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Abstract 
Data is a cornerstone of empirical software engineering 
(ESE) research and practice. Data underpin numerous 
process and project management activities, including the 
estimation of development effort and the prediction of the 
likely location and severity of defects in code. Serious 
questions have been raised, however, over the quality of the 
data used in ESE. Data quality problems caused by noise, 
outliers, and incompleteness have been noted as being 
especially prevalent. Other quality issues, although also 
potentially important, have received less attention. In this 
study, we assess the quality of 13 datasets that have been 
used extensively in research on software effort estimation. 
The quality issues considered in this article draw on a 
taxonomy that we published previously based on a 
systematic mapping of data quality issues in ESE. Our 
contributions are as follows: (1) an evaluation of the 
“fitness for purpose” of these commonly used datasets and 
(2) an assessment of the utility of the taxonomy in terms of 
dataset benchmarking. We also propose a template that 
could be used to both improve the ESE data 
collection/submission process and to evaluate other such 
datasets, contributing to enhanced awareness of data 
quality issues in the ESE community and, in time, the 
availability and use of higher-quality datasets.   
 
CCS Concepts: Information systems → Data 
provenance; Incomplete data; Inconsistent data;  

Keywords: Data quality, benchmarking, empirical 
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1. INTRODUCTION  
As the name implies, empirical software engineering (ESE) 
employs observational data in the modelling and 
understanding of software engineering phenomena. ESE 
has gained particular prominence in the past decade after 
Kitchenham Dybå and Jorgensen (2004) espoused the 
ambitions of evidence-based software engineering, being 

the incorporation of up-to-date research evidence with 
practical experience, tempered by human values when 
making decisions during software development and 
maintenance. ESE was preceded by “software metrics,” a 
term that referred to activities and data associated with 
measurement in software engineering. Some of these 
activities revolved around the production or collection of 
values to characterize software code properties (the 
“classic” software metrics) and the development of models 
to predict various aspects of soft- ware, such as resource 
requirements, defect rates, broader quality concerns, 
development effort, and others. The central role of data was 
evident even then—Hall and Fenton (1997) described soft- 
ware metrics as including the collection of quantitative 
measures as a key part of software quality control and 
assurance activities (and specifically the monitoring and 
recording of defects during development and testing). This 
thinking has prevailed. While a range of topics has since 
been ad- dressed within ESE research, the most substantial 
bodies of work in this field have proposed or evaluated 
models constructed primarily for effort/cost estimation or 
for defect prediction.  

The use of metrics in ESE has been asserted as invaluable 
in facilitating rational decision making during software 
development and maintenance (Mazinanian et al. 2012; 
Schalken and van Vliet 2008), with the expectation that this 
will in turn lead to positive outcomes such as increased 
development productivity, reduced deployment cycle time, 
and improved quality of the software product 
(Daskalantonakis 1992). Although the in-principle benefits 
of metrics to software engineering is not in doubt, the in-
practice benefits have been questioned increasingly in 
recent years due to growing concerns over the quality of the 
data being collected and used in the building of models to 
predict characteristics such as software size and 
development effort.  

The challenges associated with the collection and use of 
empirical software engineering datasets have thus been 
documented in several recent publications (Gray et al. 
2012; He et al. 2013; Liebchen and Shepperd 2008). 
Problems such as noise, outliers, and missingness (or 
incompleteness) have been acknowledged and afforded 
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particular attention by the ESE research community, in 
terms of both their detection and their resolution (Buglione 
and Gencel 2008; Khoshgoftaar and Hulse 2005; Liebchen 
and Shepperd 2008; Liebchen and Shepperd 2005), while 
other problems, such as poor provenance, inconsistency, 
and commercial sensitivity, have been largely overlooked. 
Our previously published taxonomy (Bosu and MacDonell 
2013a) identified a number of distinct data quality 
challenges exhibited in respect to ESE datasets. In this 
study we apply the taxonomy to some “classic” ESE 
datasets, found primarily in the PROMISE1 repository, that 
have been widely used in studies of software effort 
estimation2. These data sets were selected because they are 
easily accessible and (so) are frequently used in ESE 
modeling. Our intent is to benchmark these datasets against 
the elements of the taxonomy with the goal of evaluating 
their quality. This will serve to highlight any areas of 
general concern regarding the collection of ESE data and 
will also indicate any specific shortcomings in each dataset. 
We will also gain some insight into the utility of the 
taxonomy as a benchmarking mechanism. In providing a 
benchmark of this nature, researchers and practitioners will 
be able to compare the quality of any new datasets with 
these classic alternatives. This should lead to more 
informed decisions as to whether to use a given dataset in 
ESE modeling.  

Although a range of techniques have been proposed to 
identify or assess the various quality characteristics of ESE 
datasets, there is no single “front-runner” technique for any 
of the data quality issues in the taxonomy. As a result, we 
employ what are considered to be among the best practice 
technique(s) (described in Section 4) with a view to 
assessing the quality of these widely used datasets. It is 
hoped that researchers and practitioners would use 
appropriate techniques, such as these, in assessing the 
quality of their own datasets and to in fact develop or utilize 
new and better methods of data collection; in the meantime, 
however, the objective of this benchmarking exercise is to 
illustrate and so promote a holistic assessment of data 
quality prior to modeling. The contributions of this article 
are as follows:  

• First, we deliver insights into the state of data 
quality of some of the most widely used datasets 
in software effort estimation.  

• Second, we assess the previously proposed 
taxonomy in terms of its utility as a mechanism for 
benchmarking.  

• Third, we propose a template that should provide 
a transparent means of data collection and 
submission and should support quality assessment 
of other datasets.  

To the best of our knowledge, this is the first study in ESE 
that has sought to holistically assess the state of quality of 
a number of commonly used datasets; most prior studies 
have addressed a limited range of issues or quality concerns 

 
1 http://openscience.us/repo/ 
2 While “estimation” and “prediction” have slightly differing meanings, 
in that the latter explicitly refers to the forecasting of a future occurrence, 
we use the two terms interchangeably here given that many studies 

associated with one, or perhaps two, datasets. It is also the 
first study to explicitly advocate the use of a non-
proprietary template to guide the collection and submission 
of datasets to ensure that their quality across multiple 
relevant dimensions is made clearly “visible.”  
 
