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The Bitcoin protocol induces miners, through monetary rewards, to expend energy in order to add blocks

to the chain. We show that, when energy costs are substantial and taken into account, counterintuitive and

unintended strategic behavior results: In a simple bounded-horizon setting with two identical miners there is

a unique pure symmetric equilibrium in which both miners first “slow down” in order to decrease the crypto

complexity and then take advantage of this decrease. If miners have different energy efficiencies and are

restricted to choose the same hash rate for many epochs, there is a unique pure equilibrium in which miners

either participate at low levels that depend in intricate ways on all the other miners’ efficiencies, or choose to

abstain from mining if their efficiency is too low. In the general setting in which miners can adapt their hash

rates over time, we show that, unless the number of miners is very small, the only possible pure equilibria are

rather chaotic, with miners quitting and starting again periodically — or there is no pure equilibrium at all.

We discuss the implications of these results for the stability of proof-of-work protocols.
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1 INTRODUCTION
The protocol described in the 2008 paper “Bitcoin: A peer-to-peer electronic cash system" by Satoshi

Nakamoto [9] (hence called “the Satoshi protocol”) is a singular achievement: a bold, novel system

design that has spawned, without much debugging a decade later, a global distributed system with

millions of users that is surprisingly robust.

The backbone of Bitcoin and of similar cryptocurrencies is a proof-of-work blockchain protocol

which attempts to keep a consistent list of transactions in a peer-to-peer network. This list of

transactions, the public ledger, is maintained by the users of the network, who constantly attempt

to extend the blockchain, a public data structure consisting of a sequence of blocks of transactions.

To add a block to the blockchain and claim some reward, a user has to provide proof-of-work which

takes the form of an easily verifiable solution to a hard cryptographic puzzle. This process is called

mining and we will use the term miner to refer to the users and nodes of the distributed network.

For excellent introductions to Bitcoin and cryptocurrency technologies, see [10, 14].

There is only one known major fault of the Satoshi protocol: The original paper by Nakamoto

claimed that as long as no miner has a majority of the mining power, no one would have reason

to deviate from the protocol — that is to say, it was claimed that the Satoshi protocol is incentive
compatible. Recently, Eyal and Sirer [7] disproved this claim by showing that there are circumstances
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where it is advantageous for a miner (with less than half the total power) to deviate from the Satoshi

protocol and delay the publication of a new block. There has been much subsequent work along

these lines, e.g., [8, 11–13]. Significantly, it was recently pointed out that in the regime in which

transaction fees, as opposed to block reward by new Bitcoins, will be the main monetary reward

for mining — as it is expected to be eventually — the increased variance of rewards will incentivize

even small miners to occasionally fork the chain [5].

Our main contribution is a new genre of strategic deviations from the intended function of the
Satoshi protocol, related to energy costs and crypto puzzle difficulty. Critically, the deviations we
consider are not dependent upon having a large fraction of the computing power, any constant

fraction will do. An important part of the Satoshi protocol is the difficulty adjustment process,
whereby the complexity (inverse probability of success for a single hash) of solving the crypto

puzzle is recomputed every two weeks, or more precisely, every 2016 blocks (an epoch), with the

goal that the expected length of time between successive blocks in the upcoming epoch is kept to

ten minutes, under the assumption that the rate with which hashes are computed does not change

between the previous epoch and the next
1
. The idea of using difficulty adjustment appears in [4, 6]

but in a different context of replacing one history with another.

We show that, once energy costs are taken into consideration, Bitcoin mining entails strategic

behavior deviating from the implicit intension of the Satoshi protocol — namely, that each miner

exerts the same amount of effort each epoch, presumably using all of the resources they have

available. It is remarkable however that the strategic behavior we describe is not an actual deviation

from the Satoshi protocol; in the original protocol there is no explicit suggestion that users should

use their full hashpower every round. Our results are most relevant in a regime in which energy

costs are a substantial part of mining revenue, which seems to be the case now: it is estimated (see

for example [1, 2]) that this has been the case during the past year, with current estimates of energy

costs hovering higher than 90% of revenue.

