
ar
X

iv
:1

90
5.

00
84

4v
1 

 [
cs

.G
T

] 
 2

 M
ay

 2
01

9

Price of Privacy in the Keynesian Beauty Contest

Hadi Elzayn∗ Zachary Schutzman†

May 3, 2019

Abstract

The Keynesian Beauty Contest is a classical game in which strategic agents seek to both accurately

guess the true state of the world as well as the average action of all agents. We study an augmentation of

this game where agents are concerned about revealing their private information and additionally suffer

a loss based on how well an observer can infer their private signals. We solve for an equilibrium of this

augmented game and quantify the loss of social welfare as a result of agents acting to obscure their

private information, which we call the ‘price of privacy’. We analyze two versions of this this price:

one from the perspective of the agents measuring their diminished ability to coordinate due to acting to

obscure their information and another from the perspective of an aggregator whose statistical estimate

of the true state of the world is of lower precision due to the agents adding random noise to their actions.

We show that these quantities are high when agents care very strongly about protecting their personal

information and low when the quality of the signals the agents receive is poor.

1 Introduction

In recent years, the mathematical study of privacy has become a major subject of inquiry. Much of the
impetus for this work has been a series of data breaches and deanonymization of seemingly safe private
information, perhaps most famously in the use of IMDb reviews to attack Netflix’s data set over a decade
ago [19]. Models such as differential privacy alleviate this problem by providing formal guarantees about
how much about any individual an adversary can learn from the release of some statistic computed from a
dataset. However, such techniques are generally predicated on the presence of a trusted central agent which
applies the differentially private mechanism to the data it collects from individuals. Alternatively, in the
case of the local differential privacy model, the agents are typically instructed in how to privatize their data.

In this work, we endogenize a notion of privacy in the absence of a trusted party to coordinate the mech-
anism. In particular, we analyze a formalization of a classical game called the Keynesian Beauty Contest,
which has been used to study strategic interaction involving information acquisition and the coordination
of collective action. In particular, we show how the traditional formulation of this game neglects privacy
concerns in its equilibrium predictions, and we then provide a framework for extending the game to incor-
porate a flexible notion of privacy into the utility of the agents. Using this, we can characterize a price of
privacy, somewhat akin to quantities such as the price of anarchy, which measures the loss of social welfare
in a population of agents who act selfishly to guarantee their own privacy.

Abstractly, we think about players in a game being perfectly rational Bayesian agents who observe some
information, perform a utility-maximizing computation, and play an action. However, by observing some
player i’s chosen action, player j may be able to learn something about player i’s private information. For
this reason, if players fear that their public actions may reveal private information, they may be incentivized
to deviate from the strategy which maximizes utility in the absence of privacy concerns. If all players share
such concerns, or anticipate others harboring them, equilibrium behavior may be significantly different than
standard predictions.
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One setting where there may be tension between privacy and coordination with other players and some
underlying ground truth is intra-organizational information aggregation. Suppose that a firm wishes to poll a
group of employees as to a particular decision, such as a prediction about the success of a particular product,
an evaluation of a colleague, or a new procedure for evaluating and settling claims. In order to make the
best decision possible, it is valuable to aggregate information, opinions, or signals received by individuals;
however, individuals may be reluctant to fully share their opinion lest it be held against them or they prove
to be ‘wrong’. In this situation, simple anonymization procedures may not be trustworthy or effective, and
any such procedure requires trusting an internal mechanism to which the employee does not have access. If
the respondent is concerned about other agents deanonymizing her survey, then it should be expected that
she does not respond honestly.

1.1 Our results

We consider a formal model of the Keynesian Beauty Contest, a game in which each agent observes some
information and submits an estimate about the true ‘state of the world’, then earns utility based on both
how close her action is to the truth as well as how close it is to the average action over all agents. We
describe the game, the information structure, and the strategy space and show the existence of a symmetric
linear Nash equilibrium, where agents’ actions are a convex combination of the public and private signals
they observe, extending the results in Morris and Shin [17].

We then turn to the privacy-augmented version of the game, where agents face the same utility function
but also suffer a loss of utility based on the ability of other players to infer their private information. We show
that this new game also has an equilibrium in strategies that can be written as strategies in the original game
with added random noise. This leads to two different values which can be thought of as a ‘price of privacy’.
In the first, we consider the perspective of the agents and quantify the total loss of the players’ utilities as a
result of incorporating this concern for privacy. In the second, we think about an ‘untrusted aggregator’ who
wants to compute some statistic using the agents’ private beliefs but cannot convince them to participate
in a privacy-protecting mechanism. Here, we compute the decrease in the quality of the aggregation due to
the players’ addition of noise to their previously optimal actions.

At a high level, we a consider setting in which there is no centralized planning mechanism, either to
perform the differentially private computation or to instruct the agents who own the data to add a particular
amount of noise to their information in order to perform a locally differentially private aggregation. Rather,
we assume that agents are rational and derive some utility from both the aggregate-level computation being
accurate as well as from the privacy gained by obscuring the information she releases. A major departure
from the local differential privacy framework is in our treatment of outliers. In local differential privacy,
an individual whose data is very different from the norm may have to add a considerable amount of noise
before providing her information to the aggregator, since we need to worry that her unmodified data might
shift the distributions of outcomes farther than we would like. In this work, we consider a different flavor of
individual privacy, where an agent with outlying information does not necessarily care about being revealed
as an outlier; she only cares how accurately an observer can guess her private information.

1.2 Related Work

1.2.1 Economics

Concretely, our work builds primarily on the results in Morris and Shin [17], which formalizes the modern
version of a Keynesian Beauty Contest in order to study the tendency for individuals to over-weight public
information. We similarly explore linear equilibria in a Keynesian Beauty Contest game with public and
private signals; in fact, the structure of our model is substantially very similar, and we recover their results
as a special case when there is no concern for privacy. Viewing our model as a generalization of theirs, we
expand their result on the existence of such equilibria to a privacy-aware setting. The results in Hellwig and
Veldkamp [11] build on those in [17], exploring a setting in which agents optimize a selection of information
sources with different costs matching their qualities. While [11] is quite different mechanically and in spirit,
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there is a certain sense in which our paper can be interpreted along similar lines: the equilibrium noisy
action can be viewed as similar to choosing a private signal of differing variances, and the privacy cost can
be thought of as a cost to more precise information. The Keynesian Beauty Contest is well-studied in the
broader macroeconomics literature (see Nagel et al. [18] for a recent survey) and is frequently used to study
settings where agents derive some value for correctness and for coordination, such as in financial markets or
strategic voting. These settings are natural cases for the use of formal privacy methods, such as financial
analysts wanting to conceal the model they use to predict asset prices or voters being concerned about their
preferences being held against them. Gradwohl and Smorodinsky [10] study a setting in which strategic
agents are concerned that their actions in a game will reveal sensitive private information, but their model
and approach, which is based on the concept of signaling games, is considerably different from the setting
we consider.

1.2.2 Differential Privacy

In the last decade, mathematical notions of privacy have been studied extensively in the computer science
literature. The most influential is differential privacy (c.f. Dwork et al. [8]) which states roughly that
a statistical algorithm is differentially private if the probability that the algorithm gives any particular
output does not change by much when we modify one row of the database the algorithm is run on. Standard
differential privacy is principally a central, rather than individual notion of privacy, as the algorithms operate
under the assumption that the adversary does not have access to the raw data provided to the analyst. The
concept was introduced in Kasiviswanathan et al. [14] and recent work has shown that this notion is a
powerful framework for addressing privacy concerns (c.f. [2, 12, 13]). There is also a literature on privacy
in mechanism design. The work in Chen et al. [6] and Nissim et al. [20] examines settings where agents
participate in a data aggregation mechanism and earn utility which is increasing in the quality of the estimate
but decreasing in the data leakage. The model in [6] is one of truthful voting. In this work, we study a game-
theoretic setting where privacy is a concern, rather than designing a privacy-preserving mechanism. Our
work differs from the formal study of privacy in that we use a definition of which does not (necessarily)
satisfy the strictness of the various versions of differential privacy. Rather, we consider the perspective of
strategic agents who are concerned with other players’ ability to learn ‘too much’ about their own private
information. In this way, our work is related to the issue of response bias on surveys, where respondents do
not answer questions honestly in order to avoid revealing sensitive information. Work examining the use of
randomization to alleviate this effect goes back several decades (e.g. Warner [22]).

Our extended game does bear a resemblance to the local model of differential privacy in that agents add
noise to their actions, and one might intuitively map the case where agents add Gaussian noise to their
actions to an instance of the local Gaussian mechanism (see, e.g. [8]). However, agents in our model are not
using the Gaussian mechanism to achieve differential privacy, and such a guarantee cannot be recovered1,
as the fact that agents’ data is unbounded means that this mechanism cannot give non-vacuous guarantees.
To see this, recall that differential privacy requires that for any set of output of the mechanism must be
approximately as likely when input is neighboring, which typically means differing in one record. In our case,
this corresponds to having a different private signal. The problem is that for any choice of finite variance,
adding Gaussian noise to private signals that are sufficiently distant will produce noisy actions that are far
apart, and can thus be distinguished with high confidence.