1.1. Motivation 
A This work is motivated by previous studies that have 
addressed the impact of data quality in ESE. In each of 
the case studies presented in this section, a single data 
quality issue was addressed. We are of the view that if 
data quality can be addressed holistically, then ESE 
practice stands to benefit greatly, given the 
improvements experienced through the addressing of 
single data quality issues.  

Khoshgoftaar and colleagues applied several noise 
detection and correction procedures to ESE datasets 
across a range of studies (Folleco et al. 2008; Hulse et 
al. 2006; Khoshgoftaar and Hulse 2005; Khoshgoftaar 
and Rebours 2004), with varying degrees of success. 
Noise detection techniques, including Bayesian 
multiple imputation, a clustering-based noise detection 
approach using the k-means algorithm, an Ensemble-
Partition filter, a technique to detect noise “relative to 
an attribute of interest (AOI),” rule-based noise 
detection, and Closest List Noise Identification, were 
applied to various ESE datasets. In all these studies, the 
authors show that addressing the noise issue in software 
effort estimation datasets has the potential to improve 
the performance of their prediction models, leading 
them to conclude that noise is detrimental to the 
performance of machine-learning algorithms used in 
ESE prediction.  

Outliers have been a constant source of problems in the 
analysis of ESE data (Morasca 2009). For instance, 
Lavazza and Morasca (2012) used a generalized robust 
regression method to not discard too many data points 
due to outliers, because as much as 57% of the data 
points in one of their datasets were determined to be 
outliers from a Least Squares perspective. The adoption 
of this approach ensured that they were able to build 
models that were statistically significant and had 
superior effort estimation accuracy.  

The amount of data available for model building is 
known to affect the statistical significance of resulting 
software effort estimation models, with small datasets 
being particularly challenging. Naive Bayes and 
Random forest algorithms have been proposed to 
increase the performance of prediction models based on 
small datasets and large datasets, respectively (Catal 
and Diri 2009; Fenton et al. 2008). Another challenge 
to the amount of data available is missing data values. 
Zhang et al. (2011) employed two imputation strategies 
by using the naïve Bayes and Expectation 
Maximization algorithms to address missingness in 
software effort estimation datasets. These imputation 

actually utilize secondary data sets collected in the past in their analyses 
(and so, strictly speaking, are analyses of estimation rather than 
prediction).  
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strategies were applied to the ISBSG and CSBSG 
datasets, and software effort prediction models were 
built using the corrected data. The results indicated 
superior software prediction models based on the 
corrected data.  

It should be evident from the above studies that robustly 
addressing any aspect of data quality in ESE can lead to 
improvements in the available dataset and/or the 
resultant models that are built. Different data quality 
issues might be associated with different problems. For 
instance, the presence of noise may mean that a dataset 
is not fit for purpose, existence of outliers could mean 
that the results of models might need to be adjusted for 
skewing, and missing data might lead to the building of 
models with smaller datasets, which could lessen the 
power of a model.  

The remainder of this article is organized as follows. In 
Section 2, we present related work, and in Section 3 we 
describe the datasets selected for assessment. In Section 
4, we present the best practice methods used in 
assessing dataset quality. A discussion of the results of 
this assessment is presented in Section 5. In Section 6, 
we propose a template that should aid in data quality 
assessment and in the collection and submission of 
datasets in the future. Finally, we present the 
conclusions of our study in Section 7.  
 
2. RELATED WORK  
Data are at the core of the practice of ESE, and, as such, 
its importance to the discipline cannot be overstated. 
Most researchers use secondary data in ESE modeling 
(Mair et al. 2005; Shepperd et al. 2014); it is therefore 
critical that those responsible for collecting data are 
well trained and aware of the potential problems that 
could exist in datasets, so that suitable processes are 
employed to generate, and use, the most reliable data 
available. At a minimum, the processes used should be 
documented to inform secondary users of how the data 
were collected. The challenges faced by those collecting 
and utilizing empirical software engineering datasets 
have received increased recognition in recent times 
(Bosu and MacDonell 2013a; Liebchen and Shepperd 
2008; Shepperd et al. 2013), although as a whole the 
body of literature on ESE data quality remains quite 
limited (Bosu and MacDonell 2013b). In this section, 
we review prior assessment studies and we briefly note 
some of the measures others have taken to improve the 
quality of ESE datasets and repositories. We first 
present a representative set of studies that have assessed 
the state of ESE datasets from one viewpoint or data 
quality dimension, as this is the predominant approach 
taken by the ESE community in addressing issues that 
affect software engineering datasets. In this subsection, 
we also present example studies that have used metrics 
from open source projects in building ESE prediction 
models. This is followed by a review of the few studies 
that have assessed the state of ESE datasets from 
multiple viewpoints or considering multiple data 
quality dimensions.  

 

2.1 Single Issue Studies  
Noise—erroneous data—has been identified as a 
problem in several software measurement datasets 
(Johnson and Disney 1999; Khoshgoftaar and Hulse 
2005; Hulse and Khoshgoftaar 2011; Liebchen and 
Shepperd 2005), and the ESE community has 
responded with a number of studies seeking to address 
the incidence and effects of noise. Liebchen et al. 
(2006) conducted classification experiments to assess 
the effect of noise on the accuracy of predictions and to 
evaluate the robustness of techniques for handling noise 
in ESE datasets. Three noise correction techniques were 
employed: robust algorithms, filtering, and polishing. 
Their results demonstrated that polishing is a more 
effective classification algorithm as compared to robust 
algorithms and filtering.  