Strategic deviations and equilibria described in this paper hold for arbitrary proof-of-work cryp-

tocurrencies that include a difficulty adjustment feature. It is unclear how a proof-of-work system

could avoid having such a feature — but see discussion at the end of the paper. Bitcoin is hardly the

only proof-of-work cryptocurrency. A [very very] long list of proof-of-work cryptocurrencies (and

associated market capitalization) appears in [3].

We model mining as a game between miners in which the utility for each miner is the miner’s

revenue minus the miner’s energy costs per unit time; we assume that each miner i has a specific
energy cost per hash, denoted αi . We analyze several such games:

• In a warm-up toy game (Section 2) in which two miners with identical energy costs α compete

by adjusting their hash rate for two epochs, there is a unique symmetric equilibrium in which

both miners hold back their hashing effort in order to “game down” the difficulty adjustment

process, and benefit from this decreased difficulty in the last epoch.

• In Section 3 we turn to the fixed effort game, in which n miners with hashing costs α1 ≤
α2 ≤ . . . ≤ αn must each choose an effort level which will be kept constant for a long run of

epochs; we completely characterize the unique pure equilibrium of this game. At equilibrium,

the first k∗ miners will participate with some positive effort, and the rest will abstain. The

number k∗ of participating miners, and the effort level at which they will participate, depends

on all αi ’s in a rather intricate way: the k + 1st miner will participate if and only if its αk+1 is
no larger than an “enhanced average” of the first k . At least two miners will participate — this

1
Because of this provision, puzzle difficulty and energy consumption has been increasing rapidly over the past decade

(despite a recent drop), an issue that has justifiably attracted much attention: Bitcoin mining now costs the world a good

fraction of one percent of total energy consumption, bringing it on par with Portugal.
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Fig. 1. The chart of the Bitcoin mining difficulty for the last two years

is intuitive, since a single very efficient miner wants to lower her effort, and so the second

most efficient miner will “squeeze in”. Of course, if there are only two miners participating

then the more powerful miner can also rewrite history. If there are more miners with equal

or similar costs as the second one, they will also participate. At the other extreme, n miners

with equal αi ’s will each get at equilibrium a revenue of
1

n2
per block, in contrast to the social

optimum of
1

n per miner, were they able to cooperate through a contract.

• But of course the fixed effort assumption is not realistic. In Section 4, we consider the case

where the n players are free to adapt their hashing rates from one epoch to the next. For this

setting, we show that with sufficiently many miners, either there are no pure equilibria at all,

or they must be are somewhat bizarre: miners will vary their efforts from epoch to epoch.

The number of miners needed for this result to kick in is parameterized by the maximum

fraction of the total hash power available to a single miner. It seems that this captures a host

of plausible scenarios regarding the number of agents and the fraction of the total effort that

can be exerted by a single agent.

• Since equilibria are unlikely, we next look at the nature of the best response by one agent,

who is free to adapt her hash rate arbitrarily, to fixed hash rates by other agents. In Section

5 we present closed form equations for the best response, whose accuracy depends on a

mathematical conjecture that we articulate, derived after much experimentation and ana-

lysis through Mathematica. The results suggest that the effort level of the agents may vary

dramatically and chaotically from epoch to epoch.

We conclude with a discussion and open problems.

2 MODEL
Definitions:

(1) An epoch is a period during which 2016 blocks are generated. Epoch t ≥ 1, starts immediately

after the (t − 1) · 2016th block is generated, and ends when the next 2016 blocks are generated.

Let ℓt denote the length of epoch t in “time units". One time unit is 10 minutes of elapsed

time.

(2) Letmi , 1 ≤ i ≤ n, be the maximum number of hashes the ith miner can perform per time

unit. We mainly use this to assign some meaning to the “full throttle” idea; in almost all of the

games studied below we shall assume that the maximum number of hashes is not binding,
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however we will generally not consider the possibility of a miner having a large percentage

of the network hash power, and certainly not more than 50%.

(3) Let 0 ≤ hti ≤ mi , 1 ≤ i ≤ n, t ≥ 1, be the number of hashes per time unit actually performed

by miner i during the t th epoch. If hti =mi we say that miner i is going full throttle during
epoch t , and we say that miner i is holding back otherwise.

(4) Let H t =
∑

i h
t
i , the total number of hashes performed per time unit during epoch t .

