

1

Full citation: Bosu, M.F., & MacDonell, S.G. (2019) Experience: Quality benchmarking of
datasets used in software effort estimation, ACM Journal of Data and Information Quality 11(4),
pp.1-38 (Article 19). doi:10.1145/3328746

Experience: Quality Benchmarking of Datasets Used in Software Effort
Estimation

Michael F. Bosu
University of Otago and Waikato Institute of

Technology, Centre for Information Technology,
Wintec, Private Bag 3036, Waikato Mail Centre

Hamilton 3240, New Zealand
email:	michael.bosu@wintec.ac.nz

Stephen G. MacDonell
University of Otago and Auckland University of

Technology, School of Engineering, Computer and
Mathematical Sciences, Private Bag 92006,

Auckland 1142, New Zealand
email: stephen.macdonell@otago.ac.nz

Abstract
Data is a cornerstone of empirical software engineering
(ESE) research and practice. Data underpin numerous
process and project management activities, including the
estimation of development effort and the prediction of the
likely location and severity of defects in code. Serious
questions have been raised, however, over the quality of the
data used in ESE. Data quality problems caused by noise,
outliers, and incompleteness have been noted as being
especially prevalent. Other quality issues, although also
potentially important, have received less attention. In this
study, we assess the quality of 13 datasets that have been
used extensively in research on software effort estimation.
The quality issues considered in this article draw on a
taxonomy that we published previously based on a
systematic mapping of data quality issues in ESE. Our
contributions are as follows: (1) an evaluation of the
“fitness for purpose” of these commonly used datasets and
(2) an assessment of the utility of the taxonomy in terms of
dataset benchmarking. We also propose a template that
could be used to both improve the ESE data
collection/submission process and to evaluate other such
datasets, contributing to enhanced awareness of data
quality issues in the ESE community and, in time, the
availability and use of higher-quality datasets.

CCS Concepts: Information systems → Data
provenance; Incomplete data; Inconsistent data;

Keywords: Data quality, benchmarking, empirical
software engineering, software effort estimation,
noise, missing data

1. INTRODUCTION
As the name implies, empirical software engineering (ESE)
employs observational data in the modelling and
understanding of software engineering phenomena. ESE
has gained particular prominence in the past decade after
Kitchenham Dybå and Jorgensen (2004) espoused the
ambitions of evidence-based software engineering, being

the incorporation of up-to-date research evidence with
practical experience, tempered by human values when
making decisions during software development and
maintenance. ESE was preceded by “software metrics,” a
term that referred to activities and data associated with
measurement in software engineering. Some of these
activities revolved around the production or collection of
values to characterize software code properties (the
“classic” software metrics) and the development of models
to predict various aspects of soft- ware, such as resource
requirements, defect rates, broader quality concerns,
development effort, and others. The central role of data was
evident even then—Hall and Fenton (1997) described soft-
ware metrics as including the collection of quantitative
measures as a key part of software quality control and
assurance activities (and specifically the monitoring and
recording of defects during development and testing). This
thinking has prevailed. While a range of topics has since
been ad- dressed within ESE research, the most substantial
bodies of work in this field have proposed or evaluated
models constructed primarily for effort/cost estimation or
for defect prediction.

The use of metrics in ESE has been asserted as invaluable
in facilitating rational decision making during software
development and maintenance (Mazinanian et al. 2012;
Schalken and van Vliet 2008), with the expectation that this
will in turn lead to positive outcomes such as increased
development productivity, reduced deployment cycle time,
and improved quality of the software product
(Daskalantonakis 1992). Although the in-principle benefits
of metrics to software engineering is not in doubt, the in-
practice benefits have been questioned increasingly in
recent years due to growing concerns over the quality of the
data being collected and used in the building of models to
predict characteristics such as software size and
development effort.

The challenges associated with the collection and use of
empirical software engineering datasets have thus been
documented in several recent publications (Gray et al.
2012; He et al. 2013; Liebchen and Shepperd 2008).
Problems such as noise, outliers, and missingness (or
incompleteness) have been acknowledged and afforded

2

particular attention by the ESE research community, in
terms of both their detection and their resolution (Buglione
and Gencel 2008; Khoshgoftaar and Hulse 2005; Liebchen
and Shepperd 2008; Liebchen and Shepperd 2005), while
other problems, such as poor provenance, inconsistency,
and commercial sensitivity, have been largely overlooked.
Our previously published taxonomy (Bosu and MacDonell
2013a) identified a number of distinct data quality
challenges exhibited in respect to ESE datasets. In this
study we apply the taxonomy to some “classic” ESE
datasets, found primarily in the PROMISE1 repository, that
have been widely used in studies of software effort
estimation2. These data sets were selected because they are
easily accessible and (so) are frequently used in ESE
modeling. Our intent is to benchmark these datasets against
the elements of the taxonomy with the goal of evaluating
their quality. This will serve to highlight any areas of
general concern regarding the collection of ESE data and
will also indicate any specific shortcomings in each dataset.
We will also gain some insight into the utility of the
taxonomy as a benchmarking mechanism. In providing a
benchmark of this nature, researchers and practitioners will
be able to compare the quality of any new datasets with
these classic alternatives. This should lead to more
informed decisions as to whether to use a given dataset in
ESE modeling.

Although a range of techniques have been proposed to
identify or assess the various quality characteristics of ESE
datasets, there is no single “front-runner” technique for any
of the data quality issues in the taxonomy. As a result, we
employ what are considered to be among the best practice
technique(s) (described in Section 4) with a view to
assessing the quality of these widely used datasets. It is
hoped that researchers and practitioners would use
appropriate techniques, such as these, in assessing the
quality of their own datasets and to in fact develop or utilize
new and better methods of data collection; in the meantime,
however, the objective of this benchmarking exercise is to
illustrate and so promote a holistic assessment of data
quality prior to modeling. The contributions of this article
are as follows:

• First, we deliver insights into the state of data
quality of some of the most widely used datasets
in software effort estimation.

• Second, we assess the previously proposed
taxonomy in terms of its utility as a mechanism for
benchmarking.

• Third, we propose a template that should provide
a transparent means of data collection and
submission and should support quality assessment
of other datasets.

To the best of our knowledge, this is the first study in ESE
that has sought to holistically assess the state of quality of
a number of commonly used datasets; most prior studies
have addressed a limited range of issues or quality concerns

1 http://openscience.us/repo/
2 While “estimation” and “prediction” have slightly differing meanings,
in that the latter explicitly refers to the forecasting of a future occurrence,
we use the two terms interchangeably here given that many studies

associated with one, or perhaps two, datasets. It is also the
first study to explicitly advocate the use of a non-
proprietary template to guide the collection and submission
of datasets to ensure that their quality across multiple
relevant dimensions is made clearly “visible.”

1.1. Motivation
A This work is motivated by previous studies that have
addressed the impact of data quality in ESE. In each of
the case studies presented in this section, a single data
quality issue was addressed. We are of the view that if
data quality can be addressed holistically, then ESE
practice stands to benefit greatly, given the
improvements experienced through the addressing of
single data quality issues.

Khoshgoftaar and colleagues applied several noise
detection and correction procedures to ESE datasets
across a range of studies (Folleco et al. 2008; Hulse et
al. 2006; Khoshgoftaar and Hulse 2005; Khoshgoftaar
and Rebours 2004), with varying degrees of success.
Noise detection techniques, including Bayesian
multiple imputation, a clustering-based noise detection
approach using the k-means algorithm, an Ensemble-
Partition filter, a technique to detect noise “relative to
an attribute of interest (AOI),” rule-based noise
detection, and Closest List Noise Identification, were
applied to various ESE datasets. In all these studies, the
authors show that addressing the noise issue in software
effort estimation datasets has the potential to improve
the performance of their prediction models, leading
them to conclude that noise is detrimental to the
performance of machine-learning algorithms used in
ESE prediction.

Outliers have been a constant source of problems in the
analysis of ESE data (Morasca 2009). For instance,
Lavazza and Morasca (2012) used a generalized robust
regression method to not discard too many data points
due to outliers, because as much as 57% of the data
points in one of their datasets were determined to be
outliers from a Least Squares perspective. The adoption
of this approach ensured that they were able to build
models that were statistically significant and had
superior effort estimation accuracy.

The amount of data available for model building is
known to affect the statistical significance of resulting
software effort estimation models, with small datasets
being particularly challenging. Naive Bayes and
Random forest algorithms have been proposed to
increase the performance of prediction models based on
small datasets and large datasets, respectively (Catal
and Diri 2009; Fenton et al. 2008). Another challenge
to the amount of data available is missing data values.
Zhang et al. (2011) employed two imputation strategies
by using the naïve Bayes and Expectation
Maximization algorithms to address missingness in
software effort estimation datasets. These imputation

actually utilize secondary data sets collected in the past in their analyses
(and so, strictly speaking, are analyses of estimation rather than
prediction).

3

strategies were applied to the ISBSG and CSBSG
datasets, and software effort prediction models were
built using the corrected data. The results indicated
superior software prediction models based on the
corrected data.

It should be evident from the above studies that robustly
addressing any aspect of data quality in ESE can lead to
improvements in the available dataset and/or the
resultant models that are built. Different data quality
issues might be associated with different problems. For
instance, the presence of noise may mean that a dataset
is not fit for purpose, existence of outliers could mean
that the results of models might need to be adjusted for
skewing, and missing data might lead to the building of
models with smaller datasets, which could lessen the
power of a model.

The remainder of this article is organized as follows. In
Section 2, we present related work, and in Section 3 we
describe the datasets selected for assessment. In Section
4, we present the best practice methods used in
assessing dataset quality. A discussion of the results of
this assessment is presented in Section 5. In Section 6,
we propose a template that should aid in data quality
assessment and in the collection and submission of
datasets in the future. Finally, we present the
conclusions of our study in Section 7.

2. RELATED WORK
Data are at the core of the practice of ESE, and, as such,
its importance to the discipline cannot be overstated.
Most researchers use secondary data in ESE modeling
(Mair et al. 2005; Shepperd et al. 2014); it is therefore
critical that those responsible for collecting data are
well trained and aware of the potential problems that
could exist in datasets, so that suitable processes are
employed to generate, and use, the most reliable data
available. At a minimum, the processes used should be
documented to inform secondary users of how the data
were collected. The challenges faced by those collecting
and utilizing empirical software engineering datasets
have received increased recognition in recent times
(Bosu and MacDonell 2013a; Liebchen and Shepperd
2008; Shepperd et al. 2013), although as a whole the
body of literature on ESE data quality remains quite
limited (Bosu and MacDonell 2013b). In this section,
we review prior assessment studies and we briefly note
some of the measures others have taken to improve the
quality of ESE datasets and repositories. We first
present a representative set of studies that have assessed
the state of ESE datasets from one viewpoint or data
quality dimension, as this is the predominant approach
taken by the ESE community in addressing issues that
affect software engineering datasets. In this subsection,
we also present example studies that have used metrics
from open source projects in building ESE prediction
models. This is followed by a review of the few studies
that have assessed the state of ESE datasets from
multiple viewpoints or considering multiple data
quality dimensions.

2.1 Single Issue Studies
Noise—erroneous data—has been identified as a
problem in several software measurement datasets
(Johnson and Disney 1999; Khoshgoftaar and Hulse
2005; Hulse and Khoshgoftaar 2011; Liebchen and
Shepperd 2005), and the ESE community has
responded with a number of studies seeking to address
the incidence and effects of noise. Liebchen et al.
(2006) conducted classification experiments to assess
the effect of noise on the accuracy of predictions and to
evaluate the robustness of techniques for handling noise
in ESE datasets. Three noise correction techniques were
employed: robust algorithms, filtering, and polishing.
Their results demonstrated that polishing is a more
effective classification algorithm as compared to robust
algorithms and filtering.

Yoon and Bae (2010) proposed a pattern-based outlier
detection method that identifies abnormal attributes in
software project data and that relies on the existence of
normal or typical relationships between attributes,
which they termed a data association pattern (DAP).
The pattern-based outlier detection method follows a
three-step process: First, hierarchical clustering is
applied to discretize the numerical attributes of software
project data; second, DAPs are mined to identify
frequent patterns that meet a certain minimum
confidence threshold; and, third, software project data
are mapped to the DAPs to identify any abnormal
attributes. One of the objectives is to facilitate root
cause analysis so as to prevent reoccurrences in the
future. The Yoon and Bae (2010) study is significant in
the sense that the abnormality of outliers is determined
and acted upon relative to other data, in contrast to
many studies that classify all outliers as noise and so
simply (but perhaps inappropriately) remove them.

Two embedded strategies to address missing data
(toleration and imputation) when using naïve Bayes and
Expectation Maximization algorithms for software
effort prediction were proposed by Zhang et al. (2011).
The missing data toleration strategy simply ignores
missing values and makes use of existing data values of
software projects for prediction. Its strength lies in its
low computational complexity requirements. The
imputation strategy uses existing values of attributes to
estimate missing values. Experimental results drawn
from their analyses (of the ISBSG and CSBSG datasets)
demonstrated that both strategies outperformed classic
imputation techniques.

Inexperienced measurers were identified as contributors
of poor data quality in the form of inconsistencies
(Cuadrado-Gallego et al. 2010), especially during the
data collection stage due to their lack of understanding
of software project metrics. It is important for software
engineers to be trained in all aspects of data collection
so that the quality of the data can be assured.

Redundant and duplicate data in ESE datasets
(Bettenburg et al. 2008) might lead to misleading results
and can also detrimentally affect the performance of
classifiers. Prifti et al. (2011) found that, in their
analysis of the Firefox bug repository, there were 748
bugs that had been assigned to multiple groups, after

4

they applied a method that detected duplicates through
local references. If effort modeling is based on such
data, then clearly there is scope for over-estimation of
the actual effort required. Moreover, the building of
classification models using data-mining methods will
be slowed by the additional processing needed to parse
and consider the redundant entries/values.