Yoon and Bae (2010) proposed a pattern-based outlier 
detection method that identifies abnormal attributes in 
software project data and that relies on the existence of 
normal or typical relationships between attributes, 
which they termed a data association pattern (DAP). 
The pattern-based outlier detection method follows a 
three-step process: First, hierarchical clustering is 
applied to discretize the numerical attributes of software 
project data; second, DAPs are mined to identify 
frequent patterns that meet a certain minimum 
confidence threshold; and, third, software project data 
are mapped to the DAPs to identify any abnormal 
attributes. One of the objectives is to facilitate root 
cause analysis so as to prevent reoccurrences in the 
future. The Yoon and Bae (2010) study is significant in 
the sense that the abnormality of outliers is determined 
and acted upon relative to other data, in contrast to 
many studies that classify all outliers as noise and so 
simply (but perhaps inappropriately) remove them.  

Two embedded strategies to address missing data 
(toleration and imputation) when using naïve Bayes and 
Expectation Maximization algorithms for software 
effort prediction were proposed by Zhang et al. (2011). 
The missing data toleration strategy simply ignores 
missing values and makes use of existing data values of 
software projects for prediction. Its strength lies in its 
low computational complexity requirements. The 
imputation strategy uses existing values of attributes to 
estimate missing values. Experimental results drawn 
from their analyses (of the ISBSG and CSBSG datasets) 
demonstrated that both strategies outperformed classic 
imputation techniques.  

Inexperienced measurers were identified as contributors 
of poor data quality in the form of inconsistencies 
(Cuadrado-Gallego et al. 2010), especially during the 
data collection stage due to their lack of understanding 
of software project metrics. It is important for software 
engineers to be trained in all aspects of data collection 
so that the quality of the data can be assured.  

Redundant and duplicate data in ESE datasets 
(Bettenburg et al. 2008) might lead to misleading results 
and can also detrimentally affect the performance of 
classifiers. Prifti et al. (2011) found that, in their 
analysis of the Firefox bug repository, there were 748 
bugs that had been assigned to multiple groups, after 
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they applied a method that detected duplicates through 
local references. If effort modeling is based on such 
data, then clearly there is scope for over-estimation of 
the actual effort required. Moreover, the building of 
classification models using data-mining methods will 
be slowed by the additional processing needed to parse 
and consider the redundant entries/values.  

Models generated from heterogeneous multi-
organization datasets have been employed in estimating 
effort or predicting defects of software projects in a 
single company in a growing body of research 
(Bettenburg et al. 2008; Kocaguneli and Menzies 2011; 
Mendes et al. 2007; Mendes and Lokan 2008; Menzies 
et al. 2011; Turhan et al. 2009; Zhihao et al. 2005). In 
spite of the extensive attention given to this issue, 
results to date have been inconclusive as to whether 
single organization datasets are superior to those 
collected from multiple organizations. Kocaguneli et al. 
(2010) proposed the use of relevancy filtering so that 
organizations that lack historical data can supplement 
their software cost estimation with relevant data from 
other projects or organizations, as this approach was 
found to be effective as compared to using the data 
without any relevancy filtering.  

The amount of data available for model building 
contributes to the likely statistical significance of 
generated models. Small datasets are an acknowledged 
problem in ESE as they do not lend themselves to the 
generalization of results. The range of suitable analysis 
techniques is also con- strained (Bennett et al. 1999; 
Hall 2007), as some approaches assume the availability 
of a minimum volume of data. Naturally, this issue is 
particularly pertinent to organizations that are just 
beginning a measurement programme or that embark on 
projects that are substantially different to those 
undertaken in the past.  

Commercial sensitivity is one of several constraints on 
provenance in ESE. Organizations that hold data that 
they believe gives them competitive advantage might 
not be willing to release the data to independent 
researchers, for fear of proprietary data becoming 
accessible to competitors. Similarly, they may be 
reluctant to release data if they believe they could be 
used to portray them in an unfavorable light. Even when 
researchers are able to have access to such data, they are 
often required to sign non-disclosure agreements that 
prevent them from publishing the data with their results 
(Liebchen and Shepperd 2005; Mair et al. 2005), thus 
rendering such studies non-replicable. To resolve the 
commercial sensitivity problem and promote the 
sharing of data, Peters et al. (2013) proposed the 
CLIFF+MORPH algorithm that anonymized data 
without substantially degrading its use in software 
defect prediction. This algorithm was applied to good 
effect on 10 defect datasets from the PROMISE 
repository.  

In the defect prediction study of Turhan et al. (2009), 
they found it difficult to access failure logs, because 
several large teams of contractors were working on 
projects for a single organization— NASA—and each 
viewed the failure logs as critical to their competitive 

advantage. The authors note that acquisition of even 
coarse-grained information was only attained after 
several years of negotiation. When finally provided, the 
data were highly sanitized by NASA to the extent that 
the research team was not able to have information 
concerning project or module names. Robles (2010) 
assessed the possibility of replicating experiments 
reported in papers published in the proceedings of the 
Mining Software Repositories Workshop/Conference 
between 2004 and 2009. It was determined that only 6 
of 154 experimental papers were replicable, because the 
data and scripts used in the other 148 original studies 
were not accessible.  

Catal and Diri (2009) performed several experiments to 
assess researchers’ claims that their fault prediction 
models provided the best performance. When the 
models were assessed using public datasets, the results 
were not as strong as had been claimed by their 
proponents. This may reflect problems with the models 
themselves (and possible researcher bias), or it may 
again signal the extent to which models are tied to the 
underlying data. Whatever the cause, conflicting reports 
such as this raises trust issues about software 
engineering experiments and the reliability of the 
datasets that are used in these experiments.  

Empirical software engineering models for effort 
estimation and defect prediction have been built for 
open source projects such as the Linux kernel, Mozilla 
Firefox, Eclipse, and the like. Capiluppi and Izquierdo-
Cortázar (2013), in their study of software effort 
estimation of FLOSS projects using the Linux kernel as 
a case study, extracted time-aware information from the 
repository to enable them to identify the occurrence of 
major development activities. The metrics collected 
include commits (additions, deletions and 
modifications), committer, author, major release, 
timezones (office hours, after office and late night), and 
code complexity (McCabe’s cyclomatic index).  