(5) The hardness of the puzzle in epoch t is expressed in terms of the probability, pt that a single
hash will solve the puzzle. This is recomputed when epoch t − 1 ends, so that the expected

length of epoch t is one time unit, under the assumption that H t = H t−1
. Now, 1/pt is the

expected number of hashes until the crypto puzzle is solved, and Ht−1 is the total number of

hashes in epoch t − 1. Thus, pt is computed as follows:

1

pt
= H t−1.

The utility for player i over the first T epochs is the profit over T epochs (i.e., the number of

Bitcoins minus energy cost in Bitcoins) divided by the length of time for these T epochs.

Definition 1 (Energy cost αi ). We denote by αi the cost (in Bitcoin) of the electricity required
for one hash using the technology available to miner i .

To derive a formula for utility, we observe that:

(1) The length of epoch t is H t−1/H t
(in time units).

(2) Thus, the energy cost for miner i in epoch t is

αi ·
H t−1

H t · hti .

Using these, we now define the utility of each agent.

Definition 2 (Utility). The utility per time unit for agent i , averaged over the first T epochs, is
given by

Ui =

∑T
t=1

hti
H t

(
1 − αi · H t−1)∑T

t=1
H t−1
H t

. (1)

Note: In the definitions of utility and of puzzle difficulty we omit the factor 2016 reflecting the

number of blocks in one epoch; this is inconsequential, akin to a change in currency from 1 Bitcoin

to 2016 Bitcoins.

Example: A finite horizon game
We illustrate these definitions through a simple example, which also showcases the kind of phenom-

enon that we study. Suppose that two identical players with hash costs α and maximum hash power

m1 =m2 =
1

2
, are about to play for only two epochs, starting from some fixed puzzle complexity

at the first epoch. Rational players will go “full throttle” during the last epoch; this is so because

the utility is increasing in hTi (in Equation 1, the numerator is increasing and the denominator is

decreasing in hTi ).
There are two unknowns, the hash rates at the first epoch, call them h1 and h2 by dropping

superscripts. The length of epoch 1 is 1/(h1 + h2), while the length of the epoch 2 is h1 + h2. For
α > 1, the total duration of epochs 1 and 2 is h1 + h2 + 1/(h1 + h2) ≥ 2.

EC’19 Session 4b: Cryptocurrency and Financial Markets

492



It follows from equation 1 that utility of agent i ∈ {1, 2} is

Ui =

hi
h1+h2

− α · hi · 1

h1+h2
+ 1

2
− α 1

2
(h1 + h2)

1

h1+h2
+ (h1 + h2)

. (2)

We observe that

• When α < 1/2, the utilityUi is increasing in hi . This means that the unique Nash equilibrium

is full throttle for both players.

• When α ∈ [1/2, 3/2), to find the Nash equilibria we consider the points with ∂Ui/∂hi = 0 or

the extreme values 0 and 1/2 of hi .
By setting both derivatives to 0,

∂U1

∂h1
= 0,
∂U2

∂h2
= 0,

we get that

h1 = h2 =
−α +

√
3 − 2α + α2

2

.

For α > 3/2 the solution to the above equation gives an infeasible value of hi (negative) which
means that players use ever smaller hash levels, and no equilibria is possible.

For α ∈ [1/2, 3/2), the above solution gives the unique Nash equilibrium. What this means is

that equilibria exists only if α ≤ 3/2 and we have that

hi =

{
1/2, α ≤ 1/2
−α+

√
3−2α+α 2

2
, 1/2 ≤ α ≤ 3/2

Ui =

{
(1 − α)/2, α ≤ 1/2
−α+

√
3−2α+α 2

4
, 1/2 ≤ α ≤ 3/2

In conclusion, if the miners have very low costs (α ≤ 1

2
) they will mine at full speed. But for higher

cost in the range ( 1
2
, 3
2
] both miners hold back and mine during the first epoch below their hash

capacity in order to bring the puzzle difficulty down and exploit it in the last epoch.

3 THE CONSTANT EFFORT GAME
We first consider a setting where miners do not change the number of hashes between different

epochs, i.e., hti = h
t ′
i = hi for all t , t

′
— this assumption is revisited and removed in the next sections.