Models generated from heterogeneous multi-
organization datasets have been employed in estimating
effort or predicting defects of software projects in a
single company in a growing body of research
(Bettenburg et al. 2008; Kocaguneli and Menzies 2011;
Mendes et al. 2007; Mendes and Lokan 2008; Menzies
et al. 2011; Turhan et al. 2009; Zhihao et al. 2005). In
spite of the extensive attention given to this issue,
results to date have been inconclusive as to whether
single organization datasets are superior to those
collected from multiple organizations. Kocaguneli et al.
(2010) proposed the use of relevancy filtering so that
organizations that lack historical data can supplement
their software cost estimation with relevant data from
other projects or organizations, as this approach was
found to be effective as compared to using the data
without any relevancy filtering.

The amount of data available for model building
contributes to the likely statistical significance of
generated models. Small datasets are an acknowledged
problem in ESE as they do not lend themselves to the
generalization of results. The range of suitable analysis
techniques is also con- strained (Bennett et al. 1999;
Hall 2007), as some approaches assume the availability
of a minimum volume of data. Naturally, this issue is
particularly pertinent to organizations that are just
beginning a measurement programme or that embark on
projects that are substantially different to those
undertaken in the past.

Commercial sensitivity is one of several constraints on
provenance in ESE. Organizations that hold data that
they believe gives them competitive advantage might
not be willing to release the data to independent
researchers, for fear of proprietary data becoming
accessible to competitors. Similarly, they may be
reluctant to release data if they believe they could be
used to portray them in an unfavorable light. Even when
researchers are able to have access to such data, they are
often required to sign non-disclosure agreements that
prevent them from publishing the data with their results
(Liebchen and Shepperd 2005; Mair et al. 2005), thus
rendering such studies non-replicable. To resolve the
commercial sensitivity problem and promote the
sharing of data, Peters et al. (2013) proposed the
CLIFF+MORPH algorithm that anonymized data
without substantially degrading its use in software
defect prediction. This algorithm was applied to good
effect on 10 defect datasets from the PROMISE
repository.

In the defect prediction study of Turhan et al. (2009),
they found it difficult to access failure logs, because
several large teams of contractors were working on
projects for a single organization— NASA—and each
viewed the failure logs as critical to their competitive

advantage. The authors note that acquisition of even
coarse-grained information was only attained after
several years of negotiation. When finally provided, the
data were highly sanitized by NASA to the extent that
the research team was not able to have information
concerning project or module names. Robles (2010)
assessed the possibility of replicating experiments
reported in papers published in the proceedings of the
Mining Software Repositories Workshop/Conference
between 2004 and 2009. It was determined that only 6
of 154 experimental papers were replicable, because the
data and scripts used in the other 148 original studies
were not accessible.

Catal and Diri (2009) performed several experiments to
assess researchers’ claims that their fault prediction
models provided the best performance. When the
models were assessed using public datasets, the results
were not as strong as had been claimed by their
proponents. This may reflect problems with the models
themselves (and possible researcher bias), or it may
again signal the extent to which models are tied to the
underlying data. Whatever the cause, conflicting reports
such as this raises trust issues about software
engineering experiments and the reliability of the
datasets that are used in these experiments.

Empirical software engineering models for effort
estimation and defect prediction have been built for
open source projects such as the Linux kernel, Mozilla
Firefox, Eclipse, and the like. Capiluppi and Izquierdo-
Cortázar (2013), in their study of software effort
estimation of FLOSS projects using the Linux kernel as
a case study, extracted time-aware information from the
repository to enable them to identify the occurrence of
major development activities. The metrics collected
include commits (additions, deletions and
modifications), committer, author, major release,
timezones (office hours, after office and late night), and
code complexity (McCabe’s cyclomatic index).

In addition to employing traditional metrics such as
function points and Lines of Code, Qi et al. (2017)
introduced another group of metrics they termed
personal factors, which were determined objectively
when they mined the GitHub repository to create effort
estimation models for open source projects. The
personal metrics are APEX, which refers to the project
team experience in a specific kind of application, and
LTEX, which is also associated with the programming
language and tool experience of the project team. This
project was undertaken to address the lack of adequate
data for software effort estimation. It is worth noting
that personal metrics are not a new idea in software
effort estimation datasets, as they have been associated
with datasets such as COCOMO, Desharnais, and
others.

Metrics such as Commits, PullReqs, PullReqsHandled,
ProjectsWatched, IssueComments, IssuesReported,
IssuesHandled, Followers, and Mentions have also been
tracked in GitHub (Badashian Esteki Gholipour Hindle
and Stroulia 2014) to study developer activities. There
are therefore di- verse metrics that can be tracked in the
GitHub repository for which some can be employed to

5

build effort estimation models, while others have
different uses such as commit classifications and
developer activity analyses.

Software engineering metrics have also been used to
study how software systems change over time. Israeli
and Feitelson (2010), for instance, studied the evolution
of the Linux kernel. In a 14-year period they considered
810 versions of the system. Some of the metrics used
were lines of code, McCabe’s cyclomatic complexity,
metrics based on Halstead’s software science, Oman’s
maintainability index, Files and directories, and the rate
of releasing new versions. Their study found support for
Lehman’s law in relation to growth and stability of
software systems.

Shin, Meneely, Williams, and Osborne (2011)
investigated the use of three broad metrics of
complexity, code churn, and developer activities as
reliable indicators of identifying software system
vulnerability. Using the aforementioned metrics, they
were able to predict code vulnerabilities in the Mozilla
Firefox browser and Red Hat Enterprise Linux.

2.2 Multiple Issue Studies
The above studies considered the state of ESE datasets
in terms of just one quality dimension; we now consider
studies that have assessed the state of ESE datasets from
multiple viewpoints.

It has been generally established that the quality of ESE
datasets cannot be taken for granted, as data collected
even by highly mature organizations can have issues.
This is evident in the discovery by Gray et al. (2012) of
several data quality problems with the NASA Metrics
Data Program (MDP) datasets that are used widely for
defect prediction research. The issues evident in these
datasets are several and include redundant data,
inconsistencies, constant attribute values, missing
values, and noise. Shepperd et al. (2013) proceeded
further to compare two versions of a NASA dataset (one
in the PROMISE repository and the other in the MDP
repository) with respect to the data instances and their
attributes and discovered that they differed in several
respects. They proposed an algorithm that could be used
to clean this data of multiple data quality issues.

Rodriguez et al. (2012) used a position paper to classify
ESE repositories and the data quality problems that are
faced by researchers when using these sources. The
repositories were classified into five main groups based
on the type of information stored, public or private
availability of the dataset, existence of single project or
multi-project data, type of content, and the format of
data storage. In noting the challenges that these sources
posed to (primarily machine learning) researchers the
authors referred to difficulties in data extraction, the
insufficient provision of information to support
replication, and a range of data quality problems,
including outliers, missing values, redundant
observations, overlapping classes, data shift over time,
unbalanced distributions, measurement variability, and
model accuracy variability (Rodriguez et al. 2012). The
classification of datasets by their distinct properties and
the acknowledgement of data quality problems is a

positive initiative. The research reported in this article
is intended to further enhance data quality in ESE by
providing a transparent and consistent means of
collection and evaluation that could lead to the use of
high(er)-quality data in software engineering
experiments.

In a more recent publication, Valverde et al. (2014)
proposed a Data Quality model that com- prised data
quality dimensions, data quality factors, data quality
metrics, and their inter-relationships. Data quality
dimensions refer to a broad classification of data quality
issues; data quality factors refer to the set of
characteristics that makes up a particular dimension;
and data quality metrics are the set of measures that are
used in assessing the factors in each dimension. The
model is intended to support the identification and
assessment of quality problems associated with the
collection of data from software engineering
experiments (Valverde et al. 2014). The authors
evaluated the model on two controlled experiments
(which compared the effort of developing a web
application either by employing a Model-Driven
Development approach or a more traditional
development approach where code is manually
generated). The approach advocated by Valverde et al.
(2014) bears some resemblance to the data collection
and submission template proposed in Section 6 of this
article, as it encourages quality assessment at the data
collection stage. Where the two studies depart is that
their study considers a subset of the elements of quality
that this article considers (specifically, those falling
under the Accuracy class of our data quality taxonomy
as presented in Section 4). The model of Valverde et al.
(2014) also does not directly support independent
verification of the data quality issues at stake as it
provides only the result of the data quality assessment,
whereas the data collection and submission template
proposed in this article provides a comprehensive and
transparent means of verifying any data collected and
all assessments undertaken, with a view to facilitating
replication. Such efforts should go some way to
addressing quality problems at the data collection stage,
which could also be beneficial in terms of early
intervention. As noted above, however, empirical
software engineering researchers often work with
secondary data, and therefore it is similarly important to
identify the quality challenges associated with
secondary data, a second point of emphasis in this
article.

A reasonably recent systematic mapping by Rosli et al.
(2013) identified the data quality problem as an issue in
ESE and discussed prior assessment techniques as
applied to software engineering datasets. Although 10
different data quality problems were identified, nine of
them fall into the Accuracy class of the data quality
taxonomy (Bosu and MacDonell 2013a). This again
signals the sometimes narrow conceptualization of data
quality in software engineering, as it is mostly seen
from the (albeit important) perspective of accuracy. The
present research intentionally adopts a broader
conceptualization, and the proposed data collection and
submission template should enable users to capture

6

other aspects of data quality in ESE that have to date
been largely ignored.

Gencel et al. (2009) attributed the problem of
inconsistent results when software effort estimation
models are developed using benchmark repositories to
two factors:

1. The lack of common standards and
vocabulary.

2. The differences in definitions and categories
of attributes of the different repositories.

The authors went on to propose a mechanism for
improving the classification of attributes by adapting
the parametric estimation method that is used in civil
engineering and two software engineering standards
(ISO 12182 and ISO 14143-5). The parametric
estimating method relies on the use of a classification
database of past projects’ parameters to estimate new
project parameters. The ISO 12182 standard consists of
definitions of software application types and the ISO
14143-5 standard is the grouping of software
applications into classes based on the functional
properties of the software. The authors assert that
(more) consistent use of terminology and definitions
should lead to better quality ESE data. To date the
proposal has been untested. However, in adherence to
this suggestion by Gencel et al. (2009), the use of the
data collection and submission template proposed in
this article should offer a consistent and comprehensive
approach for evaluating the quality of data for software
engineering experiments.

Cheikhi and Abran (2013) surveyed the PROMISE and
ISBSG repositories with the objective of making it
easier for researchers to understand the data in them and
thus more readily use the data in modeling. The datasets
were classified according to the types of studies in
which they could be used, such as effort estimation,
defect prediction, and others. Properties of the datasets,
including the name of the dataset; whether attributes
have been described; the source/donor of the dataset;
the year the dataset was made available in a repository;
and the mode of accessibility of the dataset (such as
public or private) were established for each of the data
files in the repositories. These important factors form
part of the provenance requirement of the proposed data
collection and submission template (Section 6).

Denoted “ISBSG” in the preceding text, the
International Software Benchmarking Standards Group
applies data quality ratings as a mechanism for
indicating the quality of the data submitted for inclusion
in its repositories:

“This field contains an ISBSG rating code of A, B, C or
D applied to the project data by the ISBSG quality
reviewers to denote the following:

A= The data submitted was assessed as being sound
with nothing being identified that might affect its
integrity.

B= The submission appears fundamentally sound but
there are some factors that could affect the integrity of
the submitted data.

C= Due to significant data not being provided, it was
not possible to assess the integrity of the submitted
data.

D= Due to one factor or a combination of factors,
little credibility should be given to the sub- mitted
data.”

How those heuristics are operationalized in practice,
however, is not known. As such, the quality rating has
been said to be a proxy for completeness of data
(Liebchen and Shepperd 2008), and researchers have
tended to discard data with ratings lower than B in their
analyses. Using a “blunt” approach such as this may not
be optimal, however, in that, depending on the specifics
of the research question being addressed, it may be too
conservative or too optimistic. In related prior work, we
have suggested a more nuanced way to maximize data
use from the ISBSG repository (Deng and MacDonell
2008).

The Experience database also uses data quality rating
rules, in this case developed by the Finnish Software
Measurement Association (FiSMA) to evaluate the data
submitted to this particular repository (Forselius 2008).
The FiSMA rules are publicly available (Forselius
2008) and anyone interested can apply them to evaluate
the quality of data. The rules are designed to ensure that
attributes of interest are explicitly described so that all
three levels of stakeholders in the data collection pro-
cess (customer company project management staff,
project manager and repository manager) have the same
understanding of the data requirements. The FiSMA
rules categorize attributes into three classes for which
metrics are recorded for each attribute (Forselius 2008).
The first class comprises the “basic” attributes of
projects such as size, measured in function points,
effort, measured in person-hours, and duration,
computed from the start date and end date of a project.
The second class comprises attributes that are used to
determine the context for which projects were
developed, such as programming language, platform
type, type of projects, and type of business of the
customer organization. The third class of attributes are
associated with productivity factors of software
projects, such as the use of automated tools, customer
participation, experience level of developers and project
managers, and so on.