In addition to employing traditional metrics such as 
function points and Lines of Code, Qi et al. (2017) 
introduced another group of metrics they termed 
personal factors, which were determined objectively 
when they mined the GitHub repository to create effort 
estimation models for open source projects. The 
personal metrics are APEX, which refers to the project 
team experience in a specific kind of application, and 
LTEX, which is also associated with the programming 
language and tool experience of the project team. This 
project was undertaken to address the lack of adequate 
data for software effort estimation. It is worth noting 
that personal metrics are not a new idea in software 
effort estimation datasets, as they have been associated 
with datasets such as COCOMO, Desharnais, and 
others.  

Metrics such as Commits, PullReqs, PullReqsHandled, 
ProjectsWatched, IssueComments, IssuesReported, 
IssuesHandled, Followers, and Mentions have also been 
tracked in GitHub (Badashian Esteki Gholipour Hindle 
and Stroulia 2014) to study developer activities. There 
are therefore di- verse metrics that can be tracked in the 
GitHub repository for which some can be employed to 
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build effort estimation models, while others have 
different uses such as commit classifications and 
developer activity analyses.  

Software engineering metrics have also been used to 
study how software systems change over time. Israeli 
and Feitelson (2010), for instance, studied the evolution 
of the Linux kernel. In a 14-year period they considered 
810 versions of the system. Some of the metrics used 
were lines of code, McCabe’s cyclomatic complexity, 
metrics based on Halstead’s software science, Oman’s 
maintainability index, Files and directories, and the rate 
of releasing new versions. Their study found support for 
Lehman’s law in relation to growth and stability of 
software systems.  

Shin, Meneely, Williams, and Osborne (2011) 
investigated the use of three broad metrics of 
complexity, code churn, and developer activities as 
reliable indicators of identifying software system 
vulnerability. Using the aforementioned metrics, they 
were able to predict code vulnerabilities in the Mozilla 
Firefox browser and Red Hat Enterprise Linux.  
 
2.2 Multiple Issue Studies  
The above studies considered the state of ESE datasets 
in terms of just one quality dimension; we now consider 
studies that have assessed the state of ESE datasets from 
multiple viewpoints.  

It has been generally established that the quality of ESE 
datasets cannot be taken for granted, as data collected 
even by highly mature organizations can have issues. 
This is evident in the discovery by Gray et al. (2012) of 
several data quality problems with the NASA Metrics 
Data Program (MDP) datasets that are used widely for 
defect prediction research. The issues evident in these 
datasets are several and include redundant data, 
inconsistencies, constant attribute values, missing 
values, and noise. Shepperd et al. (2013) proceeded 
further to compare two versions of a NASA dataset (one 
in the PROMISE repository and the other in the MDP 
repository) with respect to the data instances and their 
attributes and discovered that they differed in several 
respects. They proposed an algorithm that could be used 
to clean this data of multiple data quality issues.  

Rodriguez et al. (2012) used a position paper to classify 
ESE repositories and the data quality problems that are 
faced by researchers when using these sources. The 
repositories were classified into five main groups based 
on the type of information stored, public or private 
availability of the dataset, existence of single project or 
multi-project data, type of content, and the format of 
data storage. In noting the challenges that these sources 
posed to (primarily machine learning) researchers the 
authors referred to difficulties in data extraction, the 
insufficient provision of information to support 
replication, and a range of data quality problems, 
including outliers, missing values, redundant 
observations, overlapping classes, data shift over time, 
unbalanced distributions, measurement variability, and 
model accuracy variability (Rodriguez et al. 2012). The 
classification of datasets by their distinct properties and 
the acknowledgement of data quality problems is a 

positive initiative. The research reported in this article 
is intended to further enhance data quality in ESE by 
providing a transparent and consistent means of 
collection and evaluation that could lead to the use of 
high(er)-quality data in software engineering 
experiments.  

In a more recent publication, Valverde et al. (2014) 
proposed a Data Quality model that com- prised data 
quality dimensions, data quality factors, data quality 
metrics, and their inter-relationships. Data quality 
dimensions refer to a broad classification of data quality 
issues; data quality factors refer to the set of 
characteristics that makes up a particular dimension; 
and data quality metrics are the set of measures that are 
used in assessing the factors in each dimension. The 
model is intended to support the identification and 
assessment of quality problems associated with the 
collection of data from software engineering 
experiments (Valverde et al. 2014). The authors 
evaluated the model on two controlled experiments 
(which compared the effort of developing a web 
application either by employing a Model-Driven 
Development approach or a more traditional 
development approach where code is manually 
generated). The approach advocated by Valverde et al. 
(2014) bears some resemblance to the data collection 
and submission template proposed in Section 6 of this 
article, as it encourages quality assessment at the data 
collection stage. Where the two studies depart is that 
their study considers a subset of the elements of quality 
that this article considers (specifically, those falling 
under the Accuracy class of our data quality taxonomy 
as presented in Section 4). The model of Valverde et al. 
(2014) also does not directly support independent 
verification of the data quality issues at stake as it 
provides only the result of the data quality assessment, 
whereas the data collection and submission template 
proposed in this article provides a comprehensive and 
transparent means of verifying any data collected and 
all assessments undertaken, with a view to facilitating 
replication. Such efforts should go some way to 
addressing quality problems at the data collection stage, 
which could also be beneficial in terms of early 
intervention. As noted above, however, empirical 
software engineering researchers often work with 
secondary data, and therefore it is similarly important to 
identify the quality challenges associated with 
secondary data, a second point of emphasis in this 
article.  

A reasonably recent systematic mapping by Rosli et al. 
(2013) identified the data quality problem as an issue in 
ESE and discussed prior assessment techniques as 
applied to software engineering datasets. Although 10 
different data quality problems were identified, nine of 
them fall into the Accuracy class of the data quality 
taxonomy (Bosu and MacDonell 2013a). This again 
signals the sometimes narrow conceptualization of data 
quality in software engineering, as it is mostly seen 
from the (albeit important) perspective of accuracy. The 
present research intentionally adopts a broader 
conceptualization, and the proposed data collection and 
submission template should enable users to capture 
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other aspects of data quality in ESE that have to date 
been largely ignored.  