Thenminers differ in their efficiency levels with energy costs (per single hash) ofα1 < α2 < · · · < αn .
The lower the miner index the better the technology and the smaller the cost. Formally, this is

a game where the strategic decision of a miner is the choice of a single hash level that they will

use throughout. For now, we also assume that there is no upper bound on the maximal number of

hashes that can be performed by a miner (mi = ∞).
In this section we prove the following theorem:

Theorem 1. Given agents with hash costs α1 ≤ α2 ≤ · · · ≤ αn ,n ≥ 2, there is a unique equilibrium
of the following form:

(1) The participating agents are those with the lowest costs, α1, . . . ,α∗
k , for some 2 ≤ k∗ ≤ n where

k∗ = max

{
2 ≤ k ≤ n | αk ≤

∑k
ℓ=1 αℓ

k − 1

}
.
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(2) The hash rates in the equilibrium for all i ∈ {1, . . . ,k∗} are given by

h∗i =
k∗ − 1∑k∗
j=1 α j

(
1 − k∗ − 1∑k∗

j=1 α j
· αi

)
(3)

=
√
H−i/αi − H−i , where H−i =

∑
1≤ℓ≤k∗, ℓ,i

h∗ℓ . (4)

(3) The hash rates h∗i for k
∗ < i ≤ n are all zero.

(4) The utility of agent i ∈ {1, . . . ,k∗}, in equilibrium (in each epoch) is:

Ui = (1 − αiH )2 where H =
k∗∑
ℓ=1

h∗ℓ .

Remarks:
(1) Note that part (1) of the theorem implies that in equlibrium there are always at least two

participants if n ≥ 2. This is intuitively obvious since a single miner, no matter how powerful,

will always attempt to reduce her hash rate so that the puzzle difficulty will drop to 0. However,

this will always induce another miner, no matter how inefficient, to join in.

(2) Of course, two participants implies that one of the miners has 50% of the mining power,

which allows her to rewrite history. More generally, under the assumption that agents use

constant effort, Theorem 1 can be used to derive conditions under which the system falls

apart. If the unique equilibria has a very powerful miner, the same miner can go off and

rewrite history.

(3) We derive the hash power in equilibrium, h∗i , in two ways: Equation (3) describes the equili-

brium hash level of an agent as a function of of all energy costs, whereas (4) describes the

equilibrium hash level of an agent as a function of hash power used by the others and her

own energy level.

We proceed with the proof of the theorem.

Lemma 1. The best response for agent i given that all other agents have (jointly) hash level Hi , is

bri (H−i ) = max(0,
√
H−i/αi − H−i ),

moreover, the best response is > 0 iff 1 − αH−i > 0.

Proof. Consider the utility of agent i given in Equation (1). As the denominator is constant,

(H t = H t ′
for all t , t ′) it follows the best response for agent i to the others making effort H−i ,

bri (H−i ) = argmaxhi hi/(hi + H−i ) − αihi (5)

= argmaxhi 1 − H−i/(hi + H−i ) − αihi

= argminhi αihi + H−i/(hi + H−i ). (6)

Taking the derivative of Equation (6) with respect to hi and setting this to zero we get that the

best response hash rate for miner i has

bri (H−i ) =
√
H−i/αi − H−i .

Now, we have br (H−i ) > 0 iff H−i/αi > (H−i )2, which is equivalent to 1 − αH−i > 0. �

Lemma 2. Let P be an arbitrary subset of {1, . . . ,n} such that every miner i ∈ P has hash rate
hi > 0 and all miners j ∈ {1, . . . ,n}\P have hash rate hj = 0. Then, h1, . . . ,hn is a Nash Equilibrium
if and only if
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(1)

H =
∑
i ∈P

hi =
|P | − 1∑
j ∈P α j

, (7)

(2) For all i ∈ P we have that

hi = H (1 − H · αi ) =
|P | − 1∑
j ∈P α j

(
1 − |P | − 1∑

j ∈P α j
· αi

)
. (8)

(3)
1 − αiH > 0 if and only if i ∈ P (9)

Proof. Suppose that {hi } is an equilibrium and let H−i =
∑

j, j,i hj . Then by Lemma 1, for i ∈ P ,
we have that

hi =

√
H−i
αi

− H−i ⇔
√

H−i
αi
= H ⇔ H−i = αiH

2
for all i ∈ P . (10)

Therefore, for i ∈ P

hi = H − H−i = H − αiH
2 = H (1 − αiH ). (11)

Summing over i ∈ P , we get

H =
∑
i ∈P

hi = H

(
|P | − H

∑
i ∈P

αi

)
.