There are mandatory attributes (including size of
software, effort, start date, end date, and others) for
which if any attribute value is missing the data are
rejected outright (Forselius 2008). In determining the
quality rating of a project, scores are assigned to each
attribute, and the scores for all the attributes are
aggregated to arrive at a final score for the project. The
quality of the content of an attribute value impacts on
the score assigned to that attribute. The maximum score
possible for a project is 100. In all, seven quality levels
are possible upon evaluation of the data. Six of the
quality levels are acceptable and mean that records are
stored in the Experience database, with the highest data
quality level having a score of 90 or above indicated as
“AAA” and “D” being the lowest-quality projects
stored in the database with scores that lie between 40

7

and 49. Projects that evaluate to “X” are rejected and
not stored in the database. Below are the quality ratings
of projects that are assigned based on evaluation of the
FiSMA rules by the repository manager:

AAA	 Highest	quality	 90+	
AA	 Excellent	 80–89
A		 Very	good	 70–79	
B			 Good		 60–69		
C	 Satisfactory	 50–59	
D	 Acceptable	 40–49	
X	 Rejected	 –39	

FiSMA provides documentation to aid in the
determination of scores for the individual attributes—
this is said to ensure that the process of evaluating the
quality of projects is repeatable and can be carried out
independently by all stakeholders. Application of this
process of data evaluation is said to have contributed to
the increased quality of this repository as compared to
the ISBSG repository (Forselius 2008). Project
Managers responsible for data collection are also able
to use it to self-evaluate the quality of their data prior to
submitting it to the Experience database.

In spite of these provisions, some researchers have
identified quality issues with this dataset. Outliers and
missing and unexplained values have led to the removal
of data from this dataset prior to analysis (Maxwell and
Forselius 2000; Premraj et al. 2005). Though these
problems are acknowledged by Forselius (2008), it is
claimed that the Experience dataset is improving in
quality upon every new release, due to ongoing
enhancement of the rules applied in the collection of the
data. Data that do not satisfy the minimum quality
requirements are rejected, and so it has been asserted
that the Experience database therefore contains high-
quality data (Forselius 2008). To indirectly illustrate
this focus on quality, the FiSMA rules were applied to
the ISBSG dataset in 2008, and it was found that more
than 1,000 projects in the ISBSG repository would have
been rejected from inclusion if assessed against the
FiSMA criteria (Forselius 2008).

The adoption of quality rules in the Experience database
is to be commended in terms of con- tributing to
improved data collection practices. There are, however,
other datasets that have been used in many more ESE
studies due to their public availability. While this open
availability is positive in terms of facilitating research,
we have limited knowledge of how they were collected
or of any quality checks that were applied to them—
particularly when researchers do not return to the
original source of the data. This has motivated us to
provide a comprehensive set of data assessment
procedures as described in Section 4. Prior to that, we
provide a brief overview of the ESE data quality
taxonomy (Bosu and MacDonell 2013a), which is the
basis of the data benchmarking in this article.

2.3 The ESE Data Quality Taxonomy
In this section, we present a brief overview of the ESE
Data Quality Taxonomy based on our prior work (Bosu
and MacDonell 2013a). The ESE data quality taxonomy
was created by surveying a decade of ESE literature on
data quality. The study (Bosu and MacDonell 2013a)
identified 57 papers that had addressed one or more
issues of data quality, and a total of 74 data quality
issues were identified by these papers. These issues
were grouped into three main classes: accuracy,
relevance, and provenance. Sub-issues (or elements)
were identified for each of the main classes. We provide
a brief definition or explanation of the main issues and
sub-issues of the taxonomy as shown in Figure 1.

2.3.1 Accuracy. Accuracy refers to the group of data
characteristics that, if encountered, renders observed
data unfit for modeling. According to the Oxford
English Dictionary, accuracy is “the state of being
accurate; precision or exactness resulting from care;
hence precision ...exactness, correctness.” The elements
of accuracy are noise, outliers, inconsistency,
incompleteness, and redundancy.

Noise. Noise is erroneous data or incorrect data—
several empirical software engineering studies have
identified noise in ESE datasets (Johnson & Disney
1999; Liebchen et al. 2006). Noise is deemed to reduce
the accuracy of models; as such, software researchers
have proposed noise detection techniques such as
Bayesian multiple imputation, rule-based noise
detection, and Closest List Noise Identification to
address the issue of noise in datasets prior to model
development.

Outliers. Being data points that lie outside the overall
pattern of a distribution (Yoon and Bae 2010), outliers
are a common phenomenon in ESE datasets (Johnson
and Disney 1999; Liebchen et al. 2006; Yoon and Bae
2010). The presence of outliers might be an indication
of an error in the

measurement of data or that the data are not fit to be
used in the development of a model.

Incompleteness. Primarily found in the form of missing
values, incompleteness affects several ESE datasets
(Liebchen et al. 2006; Liebchen and Shepperd 2005;
Chen and Cheng 2006). “Missing” is defined as “not
able to be found, because a value is present but not in
its expected place, or is not present when it is expected.”
The definition of incompleteness is, however, broader,
as it refers to not complete or finished or imperfect.

It also refers to a part that is not whole or requires some
other parts to be complete. Due to the small size of
many ESE datasets, the existence of incompleteness in
data might render a model statistically insignificant.
The ESE research community has proposed several
imputation techniques (e.g, Khoshgoftaar et al. 2006;
Hulse and Khoshgoftaar 2008, 2014) to deal with the
phenomenon of incompleteness/missing data.

8

Inconsistency. Inconsistency, according to the Oxford
English Dictionary, is defined as “a lack of harmony
between parts or elements; instances that are self-
contradictory, or lacking in agreement when it is
expected.” To ensure consistent data in software
engineering, it is essential for recorded data to match
the variables for which they are recorded. In the study
of iterative and incremental software development
productivity trends, Tan et al. (2009) discovered
inconsistency in effort and size values in that there were
mismatches from one report to another.

Redundancy. In software effort estimation and defect
prediction datasets, redundancy might exhibit in the
form of duplicates or multicollinearity between
variables. For example, Prifti et al. (2011) applied a
technique that detects duplicates on the Firefox bug
repository and discovered as many as 748 bugs that had
been described in multiple groups. The use of such a
dataset for effort estimation is likely to lead to an
overestimation of the required effort—clearly an
undesirable outcome.

2.3.2 Relevance. The Oxford English Dictionary
defines relevance as “the quality or fact of being
relevant—bearing upon, connected with, pertinent to,
the matter in hand.” The use of appropriate data in the
development of models—usually classification or
prediction is pertinent to the relevance element. Data
collected from a different context or system such as
real-time embedded system would be unsuitable to be
used in estimating development effort for transaction-
intensive retail systems. Relevance essentially captures
the characteristics of data that are used in modeling.
Several ESE studies have considered relevance from the
perspective of either single organization datasets or
multi-organization datasets. The elements considered
under relevance in the taxonomy are heterogeneity,
amount of data, and timeliness.

Heterogeneity. In ESE, software effort estimation
research has considered heterogeneity particularly in
relation to whether the source of the data used in model
development is from a single organization or multiple
organizations. Researchers have employed
heterogeneous datasets from multi-organizations in
developing software effort and defects models for
single organizations (Mendes et al. 2008; Turhan et al.
2009; Zhihao et al. 2005). Results have proven
inconclusive so far as to the superiority of either single
organization datasets or multi-organization datasets.
The single-company/multi-organization dichotomy
may have been oversimplified, as some single
organizations are mostly engaged in many diverse
projects.

Amount of Data. The statistical significance of models
is hugely dependent on the amount of available data
used in the development of the models, thus the amount
of data available is an important factor of relevance. It
is a widely held fact that small datasets is an issue in
ESE model development, as they hinder the
generalization of results. This also limits the selection
of analysis techniques (Bennett et al. 1999; Hall 2007),
as some techniques are suited to large amounts of data.
Although a dataset might initially consist of large
number of records, pre-processing such as the
application of stratification and feature set selection
approaches could result in data subsets that lack
statistical significance power when used in model
development. Researchers are therefore required to
ensure that pre-processing does not create data subsets
that raises questions about results generalizations due to
the small nature of datasets and/or the application of
inappropriate modeling techniques to the data.

Timeliness. An element of relevance that has received
little attention in the ESE research literature is
timeliness or currency of data. Mair et al. (2005)
conducted a survey in 2005 and found that many ESE
studies relied on data that are very old. The analysis of
ESE conference and journal publications confirms that
these old datasets are still being used in present-day
research. To ensure the timeliness of data, it is
important for researchers and practitioners to regularly
review the characteristics of datasets, taking into
consideration the operational context so that the dataset
is appropriate for contemporary use. Timeliness is more
about the appropriateness of the data use in model
development than anything to do with the datasets being
inherently “wrong.” The question that still remains is
“Why are ESE researchers still using old datasets in
developing models to be used in effort estimation and
defect prediction of contemporary projects?”

2.3.3 Provenance. The Oxford English Dictionary
defines provenance as “the fact of coming from some
particular source or quarter; origin, derivation.” The
existence of provenance information has been used in
the determination of the historical chain of ownership
of important objects of value (mostly art work and
literature) (Tan 2007). Guaranteeing provenance, while
extremely significant for such valuable objects, is also
important in relation to results generated by digital

Figure 1. Taxonomy of Data Quality in ESE
(BosuandMacDonell2013a).

ESE Data Quality

Issues Sub-issues

Accuracy Inconsistency

Incompleteness

Relevance

Outliers

Provenance

Commercial
Sensitivity

Accessibility

Trustworthiness

Heterogeneity

Amount of Data

Timeliness

Noise

Redundancy

9

systems and other scientific applications. Information
regarding provenance establishes something of an audit
trail, providing the supporting evidence for scientific
results, and, in turn, can directly influence the extent of
trustworthiness associated with such results. Because of
the reasons enumerated, the value placed on the
provenance of digital systems and scientific
applications is usually said to be the same as the results
they generate (Tan 2007).

Considered broadly, provenance is related to the issue
of experimental replication. Replication is or at least
should be important (Shull et al. 2008) in empirical
software engineering (as it is in other empirical fields)
in that it enables the community to build cumulative
knowledge concerning which results or observations
can be relied upon under different conditions. Shull et
al. (2008) advocated the production of good and
consistent documentation for all ESE experiments to
facilitate replication. This is consistent with previous
observation made by Wieczorek (2002), who indicated
that a negligible number of empirical software
engineering studies were replicated, and, surprisingly,
that the use of even the same datasets across multiple
studies continued to yield results that were not
comparable in most cases, due to differences in the
employed experimental designs. She con- tended that
the diverse reporting formats of studies in the ESE
domain meant that replication and results comparison
was a challenge (Wieczorek 2002). The challenge still
persists as supported by the Lokan and Mendes (2006)
study that replicated cross-company and single-
company effort models using the ISBSG database. They
were unable to apply the same experimental procedure
due to lack of consistent documentation. Replication
can be more effective by the use of provenance systems
that will provide transparency between the results of an
original study and a replicated study.

Commercial Sensitivity. Commercial sensitivity is one
of the factors that restrains the use of provenance in
ESE. This is due to the unwillingness of an organization
to disclose and/or release data to researchers outside of
their organization when it is believed that the data
provide them competitive advantage or might be
potentially harmful to the image of the organization. In
the rare occasions where data have been released to
researchers, they are made to commit to non-disclosure
agreements (Liebchen and Shepperd 2005; Mair et al.
2005), which prevents studies based on such data from
being replicable. Although non-disclosure agreements
protect donor organizations, it limits what can be
learned from such data analysis.

Accessibility. Researchers having access to data is
another issue of provenance in ESE. Turhan et al.
(2009) struggled to access the failure logs of NASA due
to the fact that several contractors were working on
projects for NASA. Each of these independent
contractors considered the failure logs as an important
element of their competitive advantage. It therefore
took several years of negotiations for the researchers to
be given access to the failure logs. The released data
were highly sanitized to the extent the researchers could

not even identify module and project names. Robles
(2010) analyzed the experiments reported in published
in the proceedings of the Mining Software Repositories
Workshop/Conference between 2004 and 2009 with the
objective of replicating the studies. To the surprise of
the author, a mere 6 of 154 papers were replicable,
because there was no access to the data and scripts used
in the other 148 papers.

According to Mair et al. (2005), just about 60% of ESE
datasets were accessible to the public when the authors
investigated the nature and type of datasets that were
being used to develop software effort predictions
models in the year 2005. Although there have been huge
increases in open source development since then, which
has made more data available to ESE researchers, it is
worth noting that open source development covers
several diverse systems with different development
practices, which raises questions about its suitability for
model development. Another factor is that it could be
difficult to map open source model of development to
that of industrial software development. To increase the
availability of data to researchers, it is essential that
public repositories with provenance information such as
the ISBSG (www.isbsg.org) and PROMISE
(http://openscience.us) should be encouraged. Effective
collaboration between academia and industry is another
means through which more data can be made accessible
to researchers, which ultimately will improve the
practice and reliability of ESE models.

Trustworthiness. There is a lot of innovation in the field
of SE, leading to the creation of new tools, models,
techniques, and other related artifacts; however, the
field is constrained by lack of rigorous evaluation of
these proposals. Glass et al. (2002) concluded that the
research approach in SE is narrow and mostly
dominated by the “Formulate” approach, with very few
studies concentrating on evaluation as a major research
activity when the authors analyzed software
engineering studies prior to the year 2002. Similar
outcomes have been found in other reviews (Clear &
MacDonell 2011). It is therefore difficult to have
confidence as to the extent to which results reported are
applicable beyond the often-limited evaluations
performed. This is applicable not only to tools,
techniques, and methods; it also affects prediction and
classification models as well. Catal and Diri (2009)
conducted several experiments to verify researchers’
assertions that their fault prediction models provided
the highest performance; however, when public datasets
were used in assessing some of the models, the results
were not as strong as had been claimed by their
proponents. This may be due to problems inherent in the
models, or it could be an indication as to the extent to
which the efficiency of the models is heavily dependent
on the underlying data.