Gencel et al. (2009) attributed the problem of 
inconsistent results when software effort estimation 
models are developed using benchmark repositories to 
two factors:  

1. The lack of common standards and 
vocabulary. 

2. The differences in definitions and categories 
of attributes of the different repositories.  

The authors went on to propose a mechanism for 
improving the classification of attributes by adapting 
the parametric estimation method that is used in civil 
engineering and two software engineering standards 
(ISO 12182 and ISO 14143-5). The parametric 
estimating method relies on the use of a classification 
database of past projects’ parameters to estimate new 
project parameters. The ISO 12182 standard consists of 
definitions of software application types and the ISO 
14143-5 standard is the grouping of software 
applications into classes based on the functional 
properties of the software. The authors assert that 
(more) consistent use of terminology and definitions 
should lead to better quality ESE data. To date the 
proposal has been untested. However, in adherence to 
this suggestion by Gencel et al. (2009), the use of the 
data collection and submission template proposed in 
this article should offer a consistent and comprehensive 
approach for evaluating the quality of data for software 
engineering experiments.  

Cheikhi and Abran (2013) surveyed the PROMISE and 
ISBSG repositories with the objective of making it 
easier for researchers to understand the data in them and 
thus more readily use the data in modeling. The datasets 
were classified according to the types of studies in 
which they could be used, such as effort estimation, 
defect prediction, and others. Properties of the datasets, 
including the name of the dataset; whether attributes 
have been described; the source/donor of the dataset; 
the year the dataset was made available in a repository; 
and the mode of accessibility of the dataset (such as 
public or private) were established for each of the data 
files in the repositories. These important factors form 
part of the provenance requirement of the proposed data 
collection and submission template (Section 6).  

Denoted “ISBSG” in the preceding text, the 
International Software Benchmarking Standards Group 
applies data quality ratings as a mechanism for 
indicating the quality of the data submitted for inclusion 
in its repositories:  

“This field contains an ISBSG rating code of A, B, C or 
D applied to the project data by the ISBSG quality 
reviewers to denote the following:  

A= The data submitted was assessed as being sound 
with nothing being identified that might affect its 
integrity.  

B=  The submission appears fundamentally sound but 
there are some factors that could affect the integrity of 
the submitted data.  

C=  Due to significant data not being provided, it was 
not possible to assess the integrity of the submitted 
data.  

D=  Due to one factor or a combination of factors, 
little credibility should be given to the sub- mitted 
data.”  

How those heuristics are operationalized in practice, 
however, is not known. As such, the quality rating has 
been said to be a proxy for completeness of data 
(Liebchen and Shepperd 2008), and researchers have 
tended to discard data with ratings lower than B in their 
analyses. Using a “blunt” approach such as this may not 
be optimal, however, in that, depending on the specifics 
of the research question being addressed, it may be too 
conservative or too optimistic. In related prior work, we 
have suggested a more nuanced way to maximize data 
use from the ISBSG repository (Deng and MacDonell 
2008).  

The Experience database also uses data quality rating 
rules, in this case developed by the Finnish Software 
Measurement Association (FiSMA) to evaluate the data 
submitted to this particular repository (Forselius 2008). 
The FiSMA rules are publicly available (Forselius 
2008) and anyone interested can apply them to evaluate 
the quality of data. The rules are designed to ensure that 
attributes of interest are explicitly described so that all 
three levels of stakeholders in the data collection pro- 
cess (customer company project management staff, 
project manager and repository manager) have the same 
understanding of the data requirements. The FiSMA 
rules categorize attributes into three classes for which 
metrics are recorded for each attribute (Forselius 2008). 
The first class comprises the “basic” attributes of 
projects such as size, measured in function points, 
effort, measured in person-hours, and duration, 
computed from the start date and end date of a project. 
The second class comprises attributes that are used to 
determine the context for which projects were 
developed, such as programming language, platform 
type, type of projects, and type of business of the 
customer organization. The third class of attributes are 
associated with productivity factors of software 
projects, such as the use of automated tools, customer 
participation, experience level of developers and project 
managers, and so on.  

There are mandatory attributes (including size of 
software, effort, start date, end date, and others) for 
which if any attribute value is missing the data are 
rejected outright (Forselius 2008). In determining the 
quality rating of a project, scores are assigned to each 
attribute, and the scores for all the attributes are 
aggregated to arrive at a final score for the project. The 
quality of the content of an attribute value impacts on 
the score assigned to that attribute. The maximum score 
possible for a project is 100. In all, seven quality levels 
are possible upon evaluation of the data. Six of the 
quality levels are acceptable and mean that records are 
stored in the Experience database, with the highest data 
quality level having a score of 90 or above indicated as 
“AAA” and “D” being the lowest-quality projects 
stored in the database with scores that lie between 40 
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and 49. Projects that evaluate to “X” are rejected and 
not stored in the database. Below are the quality ratings 
of projects that are assigned based on evaluation of the 
FiSMA rules by the repository manager:  

AAA	 Highest	quality	 90+	 
AA	 Excellent	 80–89 
A		 Very	good	 70–79	 
B			 Good		 60–69		
C	 Satisfactory	 50–59	 
D	 Acceptable	 40–49	 
X	 Rejected	 –39	 

 
FiSMA provides documentation to aid in the 
determination of scores for the individual attributes— 
this is said to ensure that the process of evaluating the 
quality of projects is repeatable and can be carried out 
independently by all stakeholders. Application of this 
process of data evaluation is said to have contributed to 
the increased quality of this repository as compared to 
the ISBSG repository (Forselius 2008). Project 
Managers responsible for data collection are also able 
to use it to self-evaluate the quality of their data prior to 
submitting it to the Experience database.  

In spite of these provisions, some researchers have 
identified quality issues with this dataset. Outliers and 
missing and unexplained values have led to the removal 
of data from this dataset prior to analysis (Maxwell and 
Forselius 2000; Premraj et al. 2005). Though these 
problems are acknowledged by Forselius (2008), it is 
claimed that the Experience dataset is improving in 
quality upon every new release, due to ongoing 
enhancement of the rules applied in the collection of the 
data. Data that do not satisfy the minimum quality 
requirements are rejected, and so it has been asserted 
that the Experience database therefore contains high-
quality data (Forselius 2008). To indirectly illustrate 
this focus on quality, the FiSMA rules were applied to 
the ISBSG dataset in 2008, and it was found that more 
than 1,000 projects in the ISBSG repository would have 
been rejected from inclusion if assessed against the 
FiSMA criteria (Forselius 2008).  

