessible laboratories
or environments, or for those whose experiments require consider-
able preparation time, unusable data output can set research back
months or even years.

Currently, researchers are working to forgo post-processing and
move toward in situ visualization, where vast amounts of data
may be collected and rendered as a graphic almost instantaneously,
rather than being filtered throughmonths of post-processing. In situ
methods are particularly exciting for experimental scientists whose
data collection relies on short, intensive experiments that may cost
thousands to run and months to plan. With growing computational
capacities and the race to exascale, in situ data visualization could be
a key way to address issues of environmental impact, the growing
lack of data storage, and the overflow of data that does not have
the human time and sensemaking capacity to match.

3 DESIGNING SCIENTIFIC APPLICATIONS
FOR IN SITU VISUALIZATION

This paper is based on research conducted while embedded as
a rhetorician at a national science laboratory over the course of
two and a half months of ethnographic methods and one-on-one
interviews collected with a group of 15 domain and computational
scientists, statisticians, physicists and data visualization experts
[14].
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This interdisciplinary research team was created to develop an
application for two materials scientists, in order for them to vi-
sualize their experimental data. Rather than acting as clients, the
two scientific users co-led the team, alongside a data visualiza-
tion researcher. Like most scientific software development, there
was a clear exigence and use-case for the proposed application.
Unlike simulation science, which employs physics principles to
develop models of physical behavior, this visualization application
was designed for use during time-constrained and very expensive
experiments in a laboratory.

3.1 PowerPoint as Data Manager
Until this team was assembled, researchers’ workflows operated
along these lines: Schedule specialized lab for experiment (lab might
only be free two days out of the year)

• Schedule specialized lab for experiment (lab might only be
free 2 days out of the year)

• Plan and prepare experiment (6+ months)

• Run experiment (36 hours straight)

• Post-processing of data (2+ months)

• Data Analysis
The interface for the final data analysis step consisted of hun-

dreds of individual images, arranged in a single PowerPoint file. A
slide deckwas the primaryway scientists workedwith and analyzed
their data. Months of planning, hundreds of thousands of dollars,
and countless hours of education and research all culminated in a
PowerPoint file.

The experiments in question can only take place at one of three
locations in the country. Because time in the facility was competi-
tive and due to the massive cost of each experiment (in the hundreds
of thousands of dollars), research plans were designed and revised
meticulously for several months or a year prior to each run. Exper-
iments lasted 36 hours nonstop, and the attending research team
spent that all 36 of those hours on the lab floor. The researchers had
to take a single shot with the lab equipment, collect measurements,
recalibrate, and shoot again, in a constant loop for the entire 36
hours.

The problem with their workflow and the exigence for devel-
oping the new application was that they could not see or access
any of the experimental data during the experiment to be sure that
the equipment was calibrated properly and the shots were aligned
correctly. In fact, because of the massive size of the data generated,
researchers did not have access to this data for months after the
experiment during computational data post-processing. They could
not confirm that they designed the right shots or collected usable
data during lab time, and therefore sometimes spent months and
hundreds of thousands of dollars to rerun the experiment.

To replace the slide deck, the team worked to develop an in situ
visualization workflow and attending interface, whereby scientists
could see their data visualized in real time during experimentation,
which meant that these researchers would also, for the first time,
have the ability to intervene in the experiment. If the data was

unclear, or instruments needed reset, researchers would be able
to monitor the environment and make changes while they were
still conducting the experiment, rather than 6-12 months down the
road.

3.2 Qualitative Vs. Quantitative Usability
Data visualization scholarship and technical papers usually require
some sort of usability testing, which often takes the form of quanti-
tative online quizzes and tasks completed by a random labor pool.
These usability tests are facilitated by services such as Amazon
Mechanical Turk, where random participants take quizzes and re-
ceive micropayments for each user test, along the lines of $.01 per
completed task. Such tasks may be geared toward testing graphical
perception [9], cognitive activities [3], and other micro-functions
in and around data visualization and representation.

Mechanical Turk is a widely accepted tool for studying cognitive
tasks in visualization [9] and even psychology and sociology [15].
Hundreds and sometimes thousands of participants perform micro
tasks associated with a particular data or visualization hypothe-
sis, making Mechanical Turk a tool for oxymoronic large-scale
micro user testing. Quantitative random task-based testing (along
with computational remains the most accepted way to demonstrate
validity in visualization scholarship.