Empirical software engineering researchers mostly
have limited access to the source of original data, and
the most reliable option is to work with secondary data.
Researchers therefore have no option but to place their
trust in people and systems used in collecting the data
and hope that the data are fit for their purposes.

10

Provenance systems is a means to overcome this
challenge, as it will provide researchers and all other
data users relevant information, including metadata and
the origins of the data, that will increase the trust that is
placed in the data. Changes in data, such as masking,
anonymization or transformation, and other pre-
processing, can subsequently be tracked and verified by
both data users and data providers. This is essential in
building models with high integrity.

3. DATASET DESCRIPTIONS
The 13 datasets used in our quality benchmarking
exercise and listed in Table 1 have all been used
previously in ESE research (Amasaki 2012; Miyazaki
et al. 1994; Prabhakar and Dutta 2013; Shepperd and
Schofield 1997). The choice of datasets was informed
by a prior study reported in 2005 (Mair et al. 2005) that
identified 9 of the datasets as being among those most
widely used in software effort estimation, noting that
the COCOMO81, Desharnais, Kemerer, and Albrecht
datasets were the most widely used of all. The China
dataset, although comparatively new (being made
available in the PROMISE repository in 2010), has also
been included in this assessment, because it consists of
499 records—a large number relative to most other
publicly available software engineering datasets. All of
the datasets have recently been used together in a
number of individual studies by Kocaguneli and
colleagues (Kocaguneli et al. 2012; Kocaguneli et al.
2013; Kocaguneli et al. 2015), thus emphasizing their
ongoing perceived utility in effort estimation research.
An introduction to each of the datasets is provided in
this section (in alphabetical order of the commonly used
dataset name). Twelve of the datasets have been drawn
from the PROMISE repository. (Note that 2 datasets,
the Desharnais3 and Finnish datasets, were available at
a previous instance of the PROMISE repository but are
no longer accessible.) This study also uses the

3 At the time of writing the Desharnais dataset can be found at
http://promise.site.uottawa.ca/SERepository/datasets/ desharnais.arff

International Software Benchmarking Standards Group
(www.isbsg.org) Release 2016 R1, herein referred to as
ISBSG16. All of the datasets contain information
reflecting some measure(s) of system size/scope and of
development effort, and, as such, these attributes are not
emphasized in the description of the datasets.
Information concerning the period in which projects
were undertaken are stated in the description of datasets
where it is known. The number of attributes varies
greatly for the datasets—the Telecom dataset consists
of only four attributes whilst the IS- BSG16 dataset is
composed of 264 attributes. This is noteworthy, as it
demonstrates the diversity of datasets and the non-
uniformity in the properties collected by different
software organizations. In counting the number of
attributes, project or record identifiers are also included.
While the number of attributes in each dataset varies
from just a few variables up to 27 attributes (for
Maxwell) and 264 attributes (for ISBSG16), typically
only a small number are used in effort modeling.

The Albrecht dataset (Albrecht and Gaffney 1983)
comprises 24 records collected from projects
undertaken in the 1970s at IBM Data Processing
Services. The systems themselves were developed
using the COBOL, PL/I, and DMS programming
languages. System size and complexity were measured
using the function point approach proposed by Albrecht
(1979).

The China dataset comprises 499 projects
characterized by 19 attributes. Among these, the
function point measures proposed by Albrecht (1979)
are again used to quantify system size. It is difficult to
provide any further information concerning this
dataset—papers that have used this data have provided
no background information (Kocaguneli et al. 2013;
Prabhakar and Dutta 2013). (An email was also sent to
Professor Tim Menzies, who has oversight of the
PROMISE repository, and he confirmed that he had no

Table 1.	Dataset Description

11

background information on the China dataset and that
he received the data in April 2010 without any further
details.)

COCOMO81, proposed by Barry Boehm (1981), is a
software sizing model that has been widely used in the
estimation of cost, effort, and schedules for software
development projects (Huang et al. 2008). The
COCOMO81 calibration dataset used in our assessment
is composed of 63 records. It has 19 attributes,
including 15 cost drivers that are determined based on
the characteristics of the proposed application. The size
attribute of the COCOMO81 dataset is measured (or is
estimated) in lines of code (LOC).

The Desharnais dataset was collected by Jean-Marc
Desharnais from 10 organizations in Canada. The
projects in this dataset were undertaken between 1983
and 1988. The dataset con- sists of 81 records and 12
attributes, with size measured in function points. In
most studies that employ this dataset, 77 of the 81
records are used because of missing data in 4 records
(Shepperd and Schofield 1997). In this study, the
version that is used in any particular analysis is
described as part of the analysis.

The Finnish dataset was collected from nine firms in
Finland by the TIEKE organization. Initially, 40 records
were collected, but missing values in some of the
attributes of two projects (Kitchenham and Kansala
1993) meant that their data were removed, leaving 38
records for analysis. This dataset consists of nine
attributes, with size measured in function points.

The International Software Benchmarking Standards
Group dataset (ISBSG16) consists of soft- ware
development and enhancement project data collected
over several years. This study used Release 2016 R1,
which was released in March 2016. The data include
project records collected from 32 countries and across
more than 12 different industry types (www.isbsg.org).
The stated purpose of the ISBSG in compiling the
dataset is to aid the software industry in estimating
aspects of their projects such as their size, effort,
duration, and speed of delivery. The dataset is also said
to be useful for benchmarking of projects—so that an
organization might compare itself to ‘best practice’ as
represented in the dataset—as well as in the effective
planning and management of software projects via
software productivity improvements, team size
planning, and project risk management. The dataset is
available for a fee for commercial organizations. The
March 2016 re- lease of the dataset is composed of
7,518 projects with 264 attributes. The size measures
used for most of the projects are based on IFPUG
function points, but other size measures include
NESMA FPs, COSMIC-FP, Mark II FPs, LOC, Dreger,
and “Backfired.” That said, for reasons discussed later
in the paper, researchers often use a subset of the data
for modeling, after applying several filters to arrive at
the data of interest.

The Kemerer dataset (Kemerer 1987) was collected
from an American Computer and Consulting firm that
developed data-processing software. The data were

collected in 1985, and the oldest project at that time was
started in 1981, with most of the projects starting in
1983. The projects were said to be medium to large in
size based on thousands of source lines of code
(measured in KSLOC). The dataset is composed of 15
projects with eight attributes.

The Kitchenham dataset (Kitchenham et al. 2002) was
collected from American-based multi- national
Computer Sciences Corporation (CSC). This dataset
contains information related to 145 software
development and maintenance projects that CSC
undertook for several clients. There are 10 attributes
considered, and the size attribute was measured in
function points. The attributes also include start date
and estimated completion dates, and the projects were
undertaken between 1994 and 1999.

The Maxwell dataset was collected from a Finnish
commercial bank. It is composed of 62 projects
represented by 27 attributes (Maxwell 2002). There are
22 categorical attributes that were asserted to have an
influence on software productivity. The size attribute
was again measured in function points. The start years
of projects were between 1985 and 1993.

The Miyazaki94 dataset was collected by Fujitsu’s
Large Systems Users Group (Miyazaki et al. 1994). The
data were obtained from 48 COBOL systems developed
in 20 different organizations and across multiple
departments within those organizations. There are nine
attributes for each project/system; the size attribute was
measured in the number of COBOL source lines of code
(in thousands).

The NASA93 dataset was collected by NASA from five
of its development centers (Kocaguneli et al. 2012;
Minku and Yao 2013). It comprises 93 projects
undertaken between 1971 and 1987. The dataset
consists of 24 attributes of which 15 are cost drivers, as
the approach is based on that used in COCOMO81. The
size attribute was measured in (estimated) lines of code.

The SDR dataset was collected from five software
organizations in Turkey and is based on the COCOMO
II format, having 22 of its 25 attributes as cost drivers
(Kocaguneli et al. 2012; Minku and Yao 2013). There
are 12 projects in this dataset, and the size attribute was
measured in (estimated) lines of code.

The Telecom dataset (Shepperd and Schofield 1997)
consists of data on 18 software enhancement projects
that were undertaken on a U.K. telecommunications
product. The version of the dataset used in this study
comprises four attributes. Having said that, only the
number of files attribute is used in effort estimation,
since the other three attributes are not available at the
time that estimation would occur.

4. DATA QUALITY ASSESSMENT
APPROACH
In this section, we provide a description of the methods
that we applied to the selected datasets to evaluate them
against the taxonomy (Bosu and MacDonell 2013a),

12

which has been briefly described in Section 2.3. The
intention is not to develop or promote any particular
data quality assessment techniques; rather, the objective
is to use known methods to establish the extent to which
the data quality challenges identified in the taxonomy
may be found in real, widely used ESE datasets. This is
important, as we found previously (Bosu and
MacDonell 2013b) that data quality assessment is
generally not reported in ESE publications. Thus, there
is a tendency to simply adopt datasets for analysis
without consideration—or perhaps even awareness—of
their quality.

Perhaps because of data scarcity, ESE does not use a
Kaggle-like approach, wherein datasets are ranked by
their users while being made freely available. Much
ESE data are proprietary or are closely curated (e.g., by
the ISBSG), the Promise repository being the main
exception. Under such an approach, the higher-quality
datasets would be ranked more highly and so would
gain greater prominence, while those with quality
problems might lose visibility—and therefore see
limited use. While this idea seems appealing in terms of
promoting high-quality modelling, it is really moot at
present given the limited public access to such datasets.

In the analysis that follows, as many as possible of the
available variables and records in each dataset were
considered, with the exception of the ISBSG16 dataset,
where subsets of attributes and records were used.
While the ISBSG16 dataset includes 264 attributes,
many records have missing values for a number of these
characteristics (due to their not being applicable to a
given project, or not being mandatory so not provided
by the submitting organization). Therefore, a partial set
of the attributes (comprising Functional Size, Summary
Work Effort, Development Type, Development
Platform, and Language Type) was used in the
determination of noise, whilst the (continuous)
Functional Size and Summary Work Effort variables
were considered in determining outliers. The
independent variables selected are known from
previous studies to have some degree of influence on
effort (Letchmunan et al. 2010; Lokan and Mendes
2009; Seo et al. 2008). Deng and MacDonell (2008)
highlighted seven reasons why it might not be possible
to use the entire ISBSG dataset for effort estimation, as
follows:

• Some variables are not normalized into atomic
values.

• Inconsistent recording of variable values.
• There are too many distinct levels for some

variables.
• The contexts for some variable values are not

discrete.
• Some variables are derived from other variables.
• Some variables are not relevant for effort estimation.
• Some numerical variables have many missing

values.

The formalization of the ISBSG release 9 dataset by
Deng and MacDonell (2008), with the objective of
retaining as many data points and attributes as possible
for software project effort prediction, resulted in the

identification of 12 usable predictor variables. All of the
attributes used here in the assessment of noise and in
outlier identification were among those 12 variables.
The total number of records retained by the same
formalization was 2,862 of the 3,024 records in the
ISBSG database. This number in fact represents a
substantial proportion of those available, as most
studies use fewer than 800 records for modeling. The
quality assessment under the three classes of the
taxonomy is now presented.

4.1. Accuracy. This taxonomy class considers noise,
outliers, inconsistency, incompleteness, and
redundancy, each of which is now addressed in turn.

Noise has been acknowledged as being difficult to
determine in respect of ESE datasets (Liebchen et al.
2007), especially when those datasets are secondary
sources, meaning the re- searchers may be far removed
from their origin. Since it is difficult to be certain about
noise in a dataset, and given that researchers may be
willing/able to tolerate a certain degree of noise, the
assessments undertaken in this study should be
interpreted as a guide to the potential state of the
datasets rather than definitive statements that a dataset
is noisy or otherwise. Even indicative noise assessments
such as these are necessary, however, so that
researchers and estimators are at least aware of the
nature of the datasets they are using and can consider
whether preprocessing might be beneficial in improving
the quality of the data (and hence any models developed
using that data).

Following prior research, we employed two different
approaches in determining noise for the 13 datasets
selected here. The first approach was to examine
whether any formulas used in deriving data were
incorrect or violated relational integrity constraints
(Shepperd et al. 2013), which are the stated
rules/formulas or the expected outcome of a
computation. The second technique utilized data
classification, where incorrect classification represents
a proxy for noisy instances in the data, as implemented
by Liebchen et al. (2007). Classification algorithms are
able to segment data into the required categories—in
this study it is expected that data will be classified as
“noisy” or “not noisy.” Specifically, for software effort
estimation, the classification algorithm identifies a
record as noisy where the predicted dependent value of
the classifier is different from the actual value. We used
a decision tree algorithm (specifically the C4.5
algorithm available as part of the Weka data-mining
toolbox) first because it is able to build relationships
between data as well as to build models independent of
the underlying assumptions of the relationships
between the attributes under consideration. Second,
decision trees are robust in the presence of missing data,
an important consideration given the fact that
missingness is a predominant problem in ESE datasets.
Third, decision trees are accessible and simple to
explain. As such, they have been widely used in general
machine learning (González et al. 2008; Moser et al.
2008; Teng 2000) and also in software defect prediction
(Folleco et al. 2008; Tang & Khoshgoftaar 2004). Last,

13

to the best of our knowledge, the only two prior studies
that attempted to identify or address noisy data in effort
estimation datasets (Liebchen et al. 2006; 2007) used
the decision tree algorithm. In this article, the effort
attribute was discretized, because it was a continuous
variable, forming the target class for all of the datasets.
Preliminary analyses indicated that most of the datasets
could be split into up to four classes; therefore, the
discretized effort attribute values were divided into four
classes for all 13 datasets. The classifier was then
applied to the datasets using fivefold cross-validation.
The percentages of the effort class that were incorrectly
classified were deemed to be noisy.