The adoption of quality rules in the Experience database 
is to be commended in terms of con- tributing to 
improved data collection practices. There are, however, 
other datasets that have been used in many more ESE 
studies due to their public availability. While this open 
availability is positive in terms of facilitating research, 
we have limited knowledge of how they were collected 
or of any quality checks that were applied to them—
particularly when researchers do not return to the 
original source of the data. This has motivated us to 
provide a comprehensive set of data assessment 
procedures as described in Section 4. Prior to that, we 
provide a brief overview of the ESE data quality 
taxonomy (Bosu and MacDonell 2013a), which is the 
basis of the data benchmarking in this article.  

 
 

2.3 The ESE Data Quality Taxonomy  
In this section, we present a brief overview of the ESE 
Data Quality Taxonomy based on our prior work (Bosu 
and MacDonell 2013a). The ESE data quality taxonomy 
was created by surveying a decade of ESE literature on 
data quality. The study (Bosu and MacDonell 2013a) 
identified 57 papers that had addressed one or more 
issues of data quality, and a total of 74 data quality 
issues were identified by these papers. These issues 
were grouped into three main classes: accuracy, 
relevance, and provenance. Sub-issues (or elements) 
were identified for each of the main classes. We provide 
a brief definition or explanation of the main issues and 
sub-issues of the taxonomy as shown in Figure 1.  

2.3.1 Accuracy. Accuracy refers to the group of data 
characteristics that, if encountered, renders observed 
data unfit for modeling. According to the Oxford 
English Dictionary, accuracy is “the state of being 
accurate; precision or exactness resulting from care; 
hence precision ...exactness, correctness.” The elements 
of accuracy are noise, outliers, inconsistency, 
incompleteness, and redundancy.  

Noise. Noise is erroneous data or incorrect data—
several empirical software engineering studies have 
identified noise in ESE datasets (Johnson & Disney 
1999; Liebchen et al. 2006). Noise is deemed to reduce 
the accuracy of models; as such, software researchers 
have proposed noise detection techniques such as 
Bayesian multiple imputation, rule-based noise 
detection, and Closest List Noise Identification to 
address the issue of noise in datasets prior to model 
development.  

Outliers. Being data points that lie outside the overall 
pattern of a distribution (Yoon and Bae 2010), outliers 
are a common phenomenon in ESE datasets (Johnson 
and Disney 1999; Liebchen et al. 2006; Yoon and Bae 
2010). The presence of outliers might be an indication 
of an error in the  

measurement of data or that the data are not fit to be 
used in the development of a model.  

Incompleteness. Primarily found in the form of missing 
values, incompleteness affects several ESE datasets 
(Liebchen et al. 2006; Liebchen and Shepperd 2005; 
Chen and Cheng 2006). “Missing” is defined as “not 
able to be found, because a value is present but not in 
its expected place, or is not present when it is expected.” 
The definition of incompleteness is, however, broader, 
as it refers to not complete or finished or imperfect.  

It also refers to a part that is not whole or requires some 
other parts to be complete. Due to the small size of 
many ESE datasets, the existence of incompleteness in 
data might render a model statistically insignificant. 
The ESE research community has proposed several 
imputation techniques (e.g, Khoshgoftaar et al. 2006; 
Hulse and Khoshgoftaar 2008, 2014) to deal with the 
phenomenon of incompleteness/missing data.  
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Inconsistency. Inconsistency, according to the Oxford 
English Dictionary, is defined as “a lack of harmony 
between parts or elements; instances that are self-
contradictory, or lacking in agreement when it is 
expected.” To ensure consistent data in software 
engineering, it is essential for recorded data to match 
the variables for which they are recorded. In the study 
of iterative and incremental software development 
productivity trends, Tan et al. (2009) discovered 
inconsistency in effort and size values in that there were 
mismatches from one report to another.  

Redundancy. In software effort estimation and defect 
prediction datasets, redundancy might exhibit in the 
form of duplicates or multicollinearity between 
variables. For example, Prifti et al. (2011) applied a 
technique that detects duplicates on the Firefox bug 
repository and discovered as many as 748 bugs that had 
been described in multiple groups. The use of such a 
dataset for effort estimation is likely to lead to an 
overestimation of the required effort—clearly an 
undesirable outcome.  

2.3.2 Relevance. The Oxford English Dictionary 
defines relevance as “the quality or fact of being 
relevant—bearing upon, connected with, pertinent to, 
the matter in hand.” The use of appropriate data in the 
development of models—usually classification or 
prediction is pertinent to the relevance element. Data 
collected from a different context or system such as 
real-time embedded system would be unsuitable to be 
used in estimating development effort for transaction-
intensive retail systems. Relevance essentially captures 
the characteristics of data that are used in modeling. 
Several ESE studies have considered relevance from the 
perspective of either single organization datasets or 
multi-organization datasets. The elements considered 
under relevance in the taxonomy are heterogeneity, 
amount of data, and timeliness.  

Heterogeneity. In ESE, software effort estimation 
research has considered heterogeneity particularly in 
relation to whether the source of the data used in model 
development is from a single organization or multiple 
organizations. Researchers have employed 
heterogeneous datasets from multi-organizations in 
developing software effort and defects models for 
single organizations (Mendes et al. 2008; Turhan et al. 
2009; Zhihao et al. 2005). Results have proven 
inconclusive so far as to the superiority of either single 
organization datasets or multi-organization datasets. 
The single-company/multi-organization dichotomy 
may have been oversimplified, as some single 
organizations are mostly engaged in many diverse 
projects.  