Cancelling H on both sides yields (7) and substituting (7) back into (11) yields (8). Moreover, for

each i ∈ P , hi > 0 and hi is a best response to {h−j }j,i only if

1 − αiH = 1 − |P | − 1∑
j ∈P α j

· αi > 0.

Finally, by Lemma 1, we have that hi = 0 is a best response only if 1 − αiH−i ≤ 0. But for i < P ,
H−i = H , so hi = 0 is a best response if 1 − αiH ≤ 0 completing the claim that (9) must hold.

Next we argue that if (7), (8) and (9) hold, then {hi } is a Nash equilibrium. From (7), (8) and (9),

we have that all hi ∈ P are positive and the best response for all i < P is hi = 0. So we have just left

to verify that for i ∈ P

hi =
√
H−i/αi − H−i . (12)

Subtracting (8) from (7), we get that for i ∈ P ,

H−i = αiH
2

which by (10) is equivalent to (12), which completes the proof that {hi } is a Nash equilibrium.

�

These two lemmas imply that setting hash values for agents in the set P∗ = {1, . . . ,k∗} as given
in Equation (3) and zero hash values for others is a Nash equilibrium. Next, we verify that this

equilibrium is unique. Suppose that there is another equilibrium {h′
i } satisfying (7), (8) and (9). Let

P ′
:= {i |h′

i > 0}, H ′
:=

∑
j ∈P ′ h′

j .

First suppose that P ′ = {1, . . . ,k ′}. If k ′ < k∗, then 1 − αk∗H ′ > 0 contradicting (9). Similarly, if

k ′ > k∗, then 1−αk ′H ′ ≤ 0, again contradicting (9). Finally if P ′
is has some miner i with h′

i = 0 and

another miner j with h′
j > 0, where αi < α j , then since 1−α jH ′ > 0, it also holds that 1−αiH ′

−i > 0

contradicting (9).

Finally, we observe that substituting (7) and (8) into the utility expression 5 yields part 4 of

Theorem 1 and completes its proof. �
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On price of anarchy and technological innovation.
Assuming constant effort per agent, Theorem 1 has some interesting consequences. When all miners

have equal hash costs αi = α for all i , we find that the equilibrium hash rate is hi = (n − 1)/n2α and

each agent’s utility per epoch isUi = 1/n2. In contrast, if the miners could be bound by a contract

to mine at an agreed-upon effort level, they could drive the puzzle difficulty arbitrarily low and

have utility arbitrarily close to 1/n: The price of anarchy in this case is n.
Suppose now that a new miner with significantly better technology, say ϵ · α , enters the game.

The remaining n miners still participate, but at a lower level h = 1 − 1

1+ϵ/n = ϵ/n +O((ϵ/n)2), with
the new miner contributing much larger effort h′ = 1 − ϵ +O((ϵ/n)2). The utility of the innovator

will be 1 − ϵ +O(ϵ2/n) with the original players receiving ϵ2/n2 +O(ϵ4/n4), an ϵ2 fraction of their

past utility, while the price of anarchy is elevated near one.

Finally, if a second miner with significantly better technology than the original miners enters,

all the original miners will drop out of the game.

4 CONSTANT EFFORT IS NOT AN EQUILIBRIUMWHEN AGENTS CAN VARY THEIR
EFFORT

To contrast with results in the previous section, which only hold under the constant effort strategy

space, we now assume that miners are free to change effort from one epoch to another up to some

γ +1/n times the combined effort of the other miners, for some constant γ . Clearly, if any individual
miner has too much of the total power then history can be rewritten, and even if not so high,

attacks of the type introduced by Eyal and Sirer [7] can come into play. Think of γ as some constant

less than, say, 0.3. Clearly, reasonable values of γ are small.

Theorem 2 shows that the space of possible pure equilibria is limited.