Prior to the application of the classifier, a degree of
necessary preprocessing was undertaken. Project
identifier attributes were removed from the relevant
datasets (China, Desharnais, Finnish, Kitchenham,
Miyazaki94, NASA93, SDR, and Telecom). As most
studies that analyze the Desharnais dataset use the
version with 77 projects, the classifier was also applied
to this version in our study. One outlier project was
removed from the Kitchenham dataset.

Boxplots were generated using the R statistical tool to
determine outliers in the datasets under consideration.
The plots include the Effort attribute for all 13 datasets
as the target outcome variable of interest in software
project effort estimation. In general, categorical
variables and other attributes that have limited ranges of
values were omitted from the plots as follows:

• The FPAdj and AdjFP of the Albrecht dataset were
not included in the boxplot, because there is a
transformation relation between them and the
RawFPcounts.

• In the China dataset, the Resource and Dev_Type
attributes were excluded, because they are
categorical variables. N_effort was also excluded as
it is a transformation of the Effort attribute.

• The LOC and Effort attributes were those plotted for
the COCOMO81 dataset, because the other
attributes were the cost drivers that are assigned
according to a fixed range of values in relation to the
application’s characteristics.

• For the Desharnais dataset, TeamExp and
ManagerExp were not plotted, because they contain
discrete values that range from 1 to 4 and 1 to 7,
respectively. YearEnd was removed, because it
represents project completion date (and so is not
known in advance). The Envergure and PointsAjust
attributes have a relation with the PointsNonAjust
and as such PointsNonAjust was plotted, as it has not
been subjected to any transformation.

• The hw (hardware type), at (application type), and
co (function point contribution of each type)
attributes in the Finnish dataset were not plotted,
because they are limited-range categorical variables.
The lnsize and lneff are the log transformations of
size and effort, respectively, and as such they are not
also plotted, since our primary interest lies with
original values or attributes (although it is worth
noting that the log transformation is a valid
preprocessing technique that is often a sensible

choice in the case of highly skewed data
distributions). The product delivery rate, prod, was
also not plotted, because it is a derived attribute
based on the effort and size attributes.

• Size and Effort are the only attributes plotted for the
ISBSG16 dataset due to the categorical nature
and/or high proportion of missing values for many
of the other characteristics. Note that the Size and
Effort records themselves contained several 0s and
blanks, and these were removed (leaving a total of
4,805 records) before the boxplots were generated.
It is worth noting that the number of records used in
the boxplots is higher than that used in the
determination of noisy records, because five
attributes were considered in finding the noisy
instances whilst only two attributes were considered
in the generation of the boxplots.

• In the Kemerer dataset, Language and Hardware are
categorical values and as such were not plotted.
AdjFP, which is a transformation of the RAWFP,
was also not included on the boxplot.

• In the Kitchenham dataset, the Start_Date and
Estimate_CDate attributes were not plotted, because
they represent dates rather than numeric values. The
Client, Type, and Method attributes are categorical,
and so they were also not plotted.

• In the Maxwell dataset, the Duration, Size, and
Effort were the only attributes plotted, because
Syear represents the start year of projects and the
other attributes were categorical variables.

• All the attributes of the Miyazaki94 and Telecom
datasets were plotted.

• Only the LOC and Effort attributes were plotted for
the NASA93 and SDR datasets, because the other
attributes were categorical and/or had limited ranges
of values.

In determining inconsistency, we sought original
source information about the data and variables so that
we could assess the extent to which data might have
“moved” from their original state or where questionable
and/or repeated values had been included or introduced.
Most ESE researchers work with secondary data, and as
such we need to be sure we have datasets that are as
close to “ground truth” as possible. More than that, if
summary statistics were routinely provided with
datasets, then this would enable users to check whether
the data are likely to be true to the original, as these
computations can be quickly performed on other
versions of the data (similar to calculating a checksum).
More generally, information that accompanies the data
in the form of metadata, which explains the relevant
details of the attributes and values of a dataset, would
seem to be increasingly necessary as it further supports
verification of the dataset. Our proposed template is one
attempt at promoting the inclusion of such metadata.

Incompleteness was relatively easy to determine, as
some of the datasets actually state the number of records
with missing values. In addition, missing values were
represented uniformly as “?” or null values in some of
the fields (and such indicators are evident in most ESE
datasets). However, when missing values are

14

represented—inappropriately—with zeros (0s), then
domain knowledge or metadata are required to interpret
such instances correctly.

While the taxonomy considers duplicates and
multicollinearity in datasets under the subject of
redundancy, in this benchmarking exercise only
duplicates are sought, because there is no intention at
this point to build estimation models with the datasets.
We used the advanced filter feature in Microsoft Excel
to identify duplicate records. In any case,
multicollinearity would be an issue only if certain,
related variables were included in a given model.
Though multicollinearity is not being given specific
attention in this study, we suggest that ESE researchers
should routinely ex- amine the correlations among
independent variables once they have decided to
develop prediction models. This should enable them to
avoid introducing the destabilizing effects of
multicollinearity in their models.

4.2. Relevance. The second of the three classes in the
taxonomy considers the amount of data, their
heterogeneity, and their timeliness.

A straightforward indication of the amount of data in
each dataset was determined by simply counting the
number of records; in some cases this information is
helpfully stated in the metadata that accompanies
datasets. Dataset size is an important consideration in
terms of having a sufficient number of records to satisfy
the assumptions of the various modeling and analysis
methods that are used in effort prediction. In assessing
heterogeneity, information on whether the data had
been collected from multiple organizations or from a
single organization was also sought from dataset
metadata. Heterogeneity also relates to other factors,
however, such as the different types of application that
constitute the projects—data subsets might have
distributional characteristics that are distinct from
others. It is also worth noting that feature subset
selection practices can indicate another form of
heterogeneity or the broader aspects of relevance for
datasets used in modeling as it selects the variables or
features that have the most predictive power instead of
using all features for model building. In this article,
information on the heterogeneity of datasets was
extracted from prior publications that had used these
datasets. If a new dataset is donated to a repository and
has yet to be reported in a publication, however, then
current submission practice and the limited prior
reporting of data quality characteristics means that it

might be difficult for a researcher or practitioner to
know the state of the data with respect to heterogeneity
based on its origin. In considering heterogeneity
alongside the amount of data, while a single dataset may
seem sufficiently large in absolute terms, if it is
heterogeneous, then the size of the data subsets
becomes another important consideration in terms of
their adequacy for analysis.

To benchmark the timeliness of the datasets, we
determined whether projects were recorded with start
and/or completion dates. We used three criteria in
determining the era of a dataset from which its general
age could be computed:

1. Wherestartand/orcompletiondateshavebeenrecorde
dinadatasetthedate(year)ofthe dataset was listed as
the range of the earliest project and the latest project
recorded. For instance, if the projects in a dataset
were noted to have been undertaken between 1998
and 2006, then “1998-2006” was recorded as the
year for the dataset.

2. Where start and/or completion dates are not
recorded in a dataset, but where there are
publications that stated the period in which projects
were conducted, the range of the years as indicated
in 1 was used to represent the year of the dataset.

3. Where start and/or completion dates are not
recorded in a dataset nor stated in a publication, the
year of the first publication that referred to the
dataset was used as the year of the dataset.

Provenance. This third class in the taxonomy considers
issues of commercial sensitivity, accessibility, and
trustworthiness.

To assess whether datasets faced commercial sensitivity
issues, we sought information that might indicate
dataset, variable, record, or data item anonymization or
transformation. Commercial sensitivity information
could also be indicated as part of the metadata
embedded in a dataset or provided in a separate
document. Since all of the datasets studied here are in
public repositories, we deemed all of them to be
accessible. In regard to trustworthiness, we sought any
documentation that would provide us with detailed
information about how and when the datasets were
collected, with the intention that the data generation
procedure could be checked and/or replicated. Though
this detailed information was generally not available,

Table 2. 	Results of Noise Classification Assessment

15

for some of the datasets there was contact information
about the donors of the datasets.

The results of our evaluation of the 13 datasets against
the quality criteria in the taxonomy are presented next.

5. DATA QUALITY ASSESSMENT
RESULTS
Accuracy Results. In applying the first criterion used
in noise determination—that is, revisiting any formulas
that were used in generating specific attribute values of
a dataset—our analysis suggests that all such
formulations were correct, thus implying the absence of
noise in the thirteen datasets. However, applying the
classification approach with the C4.5 algorithm, where
incorrect classification is used as a proxy for noise,
yielded incorrect classification rates of between 2% and
50% for the datasets under consideration (as shown in
Table 2). Overall, the results in Table 2 indicate an

inverse rank relationship between dataset size and
noise—the larger datasets tend to be less noisy than
their smaller counterparts. Depending on the percentage
of the dataset that was incorrectly classified, a
researcher might decide to investigate the dataset
further, which could result in the dataset either being
used or discarded if it would not result in a consistently
accurate predictive model.

Outliers were evident for at least one variable in all of
the datasets, a finding that is consistent with prior
literature on this issue that has noted that outliers are a
common phenomenon in empirical software
engineering datasets (Buglione and Gencel 2008;
Liebchen and Shepperd 2005). In particular, there were
outliers in the distributions of Effort values for all 13
datasets considered; a subset is shown in Figures 2–4
due to space constraints. The boxplots (Figures I–X) for
the other datasets are shown in the electronic appendix.
(Note that, for clarity, the boxplots are depicted using
different scales.)

Figure 2. 		Boxplots of Albrecht dataset showing outliers.

Figure 3.		Boxplots of China dataset showing outliers.

16

The percentage of outliers in the untransformed Effort
attribute of the respective datasets is shown in Table 3,
falling between 3% (Finnish) and 17% (SDR) and
bearing no relationship with dataset size. (For this
study, data that fall outside the whiskers of the boxplots
were deemed to be outliers.) The identification of
outliers is important in terms of the reliability of any
models generated from a dataset. Researchers and
practitioners need to determine the reasons for the
incidence of outliers and also employ suitable methods

of dealing with the outliers. While not an uncommon
practice, it is not appropriate for the outliers to simply
be discarded with the only reason being that they are
considered noisy without establishing the reasons why
those values arose or how their inclusion or exclusion
might affect any models generated. Finally, the
presence of outliers might also influence the selection
of modeling methods (as some, such as robust
regression, are more resilient to outlier observations
than others).

The Desharnais and ISBSG16 datasets exhibited issues
of inconsistency. In regard to the Desharnais dataset,
questions have been raised over an inconsistency due to
the swapping of two variables’ labels in some versions
of the dataset—PointsNonAjust and PointsAjust were
shown above the opposite columns. While their being
written in French may have contributed to this
occurrence, simple calculations readily made the issue
evident and resolvable. Yet researchers have continued
to use the wrong data in ongoing analyses of this
dataset. In the ISBSG16 dataset, in- consistency was
observed in terms of functional size being measured
with different units of measurement (NESMA FPs,
IFPUG FPs, COSMIC-FFP FPs, Mark II FPs,
Backfired, Dreger, Automated, LOC, and Retrofitted).
Since data submitters have reported different units for
function size measurement, it is the responsibility of
those who will use the data for analysis to ensure that
they use the right subset of data so as to avoid problems.
In addition, implementation date values are not
recorded in a uniform format.

In the other datasets, there was no evidence of any
inconsistency issues, as shown in Table 4. As a general
comment, inconsistency was a challenge to determine,
because the information needed was not found in most
of the datasets. The provision of provenance
information for each dataset would have helped address
this situation.

 Incompleteness was evident in five of the 13 datasets,
which had missing values for some of their attributes,
while the remaining eight exhibited no missing data
points, as shown in Table 5.

Just over 20% of values in the Inquiry attribute of the
Albrecht dataset were missing. Though we found
several 0’s in some of the fields in the China dataset, we
computed missingness in this dataset as reflecting the
absence of a value (that is, a blank field), and this
resulted in a result of 0.2% missingness for the Effort
attribute. This may not be a true reflection of
incompleteness in this case, but we are not able to be
certain of the meaning of attributes in the China dataset
because of a lack of provenance or background
information. Five percent (5%) of values in the original
81-record version of the Desharnais dataset were
missing, comprising two entries for TeamExp and three
for ManagerExp.

The Kitchenham dataset had missing values in two
attributes: About 10% of values in the Project.Type
attribute were missing, while 2% of the
Estimated.completion.date attribute were missing.

Figure 4. Boxplots of COCOMO81 dataset showing
outliers.

Table 3. Extent of Outliers in the Effort Attribute of the
Datasets

Table 4. Results of Inconsistency Assessment

Table 5. Results of Incompleteness Assessment

17

The extent of missingness of selected attributes of the
large ISBSG16 dataset is presented separately in Table
6.

An additional attribute (Effort Implement) of the
ISBSG dataset that was not of particular im- portance to
this study was randomly selected and assessed for
missingness, and it was established that close to 78% of
its values were missing. This confirms the Deng and
MacDonell (2008) study that contended that it would be
difficult to conduct software project effort estimation
using all the data points in the ISBSG database.

It was also observed that the presentation of missing
values was not uniform, in that datasets noted them
differently. For instance, in the Kitchenham dataset,
missing values were presented as “?,” a “0” was used in
the Albrecht dataset, “–1” in the Desharnais dataset, and
(presumably) a blank in the China dataset. In the ISBSG
dataset, missing values were recorded as both blanks
and 0s. Understanding missing data points in these
datasets would therefore require domain knowledge.
There was no redundant data identified in any of the
datasets using the method discussed in Section 4. (Note
that redundant data points are more prevalent, however,
in defect datasets that utilize items such as bug reports.)