Amount of Data. The statistical significance of models 
is hugely dependent on the amount of available data 
used in the development of the models, thus the amount 
of data available is an important factor of relevance. It 
is a widely held fact that small datasets is an issue in 
ESE model development, as they hinder the 
generalization of results. This also limits the selection 
of analysis techniques (Bennett et al. 1999; Hall 2007), 
as some techniques are suited to large amounts of data. 
Although a dataset might initially consist of large 
number of records, pre-processing such as the 
application of stratification and feature set selection 
approaches could result in data subsets that lack 
statistical significance power when used in model 
development. Researchers are therefore required to 
ensure that pre-processing does not create data subsets 
that raises questions about results generalizations due to 
the small nature of datasets and/or the application of 
inappropriate modeling techniques to the data.  

Timeliness. An element of relevance that has received 
little attention in the ESE research literature is 
timeliness or currency of data. Mair et al. (2005) 
conducted a survey in 2005 and found that many ESE 
studies relied on data that are very old. The analysis of 
ESE conference and journal publications confirms that 
these old datasets are still being used in present-day 
research. To ensure the timeliness of data, it is 
important for researchers and practitioners to regularly 
review the characteristics of datasets, taking into 
consideration the operational context so that the dataset 
is appropriate for contemporary use. Timeliness is more 
about the appropriateness of the data use in model 
development than anything to do with the datasets being 
inherently “wrong.” The question that still remains is 
“Why are ESE researchers still using old datasets in 
developing models to be used in effort estimation and 
defect prediction of contemporary projects?”  

2.3.3 Provenance. The Oxford English Dictionary 
defines provenance as “the fact of coming from some 
particular source or quarter; origin, derivation.” The 
existence of provenance information has been used in 
the determination of the historical chain of ownership 
of important objects of value (mostly art work and 
literature) (Tan 2007). Guaranteeing provenance, while 
extremely significant for such valuable objects, is also 
important in relation to results generated by digital 

 
Figure 1. Taxonomy of Data Quality in ESE 
(BosuandMacDonell2013a). 
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systems and other scientific applications. Information 
regarding provenance establishes something of an audit 
trail, providing the supporting evidence for scientific 
results, and, in turn, can directly influence the extent of 
trustworthiness associated with such results. Because of 
the reasons enumerated, the value placed on the 
provenance of digital systems and scientific 
applications is usually said to be the same as the results 
they generate (Tan 2007).  

Considered broadly, provenance is related to the issue 
of experimental replication. Replication is or at least 
should be important (Shull et al. 2008) in empirical 
software engineering (as it is in other empirical fields) 
in that it enables the community to build cumulative 
knowledge concerning which results or observations 
can be relied upon under different conditions. Shull et 
al. (2008) advocated the production of good and 
consistent documentation for all ESE experiments to 
facilitate replication. This is consistent with previous 
observation made by Wieczorek (2002), who indicated 
that a negligible number of empirical software 
engineering studies were replicated, and, surprisingly, 
that the use of even the same datasets across multiple 
studies continued to yield results that were not 
comparable in most cases, due to differences in the 
employed experimental designs. She con- tended that 
the diverse reporting formats of studies in the ESE 
domain meant that replication and results comparison 
was a challenge (Wieczorek 2002). The challenge still 
persists as supported by the Lokan and Mendes (2006) 
study that replicated cross-company and single-
company effort models using the ISBSG database. They 
were unable to apply the same experimental procedure 
due to lack of consistent documentation. Replication 
can be more effective by the use of provenance systems 
that will provide transparency between the results of an 
original study and a replicated study.  

Commercial Sensitivity. Commercial sensitivity is one 
of the factors that restrains the use of provenance in 
ESE. This is due to the unwillingness of an organization 
to disclose and/or release data to researchers outside of 
their organization when it is believed that the data 
provide them competitive advantage or might be 
potentially harmful to the image of the organization. In 
the rare occasions where data have been released to 
researchers, they are made to commit to non-disclosure 
agreements (Liebchen and Shepperd 2005; Mair et al. 
2005), which prevents studies based on such data from 
being replicable. Although non-disclosure agreements 
protect donor organizations, it limits what can be 
learned from such data analysis.  

Accessibility. Researchers having access to data is 
another issue of provenance in ESE. Turhan et al. 
(2009) struggled to access the failure logs of NASA due 
to the fact that several contractors were working on 
projects for NASA. Each of these independent 
contractors considered the failure logs as an important 
element of their competitive advantage. It therefore 
took several years of negotiations for the researchers to 
be given access to the failure logs. The released data 
were highly sanitized to the extent the researchers could 

not even identify module and project names. Robles 
(2010) analyzed the experiments reported in published 
in the proceedings of the Mining Software Repositories 
Workshop/Conference between 2004 and 2009 with the 
objective of replicating the studies. To the surprise of 
the author, a mere 6 of 154 papers were replicable, 
because there was no access to the data and scripts used 
in the other 148 papers.  

According to Mair et al. (2005), just about 60% of ESE 
datasets were accessible to the public when the authors 
investigated the nature and type of datasets that were 
being used to develop software effort predictions 
models in the year 2005. Although there have been huge 
increases in open source development since then, which 
has made more data available to ESE researchers, it is 
worth noting that open source development covers 
several diverse systems with different development 
practices, which raises questions about its suitability for 
model development. Another factor is that it could be 
difficult to map open source model of development to 
that of industrial software development. To increase the 
availability of data to researchers, it is essential that 
public repositories with provenance information such as 
the ISBSG (www.isbsg.org) and PROMISE 
(http://openscience.us) should be encouraged. Effective 
collaboration between academia and industry is another 
means through which more data can be made accessible 
to researchers, which ultimately will improve the 
practice and reliability of ESE models.  