More importantly, there is a significant conceptual difference between the models of differential privacy
and our model. In differential privacy models, there is a strict separation of roles: there is an accuracy-
concerned learner that wishes to perform and release the output of a query, and privacy-concerned agents
that supply their data. The addition of noise either centrally or locally prevents any other party from
learning the exact value of the private data with high confidence, and is assumed to be necessary to make
agents willing to supply their data. In contrast, there is no external learner in our model; instead, agents
attempt to coordinate their actions with other agents and the state of the world, but must add noise to their
actions in order to prevent others from learning their private information. Noisier actions lead to greater

1There are other, more complicated mechanisms that can achieve differential privacy with unbounded input data. We refer
readers to [16] and [21] for more discussion.
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variance around the state of the world and the average actions, and thus lower payoffs. Hence, the agents
care about both privacy and accuracy, and this tradeoff determines how much noise they ultimately add.

2 Framework and Model

2.1 The Keynesian Beauty Contest

The Keynesian Beauty Contest dates back to John Maynard Keynes’ 1936 General Theory [15] in which
he formulates a game by analogy to a newspaper beauty contest. In this game, players select the ‘most
beautiful’ entrants from an array of photographs printed in the newspaper, and those players who choose
the most popular faces are eligible for a prize. The salient idea is that a rational contestant must consider
her own opinions about which entrants are the most beautiful as well as her beliefs about the opinions of all
other contestants, and perhaps her beliefs about the beliefs of the other players’ opinions of other players,
and her beliefs about the beliefs about the beliefs about the beliefs about the opinions of other players, and
so on. Keynes originally proposed this as a model to explain the behavior of financial markets, where the
value of an asset depends as much on its fundamental potential for returns as it does the collective belief in
its potential for returns. Since its inception, this model has been used throughout the economics literature
to describe the behavior of rational agents in strategic environments (c.f. [1, 4, 5, 9, 17, 18]), particularly in
macroeconomic settings.

In this paper, we work with a common abstraction of the Keynesian Beauty Contest (see e.g. [11, 17]) in
which there is some true state of the world s, and each agent submits a guess θi and earns utility equal to

ui(θi, θ−i) = −(1− α)(θi − θ̄)2 − α(θi − s)2,

where θ̄ is the average choice of θi over all players and θ−i denotes the action of all other players other than
i. We refer to the (θi − θ̄)2 term as the coordination component, which rewards how close player i’s action
is to that of the other players, and the (θi − s)2 term as the guessing component, which describes how close
player i’s action is to being the correct guess for the true state of the world s. The parameter α ∈ [0, 1]
is common to all agents and describes the relative weighting of the values of coordination and guessing the
true state of the world correctly.

We let n denote the number of players. In the economics literature, it is standard to consider a continuum
of agents indexed by the unit interval [0, 1]. We present our results from the perspective of the finite game
and observe that the analogous result for the continuum case emerge by taking the limit as n grows to
infinity. We state these as propositions immediately following the corresponding result in the finite game.
For the sake of brevity, all omitted proofs as well as direct proofs of the results in the infinite game can be
found in the appendix.

The fundamental difference between the two cases is in the definition of the average action θ̄. In the
game with finitely many and infinitely many agents, these are

θ̄ =
1

n

n
∑

j=1

θj and θ̄ =

∫ 1

0

θjdj,

respectively. In the finite game, agent i’s action θi has a measurable effect on the average action whereas
in the infinite game, her impact is infinitesimal. Therefore, when there are finitely many players, agent i

must consider her own action’s effect on θ̄; in the infinite case, she can treat θ̄ as simply the average action
of all players other than herself. Intuitively, as n grows, any individual’s ability to unilaterally affect θ̄, so
we should expect that the results in the infinite game emerge as the limits of the results in the finite game
as n grows to infinity.
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2.2 Information Structure

We now describe the information structure of the game. Each player has a common improper uniform prior
distribution over the value of s. There is a public signal y, drawn from a Gaussian distribution with mean
s and variance σ2

y. Additionally, each player i observes a private signal xi independently drawn from a
Gaussian distribution with mean s and variance σ2

x. Each player observes y and her own xi, but not any
other player j’s private signal xj . Each player i’s utility function ui(θi, θ−i) is identical as given above. The
values of σ2

y, σ
2
x, α, the utility functions, and the realization of y are public and common knowledge, and the

form of the priors and structure of the game is also common knowledge. Furthermore, we assume that the
agents are rational and Bayesian. That is, they seek to maximize their expected utility given their knowledge
and their beliefs about other players.

We use the notion of an improper uniform prior belief to align with the economics literature; however,
this concept is not necessarily standard across disciplines. One can think of a (proper) uniform prior with
compact support as indicating that players believe any underlying parameter in the support is equally likely
to be the truth. An ‘improper uniform prior’ expresses the same sentiment for an unbounded support. The
term ‘improper’ arises because such an object is not a probability density function, but, when updated with
the proper Gaussian signals in our setting, the posterior is a proper distribution. Berger et al. [3] provide a
useful discussion of settings in which the improper uniform prior is appropriate.

For readers uncomfortable with such a notion, we present an alternative framing of the information
structure which is equivalent to the above. The private signals xi, the utility functions, and the values of α
and σ2

x are as before. Rather than y representing a public signal, each agent instead has a prior belief about
the true state of the world s, which is a Gaussian distribution with mean y and variance σ2

y. This prior is
common to all agents and the parameters of the prior are common knowledge. This framing is equivalent to
the previous one since an agent with an improper uniform prior, upon observing the realization of the public
signal y, updates her posterior belief about s to be Gaussian with mean y and variance σ2

y, which is what
she would have believed if she instead began with the common Gaussian prior.

We write Ii for the information set of player i, which captures the structural information about the game
as well as the values of xi and y. Furthermore, we use Ei (·|Ii) to denote the expectation of player i at Ii,
which is player i’s belief about some quantity given that she knows everything at Ii. Where it is clear from
context, we drop the Ii for notational clarity and simply write Ei(·).

We now consider an equilibrium concept for this game.

Definition 1 Symmetric linear Nash equilibrium. A symmetric linear Nash equilibrium of this game is an
action θi for each player i which can be written as a linear combination of the private and public signals xi

and y such that no player can profitably deviate unilaterally and every player i chooses the same weight to
put on xi and y. That is, a Nash equilibrium in which θi = κxi + (1− κ)y for all players and κ is identical
for all players.

The authors in [17] describe the unique symmetric linear Nash equilibrium of a slightly different version
of the game which has the same first order condition; our proof follows a very similar structure.

Lemma 1 First order condition. In equilibrium, an agent’s optimal choice of θ∗i must satisfy

θ∗i =
αn2

Ei[s]

α(2n− 1) + (n− 1)2
+

(1 − α)(n− 1)Ei

[

∑

j 6=i

θj

]

α(2n− 1) + (n− 1)2

Proposition 1. In the game with infinitely many agents, in equilibrium, an agent’s optimal choice of θ∗i
must satisfy

θ∗i = αEi[s] + (1− α)Ei[θ̄]

These results say that the optimal action is a convex combination of agents’ expectations about the state
and the average actions; this follows directly from the structure of the payoff function. Now, if other agents’
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strategies are convex combinations of signals, then the unique best response is also a convex combination of
signals. We can match coefficients to solve for this symmetric linear Nash equilibrium.

Lemma 2 Nash equilibrium and Value of κ. The symmetric linear Nash equilibrium is given by

θi = κxi + (1− κ)y, where

κ =
αn2τx

αn2τx + ((n− 1)2 + α(2n− 1)) τy
, τx =

1

σ2
x

, and τy =
1

σ2
y

for all players i.

Proposition 2. The symmetric linear Nash equilibrium in the game with infinitely many players is given
by

θi = κxi + (1− κ)y, where

κ =
τxα

τxα+ τy
, τx =

1

σ2
x

, and τy =
1

σ2
y

for all players i. This recovers the analogous result in [17].

Notice that if α = 1, the agent is only rewarded based on his closeness to the state, and θ∗i then dictates
that agent i play his best guess of the state. As α falls, the weight Agent i places on his private signal
diminishes, until at α = 0, the agent chooses θ∗i to be equal to y, the public signal.