Relevance Results. The amount of data in the datasets
varied markedly, between 12 and 7,518 records (shown
in Table 7). Four of the datasets comprised fewer than
30 records, which raises a question over whether they
could support conclusions with sufficient statistical
power if these datasets were to be used in model

development (Kitchenham et al. 2002). Moreover, in
experiments where splitting of datasets is required
(perhaps due to project diversity), this may also result
in subsets that are too small to be useful in modeling.

Heterogeneity was difficult to determine from the
datasets directly, with the ISBSG16 and SDR datasets
being exceptions. Although there was no direct
evidence provided in or with the other datasets
themselves to indicate whether data were sourced from
a single company or multiple organizations, we were
often able to derive this information from publications
that had used these datasets previously. Five of the
datasets were collected from multiple organizations (as
shown in Table 8), seven were sourced from single
organizations, while there was no evidence either from
the dataset itself or publications to indicate the
heterogeneity status of one dataset—the China dataset.
It is worth noting that, although a dataset may be
classified as multi-organization, there is the potential
for it to contain a significant number of records that
belong to a single organization (and an example
considered here is the ISBSG dataset that uses a unique
(though not visible) ID to identify individual
organizations).

The identification of all the single organizations and the
total number of records that belong to each would
provide an overview of one of the aspects (number of
organizations) of data diversity introduced by
MacDonell and Shepperd (2007) in their study that
compared local and global software estimation models.
It would also facilitate further single-company and
cross-company analyses.

It should also be noted, however, that the
single/multiple organization distinction is a rather
simplistic one in terms of being a dominant source of
heterogeneity. If we take the Kitchenham dataset used
here, for instance, while it was sourced from a single

organization (CSC), then the actual projects themselves
were undertaken for a wide variety of clients, whose
specific contexts, in terms of technologies used,
development methods employed, and so on, might
mean that other sources of heterogeneity are far more

Table 6. Extent of Missing Values in Selected ISBSG16
Attributes

Table 7. Results of Amount of Data Assessment

 Table 9. Results of Timeliness Assessment

Table 8. Results of Organizational Heterogeneity
Assessment

18

influential in affecting the values for certain data items.
Similarly, while the NASA93 projects were indeed all
developed for NASA—a single “organization”— five
distinct development centers were involved in that
work.

In considering the criteria for determining data
timeliness, only 5 of the 13 datasets contained timing
information related to the start date and/or completion
date of projects (Desharnais, IS- BSG16, Kitchenham,
Maxwell, and NASA93), as shown in Table 9.

Timing information for two further datasets (Albrecht
and Kemerer) was derived based on as- sociated
publications that provided the start dates and

completion dates of the projects (as per the second
criterion stated in Section 4). The timing information
for a third dataset (SDR), which was also derived based
on the second criterion, only specified that the projects
were carried out in the 2000s. Information regarding
timing for the remaining datasets (China, Cocomo81,
Finnish, Miyazaki94, and Telecom) was based on the
third criterion described in Section 4—the year the
dataset was first used in a publication. The results of the
assessment of timeliness are shown in Table 9. Given
the large size of the ISBSG16 dataset, Figure 5 further
depicts the distribution of projects in that dataset
according to their implementation date. Some ISBSG16
projects specified the implementation date as a range:
See the “1998–2000” class shown in Figure 5. Date
information was also not routinely collected as part of
the ISBSG approach until after 2003, hence the “prior
to Feb-2004” class. Finally, the implementation date for

78 projects in this dataset are recorded as “Completed.”
Though on the face of it this might seem intuitive, it is
impossible to interpret “Completed” in terms of an
implementation date: an illustrative example of
inconsistency in the recording of values as we have
previously discussed.

The dynamic nature of software engineering practice
would seem to justify that the start and completion dates
of projects should be routinely recorded in ESE
datasets. This would facilitate analysis related to
timeliness, meaning that, for instance, the ESE
community would be able to examine longitudinal
issues such as productivity variance over time. It would
also support the investigation of whether the use of
older datasets is relevant to modern day practice.

Provenance Results. Commercial sensitivity was
generally difficult to determine in any definitive sense
in regard to these particular datasets, as no information
had been provided regarding portions of the data being
hidden or anonymized. The ISBSG16 dataset was the
only one that explicitly reflected the issue of
commercial sensitivity in the accompanying field
description document (and as implemented through the
randomizing of project IDs and the removal of any
relationship between projects and organizations). That
said, for eight of the datasets (excepting Albrecht,
COCOMO81, Kitchenham, NASA93, and SDR) there
is no information relating to the names of the
organizations that collected and/or donated the data.
The results of the commercial sensitivity benchmarking
evaluation are shown in Table 10.

Since the 13 datasets under consideration here are in a
public repository, we deemed all of them to be
accessible. In contrast, datasets such as the Experience
Database and Tukutuku (Mendes et al. 2008), which
have been used in some ESE studies, are not in the
public domain and so would not be considered as
accessible. There are further unknown and unavailable
datasets (Abrahamsson et al. 2011; Lee et al. 2014) that
have been used in previous ESE studies but have not
been considered here.

Figure 5. 	Results of Noise Classification Assessment

Table 10. Results of Commercial Sensitivity Assessment

19

Only five of the datasets (Albrecht, Desharnais,
ISBSG16, NASA93, and SDR) provided any sort of
provenance information (as shown in Table 11),
although we consider this to be a minimal set, as it
might not lead to the successful reproduction of such
data (as it was mostly oriented to recording the
contact/donor information for datasets).

The ISBSG uses a questionnaire to collect data
(www.isbsg.org), which might be useful in enabling a
more reliable and repeatable process of data collection.
The questionnaire provides sections for collecting
detailed information from data submitters—although
the ISBSG keeps this in- formation confidential.
Information concerning the project process, comprising
all the activities that took place during a project and the
technology used for a particular project, are also
recorded. The work effort expended by the people
involved in a project is also recorded although no
personal information is collected. Detailed information
about the software product or application created and
the functional size of the software are also recorded.
Data concerning the entire project are recorded when a
project is completed. Organizations that use the ISBSG
questionnaire for collecting data about their projects can
develop procedures for auditing the data collection
process, which could lead in principle to an increase in
the trustworthiness of the data collected.

6. TOWARD MORE EFFECTIVE
DATASET COLLECTION AND
SUBMISSION
In conducting the above analysis, it became apparent
that it is not uncommon to find inconsistencies in the
recording and reporting of ESE datasets—such as
different studies reporting different numbers of
attributes for the same dataset, differences in record
numbers, and different names for the same dataset
and/or the variables in it. The routine provision of
provenance information, coupled with the use of the
template proposed in this section, could address some
of these problems. We provide a number of examples
here—note that our intent is not to claim one source to
necessarily be “more correct” than another but to simply
highlight the prevalence of inconsistent reporting.

Azzeh et al. (2010) reported the number of attributes in
the Albrecht dataset to be 7, although this is contrary to

the dataset in the PROMISE repository, which contains
eight attributes and as per the original dataset shown in
the first publication that used the Albrecht dataset. Two
studies, Huang and Chiu (2009) and Reddy and Raju
(2009), reported the COCOMO dataset to consist of 17
effort drivers, which is contrary to both what was
reported by Nguyen et al. (2008) and the dataset that is
in the PROMISE Repository (which consists of 17
attributes in total of which 15 are cost or effort drivers).
Tosun et al. (2009) reported the Desharnais dataset to
consist of 10 features, although the dataset used in this
study is composed of 11 attributes, in line with what
was reported in Desharnais’ thesis (Desharnais 1988)
and also by Li et al. (2009). Banker et al. (1994)
reported the number of records in the Kemerer dataset
to be 17, which is contrary to the 15 we have sourced
from the repository and as also noted by other
researchers (Shepperd and Schofield 1997). Hsu and
Huang (2007) reported the number of features of the
Kemerer dataset to be 6, though 7 was originally
reported. Though the Finnish dataset used in this study
is composed of 38 records, which is the same as has
been previously reported (Shepperd and Schofield
1997), it was reported by Kitchenham and Kansala
(1993) as consisting of 40 projects. Though several
publications refer to the Kitchenham dataset as CSC
(Amasaki et al. 2011; Amasaki 2012; Keung and
Kitchenham 2008), the PROMISE repository refers to
it as the Kitchenham dataset (as also used in this study).
The Finnish dataset has been variously known as the
Laturi, STTF, and initial Experience dataset
(MacDonell and Shepperd 2007). Clearly it becomes
challenging to identify a dataset if it is referred to using
different names and the appropriate provenance
information has not been kept. Though the Desharnais
dataset was collected from 10 different organizations,
some studies refer to it as coming from a Canadian
software house, giving the impression that it is a single-
company dataset (Tosun et al. 2009), which could lead
to it being used wrongly in comparisons of single-
company and multi-company analyses.

Advances in science typically rely in part on
replication—the construction of a compelling body of
consistent evidence through a series of independent
tests. Such tests are only possible, however, when
sufficient detail is provided to enable faithful
replications to be conducted. In this respect, the
provision of ESE datasets for research needs to be

Table 11. Results of Provenance-Trustworthiness Assessment

20

augmented by provenance information, so that
researchers can readily verify the data they intend to use
in modeling, or they can make an informed decision not
to use certain data in modeling. Reflecting on the
reporting inconsistencies presented above, and the
issues that we encountered in our benchmarking
exercise, we propose a template that could be used to
accompany the collection and submission of datasets to
public repositories with the objective of ensuring that
such datasets are collected, submitted, and used in an
informed and consistent manner by ESE researchers
and practitioners. The template in Table 12 is intended
to address this need by providing a means through
which the nature and origin of an ESE dataset will be
more transparent to its users. Adoption of this template
(or something similar) should also provide support for
the explicit identification (and perhaps the resolution)
of data quality issues, as far more information about
datasets will be provided than has typically been the
case to date.

Finally, it should also enable researchers and data
collectors to adapt and improve the methods they use in
collecting data, as they will be more aware of the
challenges that can arise in relation to data quality. The
overall objective of the template is to provide a uniform
record to support data collection, submission, and use.

In a related study, Mair et al. (2005) collected and
reported information relating to ESE datasets from
research papers published until 2004. The information
collected included dataset name, version, public
availability, contact person, start and completion dates,
nationality, number of organizations, application
domain (business sector), number of projects, project
type, number of features, and missing values. A further
study (involving the second author of this work)
(MacDonell and Shepperd 2007) also classified datasets
used in effort modeling according to the following
criteria: data quality, including collection and
verification; completeness and whether the submission
of data had been incentivized in any way; and data
diversity, including countries of origin, organizations of
origin, and the targeted application domains.

The template proposed above contains some but not all
of the properties collected by these studies, in line with
their different objectives. The intent of the Mair et al.
(2005) study was to assess and characterize the types of
datasets that were used in software project effort
estimation. MacDonell and Shepperd (2007) evaluated
a group of datasets in the context of their study of
single- versus multi-organization predictions of
development effort. In contrast, the goal of our template
is to ensure that detailed information is provided with
all datasets so that users can more readily assess the
quality of the data as well as to increase the trust that is
associated with various datasets. It is also intended as a
means of providing uniform guidance in terms of which
data should be collected and submitted to repositories
where possible.

Contributors of datasets who provide information
concerning noise, outliers, inconsistency, in-
completeness, redundancy, and the total number of

records as stipulated by the template are also providing
users of datasets with an opportunity to verify the
correctness of those datasets. Where a discrepancy
exists in dataset versions, users will be able to contact
the right person to remedy this, using the information
that fully addresses the dataset’s provenance. This
should help to support more extensive replication of
ESE data analyses.

The provision of heterogeneity information should
mean that the number and (possibly anonymized)
identity of the organizations that contributed to a dataset
are known. It should also provide information about
factors that might be used to group projects, such as the
type of ap- plication developed or the industry sector(s)
that is meant to use the application. Information
concerning relevant application and industries types is
useful for organizations in benchmarking their datasets
for similar applications and industries.

Provision of timing information would ensure that start
dates and completion dates are recorded for projects or
within-project activities. This would enable the
derivation of the duration of projects and would also
offer the opportunity to model effort prediction over
time.

Mair et al. (2005) noted that much of the data used in
empirical software engineering studies were at that time
not publicly available. If commercial sensitivity can be
more effectively managed, then this would offer the
ESE community the opportunity to address issues that
will make it more attractive (or at least more acceptable)
for more organizations to make their data available for
research. While the availability of repositories such as
the ISBSG, PROMISE, and those comprising numerous
open source projects might have been expected to lead
to greater openness and more publicly available datasets
for use in ESE studies, our own earlier study (Bosu and
MacDonell 2013b), which reviewed empirical software
engineering papers published between January 2007
and September 2012, found that still a third of the
datasets used were not in the public domain.

Any problems encountered during data collection, if
known and reported, should inform more justified use
of the resulting data, as well as the potential
development of better data collection methods.
Inclusion of provenance information would provide the
detail necessary to enable the replication of a data
collection process. The recommendation of collecting
provenance information as part of the proposed
template is not intended to ignore the privacy and
commercial sensitivity concerns of data submitting
organizations. It is rather to ensure that repository
managers can turn to owners of data when they discover
challenges with data to facilitate easy and timely
resolution of data quality problems. Research
considering the possible application of techniques such
as masking, transformation, and normalization of data,
while retaining the integrity of the data values and the
relationships between records and attributes, could
underpin new techniques that organizations could use to
“confidentialize” their data, lending them reassurance
around its submission.

21

Where there is information that is not clear about a
given dataset, the relevant contact information of the
dataset collector would be available. More generally,
use of the template should help to ensure that
organizations that are submitting high-quality data are
known—and their data collection methods and
procedures could then be adopted by others to improve
the general state of ESE data.