Based on an informal analysis of scientific visualization scholar-
ship, of the 47 papers published from the 2018 IEEE SciVis confer-
ence, 16 of them used some kind of qualitative process to validate
their argument. Nearly a quarter of them (10) used direct feedback
from the one or more scientists for whom they created the appli-
cation. Although qualitative user-testing and validity arguments
do exist in scientific visualization scholarship, quantitative random
task-based testing (along with computational performance met-
rics) remains the most accepted way to demonstrate efficacy when
designing a novel visualization application. Even though crowd-
sourced inquiry such as this is becoming more accepted, it still
leaves wide gaps in how developers might understand the more
situated and complex human processes as they pertain to knowl-
edge making with and through quantitative data. But professionals
in high-tech environments often do not understand or appreciate
the value of qualitative methods [21] for providing insight into
quantitative work like data analysis and computer science.

Those who work directly with domain scientists are often unable
to perform user testing at the same scale as Mechanical Turk studies,
since the techniques and platforms being tested are often custom
made for small research teams and their specific goals and data.
Such was the case for the project team described above, which
consisted of two target users. When we consider users’ experiences,
not as single tasks, but as “ecosystems of activity" [17], it becomes
even clearer that random quantitative user testing, while convincing
in some fields, cannot replicate the kind of information generated
from working directly with end users to design an application from
the concept stage to the end product.

4 A USABILITY METHOD FOR SPECIALIZED
APPLICATIONS

Because the accepted quantitative, anonymous user testing frame-
works would not work for an application specially designed for
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two users, qualitative user testing was considered. Even though
some types of qualitative validity tests are accepted in science vi-
sualization scholarship (as noted above), including use cases and
interviews with scientists, computer scientists and other techni-
cal experts often do not have methodological background in such
methods and techniques. It can be difficult for these teams to spend
the time conducting interviews, let alone learning qualitative tech-
niques that can take years to cultivate.

Based on this professional context, a structured usability method
was designed to be 1) accessible for technical staff, 2) low in time
commitments beyond the application design process, 3) portable
for numerous development projects, and 4) useful in understanding
the real needs of end users. UX design frameworks hinge on active
consideration and participation of actual users throughout the de-
velopment process. While the technical staff generally struggled to
get on board with qualitative measures, they were already fluent in
designing systems with user needs in mind. They may not have had
an understanding of possible procedures, but they understood the
value of working closely with scientists and attending to specific
workflows. Scientific software and applications are highly special-
ized and often their development is funded as a component of a
larger scientific project. Therefore, having a more structured pro-
cess that visualization experts could follow to engage their users
more systematically was useful, particularly when publishing on
these novel applications and positioning user feedback to validate
their designs.

Figure 1: Basic structure for qualitative user elicitation

4.1 Track, Elicit, Analyze, Write
The method developed for this project consists of four processes,
which can and should occur in tandem throughout the design and
assessment process:

• Track challenges, changes and constraints throughout the
process

• Elicit interviews

• Analyze themes

• Write
Though the method outlined below may be seem straightfor-

ward or overly simplified for qualitative researchers, the process

was developed specifically to attend to the constraints and needs
of scientific data visualization researchers unfamiliar with these
techniques.

4.1.1 Track. Making note of users’ domain challenges and visual-
ization constraints, as well as logging notes from all communica-
tions throughout the design process allows visualization experts
to implement and track primary users’ feedback without adding
excessively to preexisting workloads.

Characterize the problem. Clearly note domain characteriza-
tion of the problem and how it may translate from existing domains
or applications. Additionally, track growth and any changes be-
tween early conceptions of problems and solutions, and how they
shift throughout the process.

Workflow Considerations.Make note of decisions and feed-
back that occur throughout the process in communications and
meetings, rather than relying on post-production interviews and
write ups. This list will guide final analysis and allow the gath-
ering of user data iteratively, laying the framework for a better
application.

4.1.2 Elicit Interviews. When possible, interviewswith users should
be conducted, in addition to tracking the collaboration throughout
the project. The goal of interviews is to let the user speak at length
about the way applications are used and useful in their work, and to
talk about the problems it addressed and the challenges that should
be considered in the future.

Workflow Considerations. You may conduct short interviews
iteratively throughout, rather than long interviews at the end of
the process. Interviewees should spend time with the application
open during the interview to spark feedback and demonstrate their
assessment.

4.1.3 Analyze Themes. Analyzing qualitative data can be, in its
simplest form, identifying themes in the data that provide insight
into user needs and application benefits. The goal of this step is
twofold: 1) to identify areas of interest early in the collaboration,
and 2) to begin crafting a narrative and evidence of the application’s
efficacy.

Workflow Considerations. Bring all tracking notes and inter-
views together and begin to identify themes, but do not limit themes
to what is expected, and do not discount outliers. Use themes as
headings in a document to organize your user data. These sections
will form the basis for the narrative in your eventual write-up.

4.1.4 Writing as Inquiry. Writing helps the writer make cognitive
connections and form understanding in ways that cannot be accom-
plished otherwise, and should be done iteratively, just like research
and design.