We can now write the expected utility to each agent in this equilibrium:

Lemma 3 Expected utility. The expected utility of agents for playing θi = κxi + (1 − κ)y, given s is:

Ei[ui|s] = −α(κ2σ2
x + (1 − κ)2σ2

y)−
(1 − α)κ2(n− 1)

n
σ2
x

Proposition 3. The expected utility of agents for playing θi = κxi + (1− κ)y, conditional on s in the game
with infinitely many players, is:

Ei[ui|s] = −α(1 − κ)2σ2
y − κ2σ2

x

Using the value of κ from the infinite setting for simplicity2 we can now examine how utility changes as
the variances of the signals and number of agents do. We briefly analyze this next.

Corollary 1 Comparative statics.

∂Ei[ui|s]

∂σ2
x

= −
(ασ2

y)
2

(ασ2
y + σ2

x)
3

(

(2− α)α2σ2
xσ

2
y + σ2

y −
n− 1

n
(1− α)(ασ2

y − σ2
x)

)

,

∂Ei[ui|s]

∂σ2
y

= −
α(σ2

x)
2

(ασ2
y + σ2

x)
3

(

2α2σ2
y − ασ2

y + σ2
x +

n− 1

n
2α(1− α)σ2

y

)

,

and

∂Ei[ui|s]

∂n
= −

(1− α)α2σ2
x(σ

2
y)

2

n2(ασ2
y + σ2

x)
2

.

2For a fixed n, the infinite version of κ differs from the finite version by a multiplicative factor of 1− 1

n
2

while the utilities

differ by a factor of 1− 1

n
. Therefore, the value of κ in the infinite case is very close to that in the finite case for modest values

of n, and any countervailing effect of changing the parameters through κ will be dominated by the direct effects on the utility.
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All else fixed, decreasing σ2
x unambiguously increases utility. The fractional term in ∂Ei[ui|s]

∂σ2
x

is always

positive and the term in the parentheses is also always positive, so ∂Ei[ui|s]
∂σ2

x
is strictly decreasing as σ2

x

increases. This aligns with the intuition that higher quality information means that agents will be able
to both guess the true state of the world more precisely as well as coordinate better with one another. A
similar intuition holds for the effect of decreasing σ2

y , since the term in the parentheses is always positive
when n ≥ 2. However, the rate at which utility increases when the signal variances decrease is not the
same. Supposing σ2

x = σ2
y , agents gain more value from decreasing σ2

y than σ2
x for two reasons. The first

is the over-weighting of y. Since agents more heavily weight the public signal y compared to their private
information xi, a small improvement in the precision of y will help agents choose an action θi closer to s

than an identical improvement in the precision of the xi signals. The second reason can be thought of as a
second-order effect of this over-weighting. Since agents over-weight it, improving the quality of the public
signal y even further increases the weight agents will place on it. Therefore, not only will agents actions
be closer (in expectation) to s, but they will be closer to each other, thus also improving the utility in the
coordination component.

As n increases, utility decreases. There is an n−1
n

coefficient on the second term in the utility function,
and as n grows, this grows towards 1. We can think of this term as measuring the amount of non-impact
any one agent can have on the average action θ̄. When the number of agents is very few, agent i’s action θi
can’t be too far from the average since the construction of θ̄ will have a high weight on θi, and this weight
decreases as n grows. For very large values of n, agent i has a small impact on the average action, so the
risk of being far away is greater.

2.3 Privacy-Awareness

Now we come to the heart of the privacy issue. Suppose that at the end of the game, each player’s action θi
is made public. Then, upon seeing θi, player j can simply write

xi =
θi − (1− κ)y

κ
,

and since everything on the right hand side is known to player j, she can learn player i’s private signal xi

with perfect precision. This suggests that if the players care at all about preserving the privacy of their
private signals, they ought not to play exactly the equilibrium prediction θi.

As written, privacy is not in the players’ utility functions, and it is too much to ask for a prediction that
incorporates privacy without actually incorporating privacy into the utility function. To overcome this, we
let ρ(θ̃i) denote, abstractly, a measure which describes how ‘private’ the (possibly randomized) action θ̃i is.
For example, ρ could represent the maximum precision (i.e. the reciprocal of the variance)3 to which some
player j can infer the private signal xi of player i after observing his action and given her information set
Ij and knowledge of the equilibrium strategies. Here, we consider both this precision measure of privacy as

well as an entropy measure, where ρ(θ̃i) is the (information-theoretic) entropy of this inference, rather than
the variance.

It is clear that any equilibrium which prescribes a deterministic mapping from the available information
to an action θ∗i cannot offer any measure of privacy to the players. To correct for this, we enhance players’
utility functions to incorporate the value they gain from obscuring their signals and extend the equilibrium
concept to a noisy one, where players select not only a guess about the state, but also a noise-generating
distribution. Formally, we extend the utility function to

vi(θ̃i, θ̃−i) = (1 − β)ui(θ̃i, θ̃−i) + βρ(θ̃i),

where ui is as before and β ∈ [0, 1] denotes the agents’ relative value for obfuscation.
We can observe that if β 6= 0, the equilibrium actions in the original game do not support an equilibrium

in this game, since upon observing θ∗i , any player j can exactly recover the private signal xi, and player j’s

3Taken as a worst-case over all j 6= i.
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‘distribution’ over the possible values of xi is degenerate with variance or entropy equal to zero. Concretely,
in the precision setting, βρ(θ̃i) is −∞ and vi(θ

∗
i , θ̃−i) = −∞. Conversely, if player i were to choose κ′ = 0

(and therefore θ̃i = y), her utility would be finite, thus demonstrating a profitable deviation.
Thus, any deterministic equilibrium cannot be supported if privacy is incorporated into the utility func-

tion, and some degree of randomization is necessary; however, the next section will show that the prediction
of the deterministic optimum will serve as the core deterministic component to an optimal randomized
strategy.

We remark here that if agents do not care about others learning their signal at all (i.e. β = 0), the utility
function degenerates to that of the original game. If β = 1, then players only care about protecting their
private signal, and a dominant strategy is to take the action which maximizes the obfuscation of the private
signal.

3 The Extended Game

We now formalize this modified game and show that it still has a symmetric linear Nash equilibrium when
we consider randomized strategies. Here, optimal actions are of the form θ̃i = θi + ηi, where θi is the same
linear aggregation of the public and private signals as in the original game and ηi is independent noise drawn
from a distribution whose form depends on how we measure the obfuscation component ρ(θ̃i). That is to
say, there is a symmetric linear Nash equilibrium in which players’ optimal action is a noisy modification of
their optimal action in the original game. Note that randomized strategies are not mixed strategies in the
classical sense. Each player’s choice of a noise-generating distribution can be thought of as committing to a
collection of parameters which describe that distribution. In this sense, our equilibrium concept is a ‘pure
strategies’ one, since each player will commit to a single collection of parameters, not a distribution over
such collections.

3.1 Defining the Extended Game

In the extended game, s, xi, σ
2
x, y, σ

2
y , and θ̄ are as before. Each player chooses an action θ̃i, and receives

utility
vi(θ̃i) = (1 − β)ui(θ̃i) + βρ(θ̃i),

where β ∈ [0, 1], and ui(θ̃i, θ̃−i) = −(1 − α)(θ̃i −
¯̃
θ)2 − α(θ̃i − s)2 as before. We write

¯̃
θ to represent the

average (noisy) action of the players. After each player announces θ̃i, players also learn the function each
player used to select θ̃i as a function of Ii. For example, if a player’s strategy is to play xi plus some random
noise, player j learns the distribution from which this noise was drawn, though (crucially) not the realization
of this draw. We denote the privacy loss of each player after actions are revealed ρ(θ̃i). The two possibilities
we consider for ρ are both functions of the belief distribution that a Bayesian agent, given their information
set, observation of θ̃i, and knowledge of equilibrium strategies and the randomization mechanism used by
player i, assigns to xi; one is the precision of these beliefs, and the other is the entropy. Formally,

Definition 2 Precision privacy loss in equilibrium. For a given equilibrium profile, Player i’s precision
privacy loss is the expected precision with which a Bayesian opponent, knowing the equilibrium profile and
observing their own signal, the public signal, and Player i’s action θ̃i, can estimate Player i’s signal xi. That
is, if γ represents the belief distribution about xi, we define:

ρprec(θ̃i) =
1

Var γ(xi|s, θ̃i, Ij , H)

Definition 3 Entropy privacy loss in equilibrium. For a given equilibrium profile, Player i’s entropy privacy
loss s the expected precision with which a Bayesian opponent, knowing the equilibrium profile and observing
their own signal, the public signal, and Player i’s action θ̃i, can estimate Player i’s signal xi. That is, if γ
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represents the belief distribution about xi, we define:

ρent(θ̃i) = −

∫

γ(xi|s, θ̃i, Ij , H) log γ(xi|s, θ̃i, Ij , H)dθ̃i

Before we move on, it is worth considering kinds of distributions these choices consider to be ‘private’.
For example, considering the following two belief distributions:

γ1 : xj = U([−ǫ, ǫ]) γ2 :

{

M with probability δ

−ǫ otherwise

By choosing M large and ǫ small, the appropriate choice of δ can be made to force γ2 to have arbitrarily
large variance (small precision), but extremely low entropy. On the other hand, a uniform distribution γ1
has relatively high entropy as compared to its variance. If agents measure their privacy by precision, they
will be indifferent between adding noise from a fairly narrow uniform distribution and a discrete distribution
which almost always adds a very small amount of noise but rarely adds an enormous amount. However,
if they measure their privacy with respect to entropy, the uniform option offers a much greater amount of
privacy, and since (as we will show in Corollary 2) agents pay a price in their utility equal to the variance of
the noise-generating distribution, for a fixed variance the higher entropy uniform distribution will be strictly
preferred to the discrete one.