Though the adoption of the template might increase the
workload of software engineering professionals
involved in data collection, it is contended here that
most of the required information is already available—
it is simply not being recorded and/or submitted at
present. To continue to improve empirical software
engineering as an evidenced-based discipline, more
effort along the lines just described should be exerted in
supporting the transparent collection and sharing of
high- quality data.

We acknowledge that a ranking system, in which a
weighted value is assigned to each data quality issue,
could be an appropriate means to determine and
represent the quality of ESE datasets. The state of data

quality practice in ESE has not matured to this extent;
however, we believe that this study and the proposed
data quality template are a first step in providing some
measure of objectivity in the selection of datasets for
ESE modeling.

7. CONCLUSION
In this study, we have applied a range of data quality
assessment techniques to 13 widely used ESE datasets
with the objective of benchmarking them against the
taxonomy proposed by Bosu and MacDonell (2013a).
The issues were addressed one by one in our analysis,
and the overall results of this exercise are summarized
in Appendix A. It is evident that these datasets do not
contain sufficient information to enable researchers to
identify any inconsistencies, commercial sensitivities,
and their provenance. Timing information was also not
provided in most cases with these datasets. Considering
the fact that software engineering is a dynamic
discipline, it would seem to be imperative that timing
information, such as the beginning and completion
dates of projects, is provided with ESE datasets. This

Table 12. Template for Dataset Collection/Submission

22

would enable researchers and practitioners to build
models over time, thus supporting assessments of the
impact of the adoption of new development techniques,
for instance. It was also challenging to determine
whether datasets were collected from a single
organization or multiple organizations in several cases.
Since there is still a degree of contention about the
superiority of models generated with either dataset type,
it would be appropriate if this information was included
with datasets that are provided for modeling.

Techniques have been developed by the empirical
software engineering research community to address
challenges such as outliers, incompleteness, and, to
some extent, noise in datasets. Aspects of data quality
that have received far less attention from the community
are commercial sensitivity, inconsistency, and
provenance. Use of the template proposed in Section 5
would address this lack of attention, providing a
transparent means of collecting, submitting, and
assessing the quality of a dataset.

ACKNOWLEDGMENT
The work of M.F. Bosu was supported by a University of Otago
Doctoral Scholarship. M.F. Bosu also thanks the Graduate
Research Committee of the University of Otago for supporting
this research with a Postgraduate Publishing Bursary (doctoral).

APPENDEX A

REFERENCES
Pekka Abrahamsson, Ilenia Fronza, Raimund Moser, Jelena
Vlasenko, and Witold Pedrycz. 2011. Predicting development

effort from user stories. In Proceedings of the 2011
International Symposium on Empirical Software Engineering
and Measurement. 400–403. DOI:10.1109/ESEM.2011.58

Allan J. Albrecht and John E. Gaffney. 1983. Software function,
source lines of code, and development effort prediction: a
software science validation. IEEE Trans. Softw. Eng. 9, 6
(1983), 639–648. DOI:10.1109/TSE.1983.235271

Allan J. Albrecht. 1979. Measuring application development
productivity. In Proceedings of the Joint SHARE/GUIDE/IBM
Application Development Symposium, 83–92.

Sousuke Amasaki. 2012. Replicated analyses of windowing
approach with single company datasets. In Proceedings of the
12th International Conference on Product Focused Software
Development and Process Improvement. ACM. 14–17

Sousuke Amasaki, Yohei Takahara, and Tomoyuki Yokogawa.
2011. Performance evaluation of windowing approach on effort
estimation by analogy. In Proceedings of the 2011 Joint
Conference of the 21st International Workshop on Software
Measurement and the 6th International Conference on Software
Process and Product Measurement, 188–195. DOI:10.1109/
IWSM-MENSURA.2011.29

Mohammad Azzeh, Daniel Neagu, and Peter I. Cowling. 2010.
Fuzzy grey relational analysis for software effort estimation.
Emp. Softw. Eng. 15,1 (2009), 60–90. DOI:10.1007/s10664-
009-9113-0

Ali Sajedi Badashian, Afsaneh Esteki, Ameneh Gholipour, Abram
Hindle, and Eleni Stroulia. 2014. Involvement, contribu- tion

Table 13. Summarized Results of Dataset Quality Assessment

23

and influence in github and stackoverflow. In Proceedings of
the 24th Annual International Conference on Computer Science
and Software Engineering. 19–33.

Rajiv D. Banker, Hsihui Chang, and Chris F. Kemerer. 1994.
Evidence on economies of scale in software development. Inf.
Softw. Technol. 36, 5 (1994), 275–282. DOI:10.1016/0950-
5849(94)90083-3

K. Bennett, E. Burd, C. Kemerer, M. M. Lehman, M. Lee, R.
Madachy, C. Mair, D. Sjoberg, and S. Slaughter. 1999.
Empirical studies of evolving systems. Emp. Softw. Eng. 4, 4
(1999), 370–380.

Nicolas Bettenburg, Sascha Just, and Adrian Schröter. 2008. What
makes a good bug report? In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 308–318.

Barry W. Boehm 1981. Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, NJ.

Michael F. Bosu and Stephen G. MacDonell. 2013a. A taxonomy
of data quality challenges in empirical software engineering. In
Proceedings of the 22nd Australian Conference on Software
Engineering. 97–106. DOI:10.1109/ASWEC.2013.21

Michael F. Bosu and Stephen G. MacDonell. 2013b. Data quality
in empirical software engineering: A targeted review. In
Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering. ACM. 171–176

Luigi Buglione and Cigdem Gencel. 2008. Impact of base
functional component types on software functional size based
effort estimation. In Proceedings of PROFES 2008 9th
International Conference on Product-Focused Software
Development and Process Improvement. Springer, Berlin, 75–
89

Andrea Capiluppi and Daniel Izquierdo-Cortázar. 2013. Effort
estimation of FLOSS projects: A study of the Linux kernel.
Emp. Softw. Eng. 18, 1 (2013), 60–88.
https://doi.org/10.1007/s10664-011-9191-7

Cagatay Catal and Banu Diri. 2009. Investigating the effect of
dataset size, metrics sets, and feature selection techniques on
software fault prediction problem. Inf. Sci. 179, 8 (2009),
1040–1058. DOI:10.1016/j.ins.2008.12.001

Laila Cheikhi and Alain Abran. 2013. Promise and isbsg software
engineering data repositories: A survey. In Proceedings of the
2013 Joint Conference of the 23nd International Workshop on
Software Measurement (IWSM’13) and the 8th International

Conference on Software Process and Product Measurement
(Mensura’13), 17–24. DOI:10.1109/IWSM-Mensura.2013.13

Jr-shian Chen and Ching-hsue Cheng. 2006. Software diagnosis
using fuzzified attribute base on modified MEPA. In
Proceedings of the International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent
Systems. Springer, Berlin, Heidelberg, 1270–1279

Sun-Jen Huang and Nan-Hsing Chiu. 2009. Applying fuzzy
neural network to estimate software development. Appl. Intell.
30, 2 (2009), 73–83. DOI:10.1007/s10489-007-0097-4

Tony Clear and Stephen G. MacDonell. 2011. Understanding
technology use in global virtual teams: Research methodologies
and methods. Inf. Softw. Technol. 53 9 (2011), 994–1011.
DOI:10.1016/j.infsof.2011.01.011

Juan J. Cuadrado-Gallego, Luigi Buglione, María J. Domínguez-
Alda, Marian Fernández De Sevilla, J. Antonio Gutierrez De
Mesa, and Onur Demirors. 2010. An experimental study on the
conversion between ifpug and cosmic functional size
measurement units. Inf. Softw. Technol. 52, 3 (2010), 347–357.

Michael K. Daskalantonakis. 1992. A practical view of software
measurement and implementation experiences within
motorolla. IEEE Trans. Softw. Eng. 18 11 (1992), 998–1010.

Kefu Deng and Stephen G. MacDonell. 2008. Maximising data
retention from the isbsg repository. In Proceedings of the 12th
International Conference on Evaluation and Assessment in
Software Engineering. Italy.

Jean-Marc Desharnais. 1988. Statistical Analysis on the
Productivity of Data Processing with Development Projects
Using the Function Point Technique. Master’s thesis.
Université du Québec à Montréal, Canada.

Norman Fenton, Martin Neil, William Marsh, Peter Hearty,
Lukasz Radliński, amd Paul Krause. 2008. On the effectiveness
of early life cycle defect prediction with bayesian nets. Emp.
Softw. Eng. 13, 5 (2008), 499–537. https://doi.org/10.1007/
s10664- 008- 9072- x

Andreas Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, and
Lofton Bullard. 2008. Software quality modeling: The impact
of class noise on the random forest classifier. In Proceedings of
the 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence). 3853–3859.

Pekka Forselius. 2008. Quality of benchmarking data. Retrieved
January 29, 2014 from www.4sumpartners.com.

Cigdem Gencel, Luigi Buglione, and Alain Abran. 2009.
Improvement opportunities and suggestions for benchmarking.
In Software Process and Product Measurement. Springer,
Berlin, 144–156.

R. L. Glass, I. Vessey, and V. Ramesh. 2002. Research in software
engineering: An analysis of the literature. Inf. Softw. Technol.
44, 8 (2002), 491–506. DOI:10.1016/S0950-5849(02)00049-6

María Paula González, Jesús Lorés, and Antoni Granollers. 2008.
Enhancing usability testing through datamining techniques: A
novel approach to detecting usability problem patterns for a
context of use. Inf. Softw. Technol. 50, 6 (2008), 547–68.
DOI:10.1016/j.infsof.2007.06.001

D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. 2012.
Reflections on the NASA MDP data sets. IET Softw. 6 6,
(2012) 549–558. DOI:10.1049/iet-sen.2011.0132

Tracy Hall. 2007. Longitudinal studies in evidence-based
software engineering. In Empirical Software Engineering
Issues: Critical Assessment and Future Directions. Springer,
Berlin, 41–41.

Tracy Hall and Norman Fenton. 1997. Implementing effective
software metrics programs. IEEE Software 14, 2 (1997), 55–65.
Zhimm He, Fayola Peters, Tim Menzies, and Ye Yang. 2013.
Learning from open-source projects: An empirical study on
defect prediction. In Proceedings of the 2013 ACM / IEEE
International Symposium on Empirical Software Engineering
and Measurement. IEEE, 45–54. DOI:10.1109/ESEM.2013.20

Chao-Jung Hsu and Chin-Yu Huang. 2007. Improving effort
estimation accuracy by weighted grey relational analysis during
software development. In Proceedings of the 14th Asia-Pacific
Software Engineering Conference. 534–541.DOI:10.1109/
ASPEC.2007.62

Sun-Jen Huang, Nan-Hsing Chiu, and Li-Wei Chen. 2008.
Integration of the grey relational analysis with genetic
algorithm for software effort estimation. Eur. J. Operat. Res.
188, 3 (2008), 898–909. DOI:10.1016/j.ejor.2007.07.002

Jason Van Hulse, Taghi M. Khoshgoftaar, Chris Seiffert, and Lili
Zhao. 2006. Noise correction using bayesian multiple
imputation. In Proceedings of the 2006 IEEE International
Conference on Information Reuse and Integration, 478–483.
Jason Van Hulse and Taghi M. Khoshgoftaar. 2008. A
comprehensive empirical evaluation of missing value
imputation in noisy software measurement data. J. Syst. Softw.
81 5 (2008), 691–708. DOI:10.1016/j.jss.2007.07.043

Jason Van Hulse and T. M. Khoshgoftaar. 2014. Incomplete-case
nearest neighbor imputation in software measurement data.

24

Information Sciences 259 (2014), 596–610.
https://doi.org/10.1016/j.ins.2010.12.017

Ayelet Israeli and Dror G. Feitelson. 2010. The linux kernel as a
case study in software evolution. J. Syst. Softw. 83, 3 (2010),
485–501. https://doi.org/10.1016/j.jss.2009.09.042

Philip M. Johnson and Anne M. Disney. 1999. A critical analysis
of psp data quality: Results from a case study. Emp. Softw. Eng.
4, 1 (1999), 317–349.

Chris F. Kemerer. 1987. An empirical validation of software cost
estimation models. Commun. ACM 30, 5 (1987), 416–429.
Jacky Keung and Barbara Kitchenham. 2008. Experiments with
analogy-x for software cost estimation. In Proceedings of the
19th Australian Conference on Software Engineering 229–238.
DOI:10.1109/ASWEC.2008.37

Taghi M. Khoshgoftaar, Andres Folleco, Jason Van Hulse, and
Lofton Bullard. 2006. Software quality imputation in the
presence of noisy data. In Proceedings of IEEE International
Conference on Information Reuse and Integration. 484–489.
DOI:10.1109/IRI.2006.252462

T. M. Khoshgoftaar and P. Rebours. 2004. Generating multiple
noise elimination filters with the ensemble-partitioning filter. In
Proceedings of the IEEE International Conference on
Information Reuse and Integration, 369–375.

Taghi M. Khoshgoftaar and Jason Van Hulse. 2005. Identifying
noise in an attribute of interest. In Proceedings of the 4th
International Conference on Machine Learning and
Applications.

Barbara Kitchenham, Tore Dybå, and Magne Jorgensen. 2004.
Evidence-based software engineering. In Proceedings of the
26th International Conference on Software Engineering
(ICSE’04), 273–81.

Barbara Kitchenham and Kari Kansala. 1993. Inter-item
correlations among function points. In Proceedings of the 15th
International Conference on Software Engineering. 229–238.