Workflow Considerations. Collaborative writing and itera-
tive drafting should not be left as the final step, but should begin
early in the process and honed throughout. The text is not a time-
line of events. The goal is to create a cohesive narrative using the
thematized data, so the order in which themes are discussed and
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the connections between each theme is crucial to the audience’s
understanding of the application.

This method acts as a basic guide for data visualization re-
searchers to construct qualitative assessment of their designs, based
on their real, primary users. Additionally, this outline hinges on
values shared by both technical communication and data visual-
ization, such as the value of user input and expertise, the goals of
sensemaking, and creating and identifying opportunities for action.

5 DISCUSSION
Because the research teamwas led by the primary users, they ended
up employing codesign and iterative UXD techniques, even though
that was not their goal. The users chose their team of experts
and engaged the collaborators in months of a “structured learning
phase," [14] where team members took turns educating the others
on each of their own expertise and disciplinary perspectives as
it related to the task at hand. Structured learning was followed
by a long span of weekly all-hands meetings and small working
groups. It was in these regular meetings that the majority of the
team members saw the “real work" of the project being done. The
team’s knowledge was forged from incremental articulation work
of codesigning, which is the recalibration work that gets things
back on track [4]. Sensemaking and the codesign of platforms for
data insights are both kinds of articulation work that require a
process of continually wading in and then adjusting course.

Likewise, the in situ interface was designed purposefully for
data sensemaking to have the same possibilities for exploration and
adjustment. By creating a digital space for researchers to move data
components around and connect them freely, the in situ platform
lets the researcher make meaning from more complex and rela-
tional data. It provides a paratactic, non-linear environment where
the researcher’s process of arrangement produces narratives that
aid sensemaking for the researchers themselves and their eventual
audiences. Data visualization has taken an acute interest in nar-
rative, both in terms of public audiences and understanding, and
because of the power of narrative for data workers and researchers
to understand their own data [20] [10].

As SciVis researchers develop platforms and techniques, their
goal is to help scientists explore and understand their data and its
potential. Novel visualization platforms do not rely on rote pro-
cedural steps. Instead, interfaces are created that emphasize the
possibilities in data. They are built around interfaces that allowmul-
tiple views at once, and the ability to interactively rearrange data to
find patterns and ask questions. Whether they use our terminology
or not, scientific visualization is heavily invested in invention and
arrangement in their research and platform development.

And yet, one of the drawbacks of the proposed method is pre-
cisely that it is so procedural, and could easily be deployed too
rigidly or in contexts that do not lend themselves to these method-
ologies. When practitioners learn techniques but are unfamiliar
with the methodological concerns involved in them, fissures be-
tween intent and efficacy can easily appear. However, until technical
environments begin to more readily see the value that qualitative
researchers and technical communicators can add, simplified meth-
ods such as this one can help computational researchers begin to

practice more effective user-engaged design. As user experience
design concepts and techniques filter in and become more accepted
in the scholarship of highly technical fields, there will continue to
be professional openings for technical communicators who have
expertise in these areas.

Identifying shared values and concerns between data science and
technical communication is a key tool for obtaining andmaintaining
a critical place in interdisciplinary research, which can be a vehicle
for more diverse technical communication research. This case and
the development of the method has uncovered a few key shared
values between the two fields that might hold promise for future
collaboration.

Shared values of data science and technical communication in-
clude:

• Valuing user needs and constraints, while also seeing past
what the user asks for to what the user needs.

• Bridging how information is communicated and able to be
arranged across diverse audiences and expertise levels.

• Using narrative as a sense making tool, which provides dif-
ferent types of insight and uncovers relationships among
possible arguments and understandings [20].

• Facilitating users’ abilities to investigate, explore and under-
stand data, in order to use it to take action.

When technical communicators enter high tech fields or new
workplaces, we expect, at best, some amount of explaining what our
expertise consists of beyond writing document, or at worst, arguing
that our expertise has value. This doesmean, however, that technical
communicators have the opportunity to make new arguments and
to redefine the boundaries of our work in each new space. Even in
high tech, quantitatively-driven workplaces, our human centered
focus—the insights we can gain from concentrating on the human
in technological processes—can be our biggest asset.

Data science is ripe for new pathways to reconfigure user ex-
perience design concepts. Often, data visualization experts do not
have outside domain science expertise, therefore, they have to work
closely with their users to develop successful processes that lead to
the specific kinds of insight needed in each field. The field of sci-
entific visualization is particularly open to insights about usability
and user testing, because their scholarship requires it, and yet very
few practitioners have education or training related to user stud-
ies. While usability can sometimes be relegated to the background
work in high tech industries, in data science and visualization, it
is considered a necessary part of valid research. By demonstrating
in both professional practice and academic work that user experi-
ence design and knowledge making do fall within the purview of
professional and technical communication, we can create openings
for trained technical communicators to explore fruitful research
alongside data-centered science.
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