Theorem 2. For any γ , there is a value nγ = 4(1 + γ )2/γ such that there is no Nash Equilibrium
where

• n > nγ miner participate in every epoch.
• There is some miner that uses at most a 1/nγ fraction of the total effort in every epoch, but has
the capacity to increase his hash power to γ + 1/n times the total effort of the others.

Before giving the proof of this theorem, we note that, for every epoch, there is always at least

one agent that uses no more than 1/n of the total effort. The theorem requires something stronger,

that in the pure equilibrium, there is a miner that consistently uses no more than 1/n in every
epoch. Of course if miners use constant effort across all epochs then there is always one agent that

uses no more that 1/n of the total effort, in all epochs. Thus we derive the following Corollary to

Theorem 2.

Corollary 1. There exists no constant effort equilibrium in whichn ≥ nγ miners have spare power
to increase their power to γ + 1/n times the total effort of the others.

Note that this Corollary contrasts with but does not contradict Theorem 1, because the strategy

space considered for Theorem 1 restricts miners to choosing one constant effort level across all

epochs whereas the agents considered in Theorem 2 can choose arbitrary effort levels that differ

from epoch to epoch.

We now give the proof of Theorem 2:

EC’19 Session 4b: Cryptocurrency and Financial Markets

496



Proof. Suppose that in the hypothesized equilibrium, on round t the cumulative hash power

used is H t
. Suppose also without loss of generality that T is even and

T /2∑
t=1

H 2t ≥
T /2∑
t=1

H 2t−1
(13)

Further denote the fraction of hash power used by agent 1 in epoch t by f t
1
which we assume to

be at most 1/n for all t . Then if follows from Equation 1 that agent 1’s utility is

U1 =

∑T /2
t=1

[
f 2t
1
(1 − α1H

2t−1) + f 2t+1
1

(1 − α1H
2t )

]∑T /2
t=1

(
H 2t

H 2t−1 +
H 2t+1

H 2t

)
≤

1

n
∑T /2

t=1(2 − α1H
2t−1 − α1H

2t )∑T /2
t=1

(
H 2t

H 2t−1 +
H 2t+1

H 2t

) . (14)

Now consider the following agent 1 deviation:

h̃2t = (γ + f 2t
1
)H 2t

and h̃2t+1 = 0, ∀t .
Then the total hash power used in each round post deviation is

H̃ 2t = (1 + γ ) · H 2t
and H̃ 2t+1 = (1 − f 2t+1

1
)H 2t+1, ∀t .

Therefore, agent 1’s utility post deviation is:

Ũ1 =

∑T
t=1

h̃t

H̃ t

(
1 − α1 · H̃ t−1

)
∑T

t=1
H̃ t−1

H̃ t

=

∑T /2
t=1

(
γ+f 2t

1

1+γ

)
(1 − α1(1 − f 2t−1

1
)H 2t−1)∑T /2

t=1

(
(1 + γ ) H 2t

(1−f 2t−1
1

)H 2t−1 +
(1−f 2t+1

1
)H 2t+1

(1+γ )H 2t

)
≥

∑T /2
t=1

(
γ

1+γ

)
(1 − α1H

2t−1)∑T /2
t=1

(
(1+γ )H 2t

(1−1/n)H 2t−1 +
H 2t+1

(1+γ )H 2t

) ,
since 0 ≤ f t

1
≤ 1/n for all t . Therefore, the utility post deviation

Ũ1 ≥

(
γ

1+γ

) ∑T /2
t=1(1 − α1H

2t−1)(
1+γ
1−1/n +

1

1+γ

) ∑T /2
t=1

(
H 2t

H 2t−1 +
H 2t+1

H 2t

)
which by (13) is at least (

γ
1+γ

) ∑T /2
t=1

(2−α1H 2t−1−α1H 2t )
2(

1+γ
1−1/n +

1

1+γ

) ∑T /2
t=1

(
H 2t

H 2t−1 +
H 2t+1

H 2t

) .
Combining this with Equation (14), we get that

Ũ1/U1 ≥
γ

1+γ
1+γ
1−1/n +

1

1+γ

· n
2

.
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If the last expression is greater than 1, the miner has an incentive to switch to the new strategy.