We aim to show the following theorem:

Theorem 1. Consider the modified game as defined above. Suppose players’ actions θ̃i and the (possibly
randomized) mapping (y, xi) 7→ θ̃i are revealed at the end of the game, and players’ loss of privacy ρ(θ̃i) is
measured as either the reciprocal of the variance or the entropy of a representative player j’s posterior belief
about xi at the end of the game. Then, this game has a symmetric linear Nash equilibrium where each player
chooses θ̃i = κxi + (1− κ)y + ηi where κ is as it is in the original game and ηi is a random variable drawn
from a distribution whose form depends on whether we use reciprocal variance or entropy to measure privacy.

Proof sketch. We prove this theorem over the course of several steps throughout the remainder of this section,
which contains the formal statements of the following:

1. First, we show (Claim 1) that if players do indeed choose their action by adding noise to their privacy-
unaware equilibrium action, then the distribution which generates the noise must have mean zero.

2. Using this, we prove (Lemma 4) that the utility function separates into the sum of three parts: the
utility in the original game, a penalty paid in the variance of the noise distribution, and the privacy
component.

3. Then, since the utility function separates additively, we can use the first-order conditions (Lemma 1) to
solve for the optimal choice of distribution from which to draw the noise (Corollary 3), which depends
on whether the loss of privacy is measured by reciprocal variance or negative entropy.

4. Finally, we demonstrate that this strategy profile supports a Nash equilibrium by arguing that there is
no profitable deviation for any player in the game (Lemmas 6 and 7). We call this a symmetric noisy
linear Nash equilibrium.

We first define a Noisy Strategy:

Definition 4 (Linear) H-noisy strategy. An H-noisy strategy has the form

θ̃(x, y, ν) = θi(x, y) + ηi

where ηi is a random variable drawn from a distribution H and θi(x, y) is a deterministic function of signals
x and y. We say that θ̃ is a normal noisy strategy if H is a Gaussian distribution. If, moreover, θi(x, y) is
linear and can be written as θi(x, y) = κx+ (1− κ)y, we say that θ̃ is a linear noisy strategy.
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Note that any randomized strategy that can be decomposed into a deterministic component and a
random component can be described as a noisy strategy. This means that Lemma 2 applies whether or not
the underlying deterministic component is linear.

Claim 1. If there exists an equilibrium in noisy strategies, where player i chooses θ̃i = θi + ηi and each
player’s ηi is drawn independently from a distribution Hi, then there exists such an equilibrium strategy
profile in which the mean of each Hi is zero.

If the parameter α is greater than 1
2 , then every such equilibrium requires players to choose a mean-zero

noise-generating distribution. To see this, suppose all players j 6= i choose a mean µ > 0. Then for a small
enough value of ǫ, player i choosing a noise-generating distribution with mean µ− ǫ is a profitable deviation,
since α > 1

2 means that her gain from moving θ̃i closer to s more than offsets the loss from moving further

from ¯̃
θ. Going forward, we assume without loss of generality that any noisy equilibrium is one in which the

added noise comes from a mean-zero distribution.
We now define our equilibrium concept, which is analogous to that of the original game.

Definition 5 Symmetric noisy linear Nash equilibrium. A symmetric noisy linear Nash equilibrium of this
game is a strategy profile θ̃ where each player i chooses

θ̃i = θi + ηi

and θi = κxi+(1−κ)y, κ is the same for all agents, and each player’s noise ηi is drawn independently from
the same distribution H.

One important point is that ρ(θ̃i) is a function of the optimal Bayesian posterior distribution of xi given
θ̃i and y, so an agent must consider his choice of action both in relation to the change in coordination
in addition to others’ beliefs about him; however, these beliefs are only what an optimal Bayes estimator,
knowing the equilibrium profile, could infer. In particular, agents are concerned only by the knowledge of
agents that are correct. It is conceivable that agents could worry about opponents incorrectly inferring their
signals, but that falls outside the scope of this model.

3.2 Solving the Extended Game

Having defined the privacy-extended game, we can solve for the parameter values which support a symmetric
noisy linear Nash equilibrium. Much of the analysis follows either directly from or along similar arguments
as in the original game. We proceed as follows. First, we demonstrate in Corollary 2 that the utility function
separates additively into three components: the utility in the original game, a penalty in this utility due to
the added noise, and the privacy term. We then derive the first order condition of a representative agent in
Proposition 4 and use this to find the optimal parameter values in Corollary 4, depending on whether we
consider the precision-based or entropy-based measure of obfuscation. Finally, in Lemmas 6 and 7, we show
that these values support an equilibrium. This completes the proof of Theorem 1.

We begin with the separability of the utility function.

Lemma 4 Separability. In the game with finitely many players, the players’ utility functions in the privacy-
aware game separate additively into the utility in the privacy unaware game, a penalty in νi, and a privacy
term as

vi(θ̃i, θ̃−i) = (1− β)
(

−α(θ̃i − s)2 − (1− α)(θ̃i −
¯̃
θ)2
)

+ βρ(θ̃i)

= (1− β)ui(θi, θ̃−i) + (1 − β)

(

α+

(

1−
1

n

)2

(1− α)

)

νi + βρ(θ̃i),

where νi denotes the variance of the noise-generating distribution Hi of player i and ui is the utility function
in the privacy-unaware game.
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Corollary 2. Suppose that all agents play a noisy strategy θ̃i = θi+ ηi, with ηi being a random variable and
E(ηi) = 0. Then an agent’s utility can be decomposed into

Ei[vi(θ̃, θ̃−i)] = (1 − β)Ei[u(θi, θ̃−i)] + (1− β)νi + βρ(θ̃i)

where νi denotes the variance of the noise-generating distribution Hi of player i and ui is the utility function
in the privacy-unaware game.

This shows that agents can evaluate what their optimal action would be in the original game and then
decide the optimal amount of noise to add, choosing their action as the realized value of the noise plus their
optimal action.

We next derive the first order conditions for the privacy-extended game. By Lemma 4 and Corollary
2, the first order conditions can be disentangled into a first order condition on the deterministic component,
which must be as in Proposition 1 and Lemma 1, and a separate first order condition on the variance of the
random component. Because the added noise is mean-zero, expectations about average action and state are
as before, and the κ in the optimal deterministic action is the same as before.

Lemma 5 Privacy-aware first order conditions. In an equilibrium of the game with finitely many players
where the optimal action is θ̃∗i = θ∗i +ηi, the optimal choice of θ∗i and the variance ν∗ for the noise-generating
distribution Hi from which ηi is drawn must satisfy

θ∗i =
αn2

Ei[s]

α(2n− 1) + (n− 1)2
+

(1− α)(n− 1)Ei

[

∑

j 6=i

θj

]

α(2n− 1) + (n− 1)2
,

∂ρ

∂ν∗
= −

−(1− β)
(

α+
(

1− 1
n

)2
(1 − α)

)

β
.

Proposition 4. In the game with infinitely many players, in an equilibrium where the optimal action is
θ̃∗i = θ∗i + ηi, the optimal choice of θ∗i and the variance ν∗ for the noise-generating distribution Hi from
which ηi is drawn must satisfy

θ∗i = αEi[s] + (1− α)Ei[
¯̃
θ]

∂ρ

∂ν∗
= −

1− β

β
.

Corollary 3 Finite game privacy parameters. The optimal deterministic component θi is, as before,

θ∗i = κxi + (1− κ)y

and the optimal choice of variance for the noise distribution is

ν∗i,prec =

√

√

√

√

β

1− β

(

α+ (1 − α)

(

1−
1

n

)2
)

or ν∗i,ent =
β

1− β

(

α+ (1− α)

(

1−
1

n

)2
)

where ν∗i,prec and ν∗i,ent are the optimal variances under ρ being the precision and entropy privacy measures,
respectively.

Corollary 4 Infinite game privacy parameters. The optimal deterministic θi is, as before,

θ∗i = κxi + (1− κ)y
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and the optimal choice of variance for the noise distribution is

ν∗i,prec =

√

β

1− β
ν∗i,ent =

β

1− β

where ν∗i,prec and ν∗i,ent are the optimal choices of variance when ρ is the precision-based or entropy-based
privacy measure, respectively.