Barbara Kitchenham, Shari L. Pfleeger, Beth Mccoll, and
Suzanne Eagan. 2002. An empirical study of maintenance and
development estimation accuracy. J. Syst. Softw. 64, 1 (2002),
57–77.DOI:10.1016/S0164-1212(02)00021-3

Ekrem Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, and
Jacky W. Keung. 2010. When to use data from other projects
for effort estimation. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering.
ACM. 321–324.

Ekrem Kocaguneli and Tim Menzies. 2011. How to find relevant
data for effort estimation? In Proceedings of the 5th ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM’11), 2011, 255–264.
DOI:10.1109/ESEM.2011.34

Ekrem Kocaguneli, Tim Menzies, and Jacky W. Keung. 2013.
Kernel methods for software effort estimation. Emp. Softw.
Eng. 18, 1 (2013), 1–24. DOI:10.1007/s10664-011-9189-1

Ekrem Kocaguneli, Tim Menzies, and Jacky W. Keung. 2012. On
the value of ensemble effort estimation. IEEE Trans. Softw.
Eng. 38 6 (2012), 1403–1416.

Ekrem Kocaguneli, Tim Menzies, and Emilia Mendes. 2015.
Transfer learning in effort estimation. Emp. Softw. Eng. 20, 3
(2015), 813–843. DOI:10.1007/s10664-014-9300-5

Luigi Lavazza and Sandro Morasca. 2012. Software effort
estimation with a generalized robust linear regression
technique. In Proceedings of the 16th International Conference
on Evaluation & Assessment in Software Engineering
(EASE’12), 206– 215. https://doi.org/10.1049/ic.2012.0027

Taeho Lee, Taewan Gu, and Jongmoon Baik. 2014. Mnd-Scemp:
An empirical study of a software cost estimation modeling

process in the defense domain. Emp. Softw. Eng. 19, 1 (2014),
213–240. DOI:10.1007/s10664-012-9220-1

Sukumar Letchmunan, Marc Roper, and Murray Wood. 2010.
Investigating effort prediction of web-based applications using
cbr on the ISBSG dataset. In Proceedings of the 14th
International Conference on Evaluation and Assessment in
Software Engineering. 1–10.

Y. F. Li, M. Xie, and T. N. Goh. 2009. A study of project selection
and feature weighting for analogy based software cost
estimation. J. Syst. Softw. 82, 2 (2009), 241–252.
DOI:10.1016/j.jss.2008.06.001

Gernot A. Liebchen and Martin J. Shepperd. 2005. Software
productivity analysis of a large data set and issues of
confidentiality and data quality. In Proceedings of the 11th
IEEE International Software Metrics Symposium
(METRICS’05).

Gernot A. Liebchen and Martin J. Shepperd. 2008. Data sets and
data quality in software engineering. In Proceedings of the 4th
International Workshop on Predictor Models in Software
Engineering. ACM Press New York, NY.
DOI:10.1145/1370788. 1370799

Gernot A. Liebchen, Bheki Twala, Martin J. Shepperd, and
Michelle Cartwright. 2006. Assessing the quality and cleaning
of a software project dataset: An experience report. In
Proceedings of the 10th International Conference on Evaluation
and Assessment in Software Engineering. 1–7.

Gernot Liebchen, Bheki Twala, Martin J. Shepperd, Michelle
Cartwright, and Mark Stephens. 2007. Filtering, robust
filtering, polishing: Techniques for addressing quality in
software data. In Proceedings of the 1st International
Symposium on Empirical Software Engineering and
Measurement (ESEM’07), 99–106.
DOI:10.1109/ESEM.2007.70

Chris Lokan and Emilia Mendes. 2006. Cross-company and
single-company effort models using the ISBSG Database: A
further replicated study. In Proceedings of the International
Symposium on Empirical Software Engineering.

Chris Lokan and Emilia Mendes. 2009. Applying moving
windows to software effort estimation. In Proceedings of the
3rd International Symposium on Empirical Software
Engineering and Measurement, 111–122.

Stephen G. MacDonell and Martin J. Shepperd. 2007. Comparing
local and global software effort estimation models – reflections
on a systematic review. In Proceedings of the 1st International
Symposium on Empirical Software Engineering and
Measurement (ESEM’07), 401–409.
DOI:10.1109/ESEM.2007.45

Carolyn Mair, Martin J. Shepperd, and Magne Jørgensen. 2005.
An analysis of data sets used to train and validate cost
prediction systems. In Proceedings of the 2005 Workshop on
Predictor Models in Software Engineering (PROMISE’05). 1–
6. DOI:10.1145/1083165.1083166

Katrina Maxwell. 2002. Applied Statistics for Software
Managers. Prentice-Hall, Englewood Cliffs, NJ.
Katrina D. Maxwell and Pekka Forselius. 2000. Benchmarking
software-development productivity. IEEE Softw. 17, 1 (2000),
80–88.

D. Mazinanian, M. Doroodchi, and M. Hassany. 2012. WDMES:
A comprehensive measurement system for web application
development. In Proceedings of the Euro American Conference
on Telematics and Information Systems (EATIS’12). 135–42.

Emilia Mendes, Sergio Di Martino, Filomena Ferrucci, and
Carmine Gravino. 2008. Cross-company vs. single-company
web effort models using the tukutuku database: An extended
study. J. Syst. Softw. 81, 5 (2008), 673–690. DOI:10.1016/j.jss.
2007.07.044

25

Emelia Mendes and Chris Lokan. 2008. Replicating studies on
cross- vs single-company effort models using the ISBSG
database. Emp. Softw. Eng. 13, 1 (2008), 3–37.
DOI:10.1007/s10664-007-9045-5

Emilia Mendes, Sergio Di Martino, Filomena Ferrucci, and
Carmine Gravino. 2007. Effort estimation: How valuable is it
for a web company to use a cross-company data set, compared
to using its own single-company data set? In Proceedings of the
16th International Conference on World Wide Web
(WWW’07). 963–972.

Tim Menzies, Andrew Butcher, Andrian Marcus, Thomas
Zimmermann, and David Cok. 2011. Local Vs. global models
for effort estimation and defect prediction. In Proceedings of
the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE’11), 343–351.
DOI:10.1109/ASE.2011.6100072

Leandro L. Minku and Xin Yao. 2013. Ensembles and locality:
Insight on improving software effort estimation. Inf. Softw.
Technol. 55, 8 (2013) 1512–1528.
DOI:10.1016/j.infsof.2012.09.012

Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki. 1994.
Robust regression for developing software estimation models.
J. Syst. Softw. 27, 1 (1994) 3–16.

Sandro Morasca. 2009. Building statistically significant robust
regression models in empirical software engineering. In
Proceedings of the 5th International Conference on Predictor
Models in Software Engineering (PROMISE’09).

Raimund Moser, Pedrycz Witold, and Giancarlo Succi. 2008. A
comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In Proceedings of the
International Conference on Software Engineering. 181–90.

Vu Nguyen, Bert Steece, and Barry W. Boehm. 2008. A
constrained regression technique for cocomo calibration. In
Proceedings of the 2nd ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM’08). 213–222. DOI:10.1145/1414004.1414040

Fayola Peters, Tim Menzies, Liang Gong, and Hongyu Zhang.
2013. Balancing privacy and utility in cross-company defect
prediction. IEEE Trans. Softw. Eng. 3, 8 (2013) 1054–1068.
DOI:10.1109/TSE.2013.6

M. E. Prabhakar and Maitreyee Dutta. 2013. Prediction of
software effort using artificial neural network and support
vector machine. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3, 3
(2013), 40–46.

Rahul Premraj, Martin J. Shepperd, Barbara Kitchenham, and
Pekka Forselius. 2005. An empirical analysis of software
productivity over time. Software Metrics, 2005. In Proceedings
of the 11th IEEE International Software Metrics Symposium
(METRICS’05), 37–46. DOI:10.1109/METRICS.2005.8

Tomi Prifti, Sean Banerjee, and Bojan Cukic. 2011. Detecting bug
duplicate reports through local references. In Proceedings of the
7th International Conference on Predictive Models in Software
Engineering (Promise’11). DOI:10.1145/2020390. 2020398

Fumin Qi, Xiao-Yuan Jing, Xiaoke Zhu, Xiaovuan Xie, Baowen
Xu, and Shi Ying. 2017. Software effort estimation based on
open source projects: Case study of github. Inf. Softw. Technol.
92, 145–157. https://doi.org/10.1016/j.infsof.2017.07.015

Ch. Satyananda Reddy and Kvsvn Raju. 2009. An improved fuzzy
approach for cocomo’s effort estimation using gaussian
membership function. J. Softw. 4, 5 (2009), 452–459.

Gregorio Robles. 2010. Replicating MSR: A study of the potential
replicability of papers published in the mining software
repositories proceedings. In Proceedings of the 7th IEEE
Working Conference on Mining Software Repositories
(MSR’10). 171–180.

Daniel Rodriguez, Israel Herraiz, and Rachel Harrison. 2012. On
software engineering repositories and their open problems. In
Proceedings of the 2012 1st International Workshop on
Realizing AI Synergies in Software Engineering (RAISE’12).
52–56. DOI:10.1109/RAISE.2012.6227971

Marshima M. Rosli, Ewan Tempero, and Andrew Luxton-Reilly.
2013. Can we trust our results? a mapping study on data quality.
In Proceedings of the 2013 20th Asia-Pacific Software
Engineering Conference (APSEC’13). 116–123. DOI:10.1109/
APSEC.2013.26

Joost Schalken and Hans van Vliet. 2008. Measuring where it
matters: Determining starting points for metrics collection. J.
Syst. Softw. 81, 5 (2008), 603–15.
DOI:10.1016/j.jss.2007.07.041

Yeong-Seok Seo, Kyung-A Yoon, and Doo-Hwan Bae. 2008. An
empirical analysis of software effort estimation with outlier
elimination. In Proceedings of the 4th International Workshop
on Predictor Models in Software Engineering (PROMISE’08)
25. DOI:10.1145/1370788.1370796

Martin J. Shepperd, David Bowes, and Tracy Hall. 2014.
Researcher bias: The use of machine learning in software defect
prediction. IEEE Trans. Softw. Eng. 40, 6 (2014), 603–616.
DOI:10.1109/TSE.2014.2322358

Martin J. Shepperd and Chris Schofield. 1997. Estimating
software project effort using analogies. software engineering.
IEEE Trans. Softw. Eng. 23, 12 (1997) 736–743.

Martin J. Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn
Mair. 2013. Data quality: Some comments on the NASA
software defect datasets. Software Engineering. IEEE Trans.
Softw. Eng. 39, 9 (2013), 1208–1215.
DOI:10.1109/TSE.2013.11

Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A.
Osborne. 2011. Evaluating complexity, code churn, and
developer activity metrics as indicators of software
vulnerabilities. IEEE Trans. Softw. Eng. 37, 6 (2011), 772–787.
https://doi.org/10.1109/TSE.2010.81

Forrest J. Shull, Jeffrey C. Carver, Sira Vegas, and Natalia Juristo.
2008. The role of replications in empirical software
engineering. Emp. Softw. Eng. 13, 2 (2008), 211–18.
DOI:10.1007/s10664-008-9060-1

Thomas Tan, Guan Cun, Mei He, and Barry Boehm. 2009.
Productivity trends in incremental and iterative software
development. In Proceedings of the 3rd International
Symposium on Empirical Software Engineering and
Measurement, 1–10.

Wang-chiew Tan. 2007. “Provenance in databases : Past current,
and future.” IEEE Data Eng. Bull. 30, 4 (2007), 3–12.
Wei Tang and Taghi M. Khoshgoftaar. 2004. Noise
identification with the k-means algorithm. In Proceedings of the
16th IEEE International Conference on Tools with Artificial
Intelligence. 373–378.

Choh Man Teng. 2000. Evaluating noise correction. PRICAI 2000
Topics in Artificial Intelligence 188–98.

Ayse Tosun, Burak Turhan, and Ayse B. Bener. 2009. Feature
weighting heuristics for analogy-based effort estimation
models. Exp. Syst. Appl. 36, 7 (2009), 10325–10333.
DOI:10.1016/j.eswa.2009.01.079

Burak Turhan, Tim Menzies, Ayşe B. Bener, and Justin Di
Stefano. 2009. On the relative value of cross-company and
within- company data for defect prediction. Emp. Softw. Eng.
14, 5 (2009), 540–578. DOI:10.1007/s10664-008-9103-7

María C. Valverde, Diego Vallespir, Adriana Marotta, and
Joseignacio Panach. 2014. Applying a data quality model to
experiments in software engineering. In Advances in
Conceptual Modeling, Lecture Notes in Computer Science,
Vol. 8823. 168–177.

26

Isabella Wieczorek. 2002. Improved software cost estimation—A
robust and interpretable modelling method and a compre-
hensive empirical investigation. Emp. Softw. Eng. 7, 2 (2002),
177–80. DOI:10.1023/A:1015206216560

Kyung- A. Yoon and Doo-Hwan Bae. 2010. A pattern-based
outlier detection method identifying abnormal attributes in
software project data. Inf. Softw. Technol. 52, 2 (2010), 137–
151.DOI:10.1016/j.infsof.2009.08.005

Wen Zhang, Ye Yang, and Qing Wang. 2011. Handling missing
data in software effort prediction with naive bayes and em
algorithm categories and subject descriptors. In Proceedings of
the 7th International Conference on Predictive Models in
Software Engineering (Promise’11).

Chen Zhihao, Barry Boehm, Tim Menzies, and Daniel Port. 2005.
Finding the right data for software cost modeling. IEEE Softw.
22, 6 (2005), 38–46. DOI:10.1109/MS.2005.151