This happens for all values of n exceeding a threshold (that depends on γ ). It is straightforward to

verify that for every

n ≥ 4(1 + γ )2
γ

,

the left hand side of the above inequality is at least 1, which shows that the deviation is profitable. �

5 FURTHER RESTRICTIONS ON THE EQUILIBRIA OF THE ADAPTIVE EFFORT
GAME

We already know that there is no pure Nash equilibria when all agents have constant effort (Corollary

1). But, if everybody else plays at constant effort, what precise form will the deviation of the last

player take?

The characterization of the best response described in this section crucially depends onConjecture

1 below. Note that this is stated as a conjecture and not as a lemma as we were unable to prove

it. However, we do have ample evidence derived from experiments and Mathematica that offers

strong support for the conjecture.

So, suppose that the total hashing power H−i of all miners except miner i is the same in all

epochs. What is the best response of the single miner? Perhaps not so surprisingly at this point

in the paper, the best response varies in general with time. To analyze the situation and keep the

notation simple, let’s define

x t = αiH
t β =

√
αiH−i .

The utility of player i given in Equation (1), can be rewritten as

Ui =

∑T
t=1

(x t−β 2)(1−x t−1)
x t∑T

t=1
x t−1
x t

.

The best response for player i is to select hti ≥ 0, t = 0, . . . ,T , or equivalently x t ≥ β2, to maximize

the above quantity. This maximization problem is affected by the boundary conditions, that is the

values of x0 and xT , but their effect is limited and it almost disappears as T tends to infinity. We

don’t know the solution to this maximization problem, but we have strong evidence, including

experimental results, that it satisfies the following conjecture.

Conjecture 1. For every β ∈ (0, 1) and for every even T , there exists x0 and xT , such that the
optimal values x t that maximize the quantity

U ∗ = sup

x t ≥β 2

∑T
t=1

(x t−β 2)(1−x t−1)
x t∑T

t=1
x t−1
x t

,

are 2-periodic, that is, x t = x t+2 for every t ≤ T − 2.

Note that the class of 2-periodic solutions includes the constant effort solutions. The following

lemma characterizes the unique 2-periodic solution of the above maximization problem. It asserts

that for small β , the optimal solution is the same for all t , while for large β , it alternates between
the minimum value and some other value.
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Lemma 3. Assume that Conjecture 1 holds, that is, assume that the solution to the above maximi-
zation problem is 2-periodic. Then the optimal solution is

x t =


β β ≤ 4

√
2 − 5{

β2 t is odd
(1 +

√
2)β2 t is even

otherwise,
(15)

and the maximum value of the expression is

U ∗ =

{
(1 − β)2 β ≤ 4

√
2 − 5

√
2−1
2

(1 − β2) otherwise.
(16)

Proof. Since we consider only 2-periodic solutions we can express the problem as follows: find

x0, x1 in [β2,∞) to

max

(x 1−β 2)(1−x 0)
x 1

+
(x 0−β 2)(1−x 1)

x 0

x 0

x 1
+ x 1

x 0

,

which can be solved by standard methods. �

We now translate the above lemma to obtain the best response against constant effort by the

other miners. If the above conjecture holds, this is the unique best pure response.

Lemma 4. If the total hashing power H−i of all miners except miner i is the same for all epochs, the
best 2-periodic response of player i , when it has unlimited hashing power, is given by

if αiH−i ≤ (4
√
2 − 5)2 ≈ 0.43, player i uses the following hashing power on every epoch: hi =√

H−i/αi − H−i ,
if (4

√
2 − 5)2 < αiH−i ≤ 1, player i mines only in every second epoch with the following hashing

power: hi =
√
2H−i ,

otherwise, player i does not mine at all.
The player’s utility is given by

Ui =


(1 −

√
αiH−i )2 αiH−i ≤ (4

√
2 − 5)2

√
2−1
2

(1 − αiH−i ) (4
√
2 − 5)2 < αiH−i ≤ 1

0 otherwise

From this general characterization of the best 2-periodic response against fixed power we can

arrive at some useful conclusions. The first corollary below shows that for two players there is

always a Nash equilibrium in which both players use the same power in every epoch. On the

contrary, the next corollary shows that for n ≥ 3, there is no symmetric Nash equilibrium.