Before proving this, we state a fact about the entropy of Gaussian distributions.

Fact 1. Among all distributions supported on the entire real line with a fixed mean µ and variance σ2, the
Gaussian N (µ, σ2) achieves the maximum entropy, and its entropy is given by 1

2 log (2πeσ
2).

Since agents pay a penalty in the variance of their noise distribution, agents who measure their privacy
loss with entropy pay the same penalty for any distribution with a fixed variance, and their gain from
privacy is maximized by picking the distribution with maximum entropy. Therefore, the choice of a mean-
zero Gaussian with appropriate variance is the dominant strategy for such agents. A proof of this fact can
be found in Chapter 9 of [7].

Proof of Corollaries 3 and 4. The fact that the first order condition on θ∗i is the same as that of θ∗i in the

original game, and that agents add mean-zero noise (implying Ei[
¯̃
θ] = Ei[θ̄]) implies the optimal choice of

θ∗i . To find the optimal ν∗, we note that the reciprocal variance and entropy penalties (respectively) are

ρprec(ν) =
−1

ν
ρent(ν) =

1

2
log (2eπν).

Differentiating these with respect to ν and rearranging gives the results.

We can observe that the optimal choice of ν∗i is similar for both of these functions, even if their construc-
tions are not. Each is increasing at a decreasing rate as ν grows, since their derivatives are of the form 1

νc

for c ≥ 1. Since players gain a diminishing marginal benefit for adding additional noise as they increase ν

but pay a penalty linear in ν, we should expect this trade-off to point to an equilibrium. This will hold for
any penalty function whose derivative is of this type, although the interpretation of such a function may not
be as natural of a property of a distribution as precision or entropy.

Using these, a symmetric linear noisy Nash equilibrium of this game follows:

Lemma 6 Equilibrium – precision loss. There exists a symmetric linear noisy Nash equilibrium in which
all agents use κ as defined in Lemma 2 and draw independent noise from a distribution Hi with variance

ν∗, where Hi can be any distribution with mean zero and variance ν∗i,prec =
√

β
1−β

. Here, agents may choose

any distribution with these properties.

Lemma 7 Equilibrium – entropy loss. There exists a symmetric linear noisy Nash equilibrium in which all
agents use κ as defined in Lemma 2 and draw independent noise from the Gaussian distribution N(0, ν∗ent).

Since the Gaussian is the maximum entropy distribution with fixed variance ν∗, all agents draw noise
(independently) from the same distribution.

This completes the proof of Theorem 1, since we have found a symmetric linear noisy action for each
player which satisfies the first order conditions of the privacy aware game. We next analyze and discuss the
price of privacy in the new game.

4 Price of Privacy

Informally, the price of privacy describes the loss in quality of some measure as a result of introducing
privacy-awareness into the game. We describe two different, but related, quantities which represent this
effect and discuss some settings where one may be interested in each.
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4.1 The Agents’ Cost

Our first notion of the price of privacy can be viewed as the utility the agents pay in the original game in order
to express their value for obfuscation. Formally, recall that ui(θi, θ−i) = −(1−α)(θi− θ̄)2 −α(θi− s)2 is the
utility function in the unmodified game. In the symmetric linear Nash equilibrium, each player chooses the
prescribed optimal action θ∗i and earns utility ui(θ

∗
i , θ

∗
−i). Similarly, in the modified game, in the symmetric

linear Nash equilibrium chooses the optimal noisy action θ̃∗i . We can now ask how much worse-off playing
the actions θ̃∗ in the original game makes a representative player as compared to playing the actions θ∗.
Formally, we can quantify the price of privacy by taking the ratio of these utilities.

Definition 6 Agents’ price of privacy. The price of privacy given an information structure is

PoP(τx, τy, β) =
Ei[ui(θ̃

∗
i , θ̃

∗
−i)]

Ei[ui(θ∗i , θ
∗
−i)]

where the expected utility is with respect to the game with signal variances σ2
x and σ2

y.

Lemma 8 Agents’ price of privacy – form. The price of privacy in the game where agents play a linear
strategy has the form

PoP(τx, τy, β) = 1 +
ν∗i

Ei[ui(θ∗i , θ
∗
−i)]

where the expected utility is with respect to the game with signal variances σ2
x and σ2

y.

Theorem 2 Price of privacy – value. In the game with finitely many agents, the price of privacy is:

PoP(τx, τy, β) = 1 +
ν∗i

α(κ2σ2
x + (1− κ)2σ2

y) +
(1−α)κ2(n−1)

n
σ2
x

,

for

ν∗i,prec =

√

√

√

√

β

1− β

(

α+ (1 − α)

(

1−
1

n

)2
)

or ν∗i,ent =
β

1− β

(

α+ (1− α)

(

1−
1

n

)2
)

if we measure the privacy loss using precision or entropy, respectively, and

κ =
αn2τx

αn2τx + ((n− 1)2 + α(2n− 1)) τy
.

Proposition 5. In the game with infinitely many agents, the price of privacy is:

PoP(τx, τy, β) = 1 +
ν∗i

(α(1 − κ)2σ2
y + κ2σ2

x)
,

where ν∗i is
√

β
1−β

if privacy is measured by precision and β
1−β

if privacy is measured by entropy and

recalling that κ = τxα
τxα+τy

.

Proof. This follows directly from the expected utility computation in Proposition 3 and the functional form
of the price of privacy in Lemma 8.
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We can observe several features of the price of privacy. First, it can be arbitrarily large, depending on the
value of the parameters. If β is close to 1, then agents have a relatively high value for obfuscation and will
add large amounts of noise to their actions in order to protect their private signals. As β becomes closer to
zero, agents do not care too much about privacy and their actions become more and more similar to those
in the original game, so the price of privacy is minimized when β = 0. Second, if we fix a value of β, then
the price of privacy decreases as the variance of the public and private signals increase. This is because the
value of β determines the noise that players will add to their signals, and therefore fixes the numerator of
the fractional part of the price of privacy. The price of privacy is decreasing in any factor that improves the
expected utility, such as decreasing the signal variances or n (as in Corollary 1). The effect is ambiguous
when changing σ2

y , due to the over-weighting phenomenon.
This ratio measures the degree to which agents are worse-off in the coordination and guessing components

by playing the privacy-aware equilibrium noisy actions as compared to the privacy-unaware equilibrium
actions for a fixed α, σ2

x, and σ2
y and the realizations of xi and y. This can be thought of as describing the

increased risk of making the ‘wrong’ decision in an opinion-aggregation setting or of misvaluing an asset in
a financial markets setting as a result of agents adding noise to their actions.

4.2 The Aggregator’s Cost

Suppose instead we are viewing this game from the position of a data aggregator. The aggregator can observe
the actions of some finite number of agents n and takes the average of these to estimate the true state of
the world s by taking a simple average. The aggregator does not know the realizations of any of the xi or
y, but she does know the signal variances and the value of κ; she also knows that E[θi] = E[θ̃i] = s for all
agents i, so the sample average will provide an unbiased estimate of s. If we define the aggregator’s ‘utility’
to be the variance of its sample about s, then we can make the following observation:

Lemma 9 Aggregator’s utility. Consider an instance of the privacy-aware game where an aggregator ob-
serves the actions of n agents (either all all of the agents in the finite case or some uniformly random sample
in the finite or infinite case), the signal variances are σ2

x and σ2
y, and players choose to add mean-zero noise

with variance ν∗i . Then the utility of the aggregator, as measured by the variance of the sample average about
the true state s is given by

Uagg(σ
2
x, σ

2, ν∗i , n) = E









(

1

n

n
∑

i=1

θ̃i

)

− s

)2
∣

∣

∣

∣

∣

∣

s





=
κ2

n
σ2
x +

ν∗i
n

+ (1− κ)2σ2
y .

We can find the aggregator’s utility in the privacy-unaware game by letting ν∗i = 0, which recovers a
result in Morris and Shin [17].

We can again take the ratio of the aggregator’s utility in the privacy-aware game to that in the privacy-
unaware game to quantify the extent to which privacy-awareness degrades the quality of the aggregator’s
sample mean as an estimate of s.

Lemma 10 The Aggregator’s price of privacy. The price of privacy for the aggregator in equilibrium is
given by

PoPagg(σ
2
x, σ

2
y , n) =

E[Uagg(σ
2
x, σ

2
y , ν

∗
i , n)]

E[Uagg(σ2
x, σ

2
y, 0, n)]

= 1 +
ν∗i

κ2σ2
x + n(1− κ)2σ2

y

where ν∗i is
√

β
1−β

if privacy is measured by precision and β
1−β

if privacy is measured by entropy and recalling

that κ = τxα
τxα+τy

in the game with infinitely many agents and κ = αn2τx
αn2τx+((n−1)2+α(2n−1))τy

in the game with

finitely many agents.
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Proof. This follows from plugging in the forms for the expected utilities from Lemma 9 and simplifying.

We can again observe that, for the same reason as the agents’ price of privacy, that this quantity can
be arbitrarily large as β approaches one and that it is decreasing as the signal variances grow. We can
also observe that this price decreases towards one as n grows, all else fixed. This is consistent with the
intuition that an aggregator can offset the cost of agents adding more noise to their actions by making more
observations.

The agents’ and aggregator’s prices of privacy are somewhat similar both in functional form and in
interpretation and this results from their values almost aligning. The agents’ cost is measured by a weighted
deviation from both the true state and the average while the aggregator’s is measured by a deviation from
the true state alone. Any configuration of the game parameters which cause κ = 1 (i.e. agents ignore the
public signal) causes them to be exactly equal. This again highlights the problem of over-weighting the
public signal, and this issue is exacerbated for the aggregator, who, in effect, observes n ‘copies’ of y rolled
into the actions θi and θ̃i. If the aggregator knows the realization of y, she can, similarly to the agents,
use that information to find (an estimate of) the private signals xi from the observations of θi or θ̃i. This
motivates the same privacy concern as in the case where other agents were trying to infer agent i’s private
signal, this time in the context of a distrusted central aggregator.

5 Discussion and Future Directions

In this work, we used a game-theoretic model to examine a game with agents acting to obscure their private
information. We began with the Keynesian Beauty Contest and modified the agents’ utility functions so
as to endogenize a notion of privacy. Using this, we can quantify the social costs of this ‘selfish’ privacy
protection as a ‘price of privacy’, both with respect to the agents as well as an (untrusted) central aggregator.

A clear next-step would be to repeat this analysis for other stylized models of strategic interaction, such
as bargaining games or resource allocation problems, where individuals seek to balance expressing their
preferences well enough to achieve a high payoff but choose to deviate slightly from this in order to obscure
their true valuations.

Finally, the high-level motivation in this work is to examine how strategic agents behave when they are
concerned with privacy, so another interesting direction would be to integrate this approach with existing
formal notions of privacy. For example, examining what agents’ utility functions and action spaces must look
like in order for there to exist an equilibrium which implements a locally differentially private mechanism
could be a fruitful avenue of research.
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A Omitted Proofs

We present here the statements and proofs of the results whose proofs were omitted from the main text.
We also present from first-principles the proofs of the analogous results in the game with infinitely many
players, which demonstrates that the proofs where we took the limit of the finite result as the number of
players grows to infinity are indeed correct.

Omitted Proofs from Section 2

Lemma 1. In equilibrium, an agent’s optimal choice of θ∗i must satisfy

θ∗i =
αn2

Ei[s]

α(2n− 1) + (n− 1)2
+

(1 − α)(n− 1)Ei

[

∑

j 6=i

θj

]

α(2n− 1) + (n− 1)2

Proof. Fix the actions of all other players j 6= i and consider the utility of player i, recalling that in the
finite setting,

θ̄ =
1

n
θ∗i +

1

n

∑

j 6=i

θj .

We have

ui(θ
∗
i , θ−i) = −α(θ∗i − s)2 − (1 − α)(θ∗i − θ̄)2

= −α(θ∗i − s)2 − (1 − α)



θ∗i −





1

n
θ∗i +

1

n

∑

j 6=i

θj









2

= −α(θ∗i − s)2 − (1 − α)





n− 1

n
θ∗i −





1

n

∑

j 6=i

θj









2

= −α(θ∗i − s)2 − (1 − α)
1

n2



(n− 1)θ∗i −





∑

j 6=i

θj









2

Player i’s first order condition will be to maximize this in expectation. Taking an expectation, we have

Ei[ui(θi, θ−i)] = Ei






−α(θ∗i − s)2 − (1− α)

1

n2



(n− 1)θ∗i −





∑

j 6=i

θj









2






= −αEi[(θ
∗
i − s)2]− (1− α)

1

n2
Ei









(n− 1)θ∗i −





∑

j 6=i

θj









2






= −αEi[(θ
∗
i )

2 − 2sθ∗i + s2]

− (1 − α)
1

n2
Ei






(n− 1)2(θ∗i )

2 − 2(n− 1)θ∗i





∑

j 6=i

θj



+





∑

j 6=i

θj





2






17



Differentiating with respect to agent i’s choice of θi gives us that, in equilibrium, θ∗i must satisfy

∂

∂θ∗i
= 0 = −α(2θ∗i − 2Ei[s])− (1 − α)

1

n2



2(n− 1)2θ∗i − 2(n− 1)Ei





∑

j 6=i

θj









= α(θ∗i − Ei[s]) +
1− α

n2



(n− 1)2θ∗i − (n− 1)Ei





∑

j 6=i

θj









= θ∗i

(

α+
(1 − α)(n− 1)2

n2

)

−



αEi[s] +
(1− α)(n − 1)

n2
Ei





∑

j 6=i

θj









Where we have used the fact that Ei[θ
∗
i ] = θ∗i , since it is agent i’s choice and not a random variable.

Rearranging yields the claim.

Proposition 1. In the game with infinitely many agents, in equilibrium, an agent’s optimal choice of θ∗i
must satisfy

θ∗i = αEi[s] + (1− α)Ei[θ̄]

Proof. Since agent i chooses his action after observing signals xi and y, they optimize their action given
those signals. We can write:

θ∗i ∈ argmaxEi[ui(θi)]

Expanding, we have:

Ei[ui(θi, θ−i)] = −α(Ei[θ
2
i − 2θis+ s2])− (1− α)(Ei[θ

2
i − 2θiθ̄ + θ̄2]).

We can differentiate with respect to θ∗i and set the derivative equal to zero to find

0 =
∂

∂θi
Ei[ui(θi, θ−i)] = −α(2θi − 2Ei[s])− (1− α)[2θi − θ̄].

Where we have used the fact that Ei[θ
∗
i ] = θ∗i , since it is agent i’s choice and not a random variable, as

well as the fact that ∂θ̄
∂θ∗

i

= 0 because there are infinitely many agents, so agent i’s action cannot affect the

average of all of the actions.
Rearranging yields the claim.

Remark. These results show that the optimal deterministic action is a linear combination of expectations
about the state and average action; thus, the optimal deterministic action and the optimal linear action are
one and the same. Because these propositions hold also for the first-order conditions in the extended game,
this will be true in the extended game as well.

Remark. If we think of
∑

θj as (n − 1) times the average action of other players and take the limit of
this expression as n goes to infinity, we recover the result for the continuum case, as the coefficient on Ei[s]
becomes α and the coefficient on the expected average action becomes (1− α).

Lemma 2. In the game with finitely many agents, the value of κ which supports a symmetric linear Nash
equilibrium is

κ =
αn2τx

αn2τx + ((n− 1)2 + α(2n− 1)) τy

18



Proof. Suppose that all agents play θi = κi + (1− κ)y, and consider a representative agent i.
Since agent i is Bayesian, she aggregates the public and private signals according to their precisions to

compute

Ei[s] =
τxxi + τyy

τx + τy

and her belief about any other agent j’s private signal xj is that

Ei[xj ] = Ei[s].

Supposing that each agent acts optimally and chooses θ∗i according to Lemma 1, agent i will write the
following. We let C = 1

α(2n−1)+(n−1)2 for clarity of notation.

θ∗i =
αn2

Ei[s]

α(2n− 1) + (n− 1)2
+

(1− α)(n − 1)Ei

[

∑

j 6=i

θj

]

α(2n− 1) + (n− 1)2

= C



αn2
Ei[s] + (1 − α)(n− 1)Ei





∑

j 6=i

(κxj + (1− κ)y)









= C



αn2
Ei[s] + (1 − α)(n− 1)





∑

j 6=i

(κEi[s] + (1− κ)y)









= C
(

αn2
Ei[s] + (1− α)(n− 1)2 (κEi[s] + (1− κ)y)

)

= C

(

αn2 τxxi + τyy

τx + τy
+ (1− α)(n − 1)2

(

κ
τxxi + τyy

τx + τy
+ (1− κ)y

))

= C

(

αn2 τx

τx + τy
+ (1 − α)(n− 1)2κ

τx

τx + τy

)

xi+

+ C

(

αn2 τy

τx + τy
+ (1 − α)(n− 1)2

(

κ
τy

τx + τy
+ (1− κ)

))

y

We can then equate κ and the coefficient on xi or the coefficient on y to (1 − κ). By construction, it’s
easy to see that the sum of these two coefficients will be one, so it suffices to perform the computation for κ.

κ = C

(

αn2 τx

τx + τy
+ (1− α)(n− 1)2κ

τx

τx + τy

)

= Cαn2 τx

τx + τy
+ κC(1− α)(n − 1)2

τx

τx + τy

=
Cαn2 τx

τx+τy

1− C(1− α)(n − 1)2 τx
τx+τy

Plugging the value for C back in and simplifying, we get

κ =
αn2τx

αn2τx + ((n− 1)2 + α(2n− 1)) τy

Proposition 2. The symmetric linear Nash equilibrium in the game with infinitely many players is given
by
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θi = κxi + (1− κ)y, where

κ =
τxα

τxα+ τy
, τx =

1

σ2
x

, and τy =
1

σ2
y

for all players i.