Corollary 2. For n = 2 miners and assuming that Conjecture 1 holds, there exists a Nash equili-
brium in which player i = 1, 2 uses hashing power hi = α3−i/(α1 + α2)2 in every epoch.

Proof. Suppose that player 3 − i plays the strategy of the corollary, h3−i = αi/(α1 + α2)2, in
every epoch. Then by Lemma 4, it suffices to show that αiH−i ≤ (4

√
2 − 5)2, in which case the best

response of player i is to use the same power

√
H−i/αi −H−i =

√
h3−i/αi −h3−i = α3−i/(α1 +α2)2 in

every epoch. Indeed, we have that αiH−i = α1α2/(α1 + α2)2 ≤ 1/4 ≤ (4
√
2 − 5)2, for every positive

numbers α1, α2. �

Corollary 3. Consider the case of symmetric miners, all with efficiency parameter α . For n ≥ 3,
there is no pure symmetric Nash equilibrium in which the miners use the same power in each epoch.
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Fig. 2. The utility of the best periodic response with periods 1 (parabola) and 2 (straight line), when the other
players use the same power H−i in every epoch (Lemma 4).

Proof. Suppose that such an equilibrium exists. Observe first that there is no symmetric equili-

brium in which all players use 0 power in some epoch. By Lemma 4, wemust have αH−i ≤ (4
√
2−5)2,

otherwise a varying 2-periodic better response exists.

For this range, the best response of miner i is hi =
√
H−i/α −H−i . By symmetry, H−i = (n − 1)hi ,

which gives αH−i = (n−1)2/n2. Therefore, a symmetric Nash equilibrium exists only if (n−1)2/n2 ≤
(4
√
2 − 5)2. This does not hold for n ≥ 3.

For the case of n = 2, (n − 1)2/n2 ≤ (4
√
2 − 5)2 and, assuming that Conjecture 1 holds, there is a

symmetric Nash equilibrium with hi = 1/(4α); this also follows from Corollary 2. �

6 DISCUSSION
Proof-of-effort mining with difficulty adjustment, proposed in Satoshi Nakamoto’s paper a decade

ago, is currently the engine of many blockchain systems. There is the tacit assumption that rational

agents are incentivized by this protocol to outfit themselves with computational resources and mine

at full speed as long as this is profitable. Here we point out that this is not so: rather sophisticated

strategic considerations render the situation far more complicated, unstable, and hard to predict.

Even though there are rather nice constant-effort pure Nash equilibria (still quite complex and

surprising in their detail), they collapse when miners strategize from epoch to epoch. In most

equilibria — or deviations from such — considered here, effort by each miner is held back to a

strategic relatively low level, and it often oscillates from one epoch to the next.

We believe that these are issues that must be attended to, and explored further:

• Adjusting the adjustment: would a modified difficulty adjustment process — for example, a

smoothened version based on a weighted sum of the effort levels of the few past epochs —

create more manageable pure equilibria? We are pursuing this direction.

• Our results (both equilibria and deviations) assume that the agents possess full information

about the game — and this is of course unrealistic. However, in most of our results the decision

of agent i relies mainly on H−i , the total effort exerted by others, and it is reasonable to
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assume that this is observable. Still, it would be of interest to study incomplete information

versions of the mining game.

• Similarly, in some parts of our work we assumed that users can vary their power from

epoch to epoch substantially. It would be interesting to see how maximum energy levels can

affect these results. We predict that maximum energy levels may cause even more chaotic

participation in some cases.

• Do the strategic realities of mining pointed out in this paper suggest a better outlook for the

energy footprint of blockchains? To answer, more research is required.

• Our results suggest that the rational behavior in many mining situations may be a mixed

strategy by at least some of the miners. What would such a strategy be like? How would we

know whether this is happening by looking at mining data? Note that, even in this case, a

miner would be able to observe some aggregate of the other miners’ current random choices.

• Incidentally, is there always a mixed equilibrium in mining games? Since the strategy space

is continuous, Nash’s theorem does not pertain, and more sophisticated analytic techniques

(such as tracing the limits of the sequence of the equilibria of discretized strategy spaces) are

required.

• Finally, we intend to pursue the Conjecture.
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