Proof. Proposition 1 shows that agent i’s optimal action is a convex combination of his belief about the true
state s and his belief about the average action of all players θ̄. Ei[s] is independent of the equilibrium profile,
and given by

Ei[s] =
τxxi + τyy

τx + τy
,

which is the standard prior-free aggregation of independent Gaussian signals.
On the other hand, Ei[θ̄] does depend on the equilibrium profile. In a SLNE, all other players j 6= i play

θj = κxj + (1− κ)y.

Since agent i is Bayesian:

Ei[xj ] = Ei[s]

and

Ei[θj ] = Ei[κxj + (1− κ)y] = κEi[xj ] + (1− κ)y.

Notice that the expectation of agent i about the belief of any representative player j 6= i is the same, since
his information is symmetric. Thus, we write Ei[θ−i] to emphasize that this is the belief of player i about
any other player. Thus:

Ei[θ̄] = Ei

∫ 1

0

θjdj =

∫ 1

0

Ei[θ−i] = Ei[θ−i] = κEi[x−i] + (1 − κ)y

where we have used the Fubini-Tonelli theorem to exchange the integral with the expectation.
But now note that

θ∗i = αEi[s] + (1− α)[κEi[s] + (1− κ)y]

= α
τxxi + τyy

τx + τy
+ (1− α)(κ

τxxi + τyy

τx + τy
) + (1 − α)(1 − κ)y

We can rearrange this as:

θ∗i =

[

ατx

τx + τy
+ (1− α)

κτx

τx + τy

]

xi +

[

τyα

τx + τy
+ (1− α)

κτy

τx + τy
+ (1− α)(1 − κ)

]

y

=

[

τx(α+ (1− α)κ)

τx + τy

]

xi +

[

(1− α)(1 − κ) +
ατy + (1− α)κτy

τx + τy

]

y

Matching coefficients and solving:

[

(α+ (1− α)κ)
τx

τx + τy

]

= κ =⇒ κ =
ατx

ατx + τy

as desired.
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Remark. As we take the limit as n goes to infinity, we recover κ = ατx
ατx+τy

as in the continuum setting and

in Morris and Shin [17].

Lemma 3. The expected utility of agents for playing θi = κxi + (1 − κ)y, given s is:

Ei[ui|s] = −α(κ2σ2
x + (1 − κ)2σ2

y)−
(1 − α)κ2(n− 1)

n
σ2
x

Proof. We can write the expected utility of agents as

Ei[ui|s] = −αEi[(θi − s)2|s]− (1− α)Ei

[

(

θi − θ̄
)2
∣

∣

∣ s
]

We can plug in the equilibrium strategies and recall the definition of θ̄ to write

Ei[ui|s] = −αEi[(θi − s)2|s]− (1− α)Ei









θi −
1

n

n
∑

j=1

θj





2
∣

∣

∣

∣

∣

∣

∣

s







We can write each θj = κxj + (1 − κ)y and since we are taking expectations conditional on knowing s,
we can write the signals xj and y as the state s plus mean-zero Gaussian noise with variance σ2

x and σ2
y ,

respectively. We write these as s+ εxj
and s+ εy, so we can write θj = s+ κεxj

+ (1 − κ)εy.

Ei[ui|s] = −αEi[(s+ κεxi
+ (1− κ)εy − s)2|s]

− (1− α)Ei









s+ κεxi
+ (1− κ)εy −

1

n

n
∑

j=1

s+ κεxj
+ (1− κ)εy





2
∣

∣

∣

∣

∣

∣

∣

s







= −αEi[(κεxi
+ (1− κ)εy)

2]− (1− α)Ei









κεxi
+−

1

n

n
∑

j=1

κεxj





2






= −αEi[(κεxi
+ (1− κ)εy)

2]− (1− α)κ2
Ei









εxi
+−

1

n

n
∑

j=1

εxj





2






= −αEi[(κεxi
+ (1− κ)εy)

2]− (1− α)κ2
Ei











n− 1

n
εxi

+−
1

n

n
∑

j 6=i

εxj





2






= −αEi[(κεxi
+ (1− κ)εy)

2]−
(1− α)κ2

n2
Ei









(n− 1)εxi
+−

n
∑

j 6=i

εxj





2






Because all of the εxj
and εy are independent with mean zero, we can write

Ei[ui|s] = −α(κ2σ2
x + (1− κ)2σ2

y)−
(1− α)κ2

n2

(

(n− 1)2σ2
x + (n− 1)σ2

x

)2

= −α(κ2σ2
x + (1− κ)2σ2

y)−
(1− α)κ2(n− 1)

n
σ2
x
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Proposition 3. The expected utility of agents for playing θi = κxi + (1− κ)y, conditional on s, is:

Ei[ui|s] = −α(1 − κ)2σ2
y − κ2σ2

x

Proof. We can write the expected utility of agents as

Ei[ui|s] = −αEi[(θi − s)2|s]− (1− α)Ei

[

(

θi − θ̄
)2
∣

∣

∣
s
]

We can plug in the equilibrium strategies and recall the definition of θ̄ to write

Ei[ui|s] = −αEi[(θi − s)2|s]− (1 − α)Ei

[

(

θi −

∫ 1

0

θjdj

)2
∣

∣

∣

∣

∣

s

]

We can write each θj = κxj + (1 − κ)y and since we are taking expectations conditional on knowing s,
we can write the signals xj and y as the state s plus mean-zero Gaussian noise with variance σ2

x and σ2
y ,

respectively. We write these as s+ εxj
and s+ εy, so we can write θj = s+ κεxj

+ (1 − κ)εy.

Ei[ui|s] = −αEi[(s+ κεxi
+ (1 − κ)εy − s)2|s]

− (1 − α)Ei

[

(

s+ κεxi
+ (1 − κ)εy −

∫ 1

0

(

s+ κεxj
+ (1− κ)εydj

)

)2
∣

∣

∣

∣

∣

s

]

= −αEi[(κεxi
+ (1− κ)εy)

2]− (1− α)Ei

[

(

κεxi
+

∫ 1

0

(

κεxj
dj
)

)2
]

Because E[εxj
] = 0,

∫ 1

0

(

κεxj
dj
)

= 0. Furthermore, since all of the εxj
and εy are independent we have

Ei[ui|s] = −αEi[(κεxi
+ (1 − κ)εy)

2]− (1 − α)Ei

[

(κεxi
)
2
]

= −α(κ2σ2
x + (1− κ)2σ2

y)− (1− α)κ2σ2
x

= −α(1− κ)2σ2
y − κ2σ2

x

Omitted Proofs from Section 3

Claim 1. If there exists an equilibrium in noisy strategies, where player i chooses θ̃i = θi + ηi and each
player’s ηi is drawn independently from a distribution Hi, then in particular there exists such an equilibrium
strategy profile in which the mean of each Hi is zero.

Proof. Since the distributions which generate the ηi are revealed after each player announces θ̃i, choosing to
draw noise from a distribution with non-zero mean cannot improve the privacy that player i achieves, since
a representative player j can simply subtract this mean when constructing her posterior distribution over xi.
Additionally, choosing a mean other than zero makes the utility from the guessing component strictly worse.
Finally, if we assume that all players other than i choose to add noise drawn from a distribution with the
same mean, then in the coordination portion of the utility function, player i choosing a noise distribution
mean other than the common one is dominated by choosing the common one. In particular, if everyone else
chooses mean-zero noise, player i should as well.
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Lemma 4. In the game with finitely many players, the players’ utility functions in the privacy-aware game
separate additively into the utility in the privacy unaware game, a penalty in νi, and a privacy term as

vi(θ̃i, θ̃−i) = (1− β)(−α(θ̃i − s)2 − (1− α)(θ̃i −
¯̃
θ)2 + βρ(θ̃i)

= (1− β)ui(θi, θ̃−i) + (1 − β)

(

α+

(

1−
1

n

)2

(1− α)

)

νi + βρ(θ̃i),

where νi denotes the variance of the noise-generating distribution Hi of player i and ui is the utility function
in the privacy-unaware game.

Proof. Writing θ̃i as θi+ηi, i.e. a deterministic component plus random noise, we can decompose the various
pieces of the utility function as follows. The first part is

−αEi[(θi + ηi − s)2] = −αEi

[

(θi − s)2 + ηi(θi − s) + η2i
]

= −αEi[(θi − s)2]− ανi,

where we have again used the independence of ηi to conclude that Ei[ηi(θi − s)] = 0.
The second term is

−(1− α)Ei









θi − ηi −
1

n

n
∑

j=1

θ̃j





2





= −(1− α)Ei









θi

(

1−
1

n

)

+ ηi

(

1−
1

n

)

−
1

n

∑

j 6=i

θ̃j





2






Rewriting gives:

−(1− α)Ei









θi

(

1−
1

n

)

−
1

n

∑

j 6=i

θ̃j





2





− (1− α)

(

1−
1

n

)

νi − (1− α)Ei



ηi

(

1−
1

n

)2
1

n
θi
∑

j 6=i

θ̃j





After collecting terms, we see that it suffices to argue that the final term

(1− α)Ei



ηi

(

1−
1

n

)2
1

n
θi
∑

j 6=i

θ̃j



 = 0,

which follows from the fact that ηi is independent of all the other parameters of the game as well as the
other ηj .

Corollary 2. The proof is nearly identical to that of Lemma 4. Suppose that all agents play a noisy strategy
θ̃i = θi + ηi, with ηi being a random variable and E[ηi] = 0. Then an agent’s utility can be decomposed into

Ei[vi(θ̃, θ̃−i)] = (1 − β)Ei[u(θi, θ̃−i)] + (1− β)νi + βρ(θ̃i)

where ui is the utility function in the original game and νi is the variance of the noise-generating distribution
Hi.

Proof. By definition,

Ei[vi(θ̃, θ̃−i)] = (1− β)Ei[ui(θ̃i, θ̃−i)] + βρ(θ̃i),

so if we show that ui(θ̃i, θ̃−i) = ui(θi, θ̃−i)− νi we will be done. We can write

Ei[ui(θ̃i, θ̃−i)] = −αEi[(θ̃i − s)2]− (1− α)Ei[(θ̃i −
¯̃
θ)2]

= −αEi[(θi + ηi − s)2]− (1− α)Ei[(θi + ηi −
¯̃
θ)2]

= −αEi[(θi − s+ ηi)
2]− (1− α)Ei[(θi −

¯̃
θ + ηi)

2]
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Expanding these terms, we have

Ei[ui(θ̃i, θ̃−i)] = −α
(

Ei[(θi − s)2] + 2Ei[ηi(θi − s)] + Ei[(η
2
i )]
)

− (1 − α)
(

Ei[(θi −
¯̃
θ)2] + 2Ei[(ηi)(θi −

¯̃
θ)] + Ei[η

2
i ]
)

Now the first terms of each line sum to exactly ui(θi, θ̃−i). On the other hand, the sum of the last two
terms is −Ei[η

2
i ] = −νi. To complete the proof, we show that these middle to terms are, in fact, zero. To

see this, notice that at Ii, ηi is yet unrealized with Ei[ηi] = 0, but is independent of s and θi and thus of θ̄.
Hence,

Ei[ηi(θi − s)] = Ei[ηi]Ei[θi − s] = 0,

Moreover, ηi is independent of each θ̃−i, and agent i’s action cannot unilaterally change ¯̃
θ, so

Ei[ηi(θi −
¯̃
θ)] = Ei[ηi(θi −

¯̃
θ−i)] = Ei[ηi]Ei[θi −

¯̃
θ−i] = 0

Lemma 5. In an equilibrium of the game with finitely many players where the optimal action is θ̃∗i = θ∗i +ηi,
the optimal choice of θ∗i and the variance ν∗ for the noise-generating distribution Hi from which ηi is drawn
must satisfy

θ∗i =
αn2

Ei[s]

α(2n− 1) + (n− 1)2
+

(1 − α)(n− 1)Ei

[

∑

j 6=i

θj

]

α(2n− 1) + (n− 1)2

and

∂ρ

∂ν∗
= −

−(1− β)
(

α+
(

1− 1
n

)2
(1− α)

)

β
.

Proof. Using Lemma 4, we can decompose the expected utility of agent i as

Ei[vi(θ̃i, θ̃−i] = (1− β)Ei[ui(θi, θ̃−i)]− (1 − β)

(

α+

(

1−
1

n

)2

(1− α)

)

νi + βρ(θ̃i),

which is the sum of a piece that depends on θi and a piece that depends on νi.
The agent can therefore optimize each piece separately with her choice of θi and νi. Lemma 1 again

gives the first order condition on θ∗i - the optimal deterministic component is a convex combination of
expectations about the state and the average action (which, under the assumption of a noisy symmetric
linear equilibrium, contains added, but mean-zero, noise).

To find the first order condition on ν∗, we can write

0 =
∂vi

∂ν∗
= −(1− β)

(

α+

(

1−
1

n

)2

(1− α)

)

+ β
∂ρ

∂ν∗

and solve for ∂ρ
∂ν∗

to get the result.
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Proposition 4. In an equilibrium where the optimal action is θ̃∗i = θ∗i + ηi, the optimal choice of θ∗i and the
variance ν∗ for the noise-generating distribution Hi from which ηi is drawn must satisfy

θ∗i = αEi[s] + (1− α)Ei[
¯̃
θ]

∂ρ

∂ν∗
= −

1− β

β
.

Proof. Using Lemma 2, we can decompose the utility of agent i as

Ei[vi(θ̃, θ̃−i)] = (1− β)Ei[u(θi, θ̃−i)]− (1− β)νi − βρ(θ̃i),

which is the sum of a piece that depends on θi and a piece that depends on νi.
The agent can therefore optimize each piece separately with her choice of θi and νi. Proposition 1 gives

the first order condition on θ∗i .
To find the first order condition on ν∗, we can write

0 =
∂vi

∂ν∗
= −(1− β)− β

∂ρ

∂ν∗

and solve for ∂ρ
∂ν∗

to get the result.

Omitted Proofs from Section 4

Lemma 8. The price of privacy in the game where agents play a linear strategy has the form

PoP(τx, τy, β) = 1 +
ν∗i

Ei[ui(θ∗i , θ
∗
−i)]

where the expected utility is with respect to the game with signal variances σ2
x and σ2

y.

Proof. First note that

Ei[ui(θi, θ̃−i)] = Ei[ui(θi, θ−i)]

because the noise added to θi has a mean of zero. Now, theCorollary 2 lets us write

PoP(τx, τy, β) =
Ei[ui(θ̃

∗
i , θ̃

∗
−i)]

Ei[ui(θ∗i , θ
∗
−i)]

=
Ei[ui(θ̃

∗
i , θ̃

∗
−i)] + ν∗i

Ei[ui(θ∗i , θ
∗
−i)]

where we have factored out all of the negative signs. Combining with the previous part, we have that

PoP(τx, τy, β) =
Ei[ui(θ̃

∗
i , θ̃

∗
−i)] + ν∗i

Ei[ui(θ∗i , θ
∗
−i)]

=
Ei[ui(θ̃

∗
i , θ−i∗)] + ν∗i

Ei[ui(θ∗i , θ
∗
−i)]

= 1 +
ν∗i

Ei[ui(θ∗i , θ
∗
−i)]

,

as desired.

Lemma 9. Consider an instance of the privacy-aware game where an aggregator observes the actions of n
agents (either all all of the agents in the finite case or some uniformly random sample in the finite or infinite
case), the signal variances are σ2

x and σ2
y, and players choose to add mean-zero noise with variance ν∗i . Then

the utility of the aggregator, as measured by the variance of the sample average about the true state s is given
by

Uagg(σ
2
x, σ

2, ν∗i , n) = E









(

1

n

n
∑

i=1

θ̃i

)

− s

)2
∣

∣

∣

∣

∣

∣

s





=
κ2

n
σ2
x +

ν∗i
n

+ (1− κ)2σ2
y

We can find the utility in the privacy-unaware game by letting ν∗i = 0. This recovers a result in Morris
and Shin [17].
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Proof.

Uagg(σ
2
x, ν

∗
i , σ

2, n) = E









(

1

n

n
∑

i=1

θ̃i

)

− s

)2
∣

∣

∣

∣

∣

∣

s





= E









(

1

n

n
∑

i=1

κxi + (1− κ)y + ηi

)

− s

)2
∣

∣

∣

∣

∣

∣

s





= E









(

1

n

n
∑

i=1

κxi + ηi

)

+ (1− κ)y − s

)2
∣

∣

∣

∣

∣

∣

s





= E









(

1

n

n
∑

i=1

κ(s+ εxi
) + ηi

)

+ (1− κ)(s+ εy)− s

)2
∣

∣

∣

∣

∣

∣

s





= E









(

1

n

n
∑

i=1

κεxi
+ ηi

)

+ (1− κ)εy

)2
∣

∣

∣

∣

∣

∣

s





= E





(

κ

n

n
∑

i=1

εxi
+

1

n

n
∑

i=1

ηi + (1− κ)εy

)2




=
κ2

n
σ2
x +

ν∗i
n

+ (1− κ)2σ2
y

where we have decomposed xi and y into s plus mean-zero Gaussian noise εxi
and εy.
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