Trustworthiness. There is a lot of innovation in the field 
of SE, leading to the creation of new tools, models, 
techniques, and other related artifacts; however, the 
field is constrained by lack of rigorous evaluation of 
these proposals. Glass et al. (2002) concluded that the 
research approach in SE is narrow and mostly 
dominated by the “Formulate” approach, with very few 
studies concentrating on evaluation as a major research 
activity when the authors analyzed software 
engineering studies prior to the year 2002. Similar 
outcomes have been found in other reviews (Clear & 
MacDonell 2011). It is therefore difficult to have 
confidence as to the extent to which results reported are 
applicable beyond the often-limited evaluations 
performed. This is applicable not only to tools, 
techniques, and methods; it also affects prediction and 
classification models as well. Catal and Diri (2009) 
conducted several experiments to verify researchers’ 
assertions that their fault prediction models provided 
the highest performance; however, when public datasets 
were used in assessing some of the models, the results 
were not as strong as had been claimed by their 
proponents. This may be due to problems inherent in the 
models, or it could be an indication as to the extent to 
which the efficiency of the models is heavily dependent 
on the underlying data.  

Empirical software engineering researchers mostly 
have limited access to the source of original data, and 
the most reliable option is to work with secondary data. 
Researchers therefore have no option but to place their 
trust in people and systems used in collecting the data 
and hope that the data are fit for their purposes. 
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Provenance systems is a means to overcome this 
challenge, as it will provide researchers and all other 
data users relevant information, including metadata and 
the origins of the data, that will increase the trust that is 
placed in the data. Changes in data, such as masking, 
anonymization or transformation, and other pre-
processing, can subsequently be tracked and verified by 
both data users and data providers. This is essential in 
building models with high integrity.  
 

3. DATASET DESCRIPTIONS  
The 13 datasets used in our quality benchmarking 
exercise and listed in Table 1 have all been used 
previously in ESE research (Amasaki 2012; Miyazaki 
et al. 1994; Prabhakar and Dutta 2013; Shepperd and 
Schofield 1997). The choice of datasets was informed 
by a prior study reported in 2005 (Mair et al. 2005) that 
identified 9 of the datasets as being among those most 
widely used in software effort estimation, noting that 
the COCOMO81, Desharnais, Kemerer, and Albrecht 
datasets were the most widely used of all. The China 
dataset, although comparatively new (being made 
available in the PROMISE repository in 2010), has also 
been included in this assessment, because it consists of 
499 records—a large number relative to most other 
publicly available software engineering datasets. All of 
the datasets have recently been used together in a 
number of individual studies by Kocaguneli and 
colleagues (Kocaguneli et al. 2012; Kocaguneli et al. 
2013; Kocaguneli et al. 2015), thus emphasizing their 
ongoing perceived utility in effort estimation research. 
An introduction to each of the datasets is provided in 
this section (in alphabetical order of the commonly used 
dataset name). Twelve of the datasets have been drawn 
from the PROMISE repository. (Note that 2 datasets, 
the Desharnais3 and Finnish datasets, were available at 
a previous instance of the PROMISE repository but are 
no longer accessible.) This study also uses the 

 
3 At the time of writing the Desharnais dataset can be found at 
http://promise.site.uottawa.ca/SERepository/datasets/ desharnais.arff 

International Software Benchmarking Standards Group 
(www.isbsg.org) Release 2016 R1, herein referred to as 
ISBSG16. All of the datasets contain information 
reflecting some measure(s) of system size/scope and of 
development effort, and, as such, these attributes are not 
emphasized in the description of the datasets. 
Information concerning the period in which projects 
were undertaken are stated in the description of datasets 
where it is known. The number of attributes varies 
greatly for the datasets—the Telecom dataset consists 
of only four attributes whilst the IS- BSG16 dataset is 
composed of 264 attributes. This is noteworthy, as it 
demonstrates the diversity of datasets and the non-
uniformity in the properties collected by different 
software organizations. In counting the number of 
attributes, project or record identifiers are also included. 
While the number of attributes in each dataset varies 
from just a few variables up to 27 attributes (for 
Maxwell) and 264 attributes (for ISBSG16), typically 
only a small number are used in effort modeling.  

The Albrecht dataset (Albrecht and Gaffney 1983) 
comprises 24 records collected from projects 
undertaken in the 1970s at IBM Data Processing 
Services. The systems themselves were developed 
using the COBOL, PL/I, and DMS programming 
languages. System size and complexity were measured 
using the function point approach proposed by Albrecht 
(1979).  

The China dataset comprises 499 projects 
characterized by 19 attributes. Among these, the 
function point measures proposed by Albrecht (1979) 
are again used to quantify system size. It is difficult to 
provide any further information concerning this 
dataset—papers that have used this data have provided 
no background information (Kocaguneli et al. 2013; 
Prabhakar and Dutta 2013). (An email was also sent to 
Professor Tim Menzies, who has oversight of the 
PROMISE repository, and he confirmed that he had no 

Table 1.	Dataset Description 
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background information on the China dataset and that 
he received the data in April 2010 without any further 
details.)  

COCOMO81, proposed by Barry Boehm (1981), is a 
software sizing model that has been widely used in the 
estimation of cost, effort, and schedules for software 
development projects (Huang et al. 2008). The 
COCOMO81 calibration dataset used in our assessment 
is composed of 63 records. It has 19 attributes, 
including 15 cost drivers that are determined based on 
the characteristics of the proposed application. The size 
attribute of the COCOMO81 dataset is measured (or is 
estimated) in lines of code (LOC).  

The Desharnais dataset was collected by Jean-Marc 
Desharnais from 10 organizations in Canada. The 
projects in this dataset were undertaken between 1983 
and 1988. The dataset con- sists of 81 records and 12 
attributes, with size measured in function points. In 
most studies that employ this dataset, 77 of the 81 
records are used because of missing data in 4 records 
(Shepperd and Schofield 1997). In this study, the 
version that is used in any particular analysis is 
described as part of the analysis.  

The Finnish dataset was collected from nine firms in 
Finland by the TIEKE organization. Initially, 40 records 
were collected, but missing values in some of the 
attributes of two projects (Kitchenham and Kansala 
1993) meant that their data were removed, leaving 38 
records for analysis. This dataset consists of nine 
attributes, with size measured in function points.  

The International Software Benchmarking Standards 
Group dataset (ISBSG16) consists of soft- ware 
development and enhancement project data collected 
over several years. This study used Release 2016 R1, 
which was released in March 2016. The data include 
project records collected from 32 countries and across 
more than 12 different industry types (www.isbsg.org). 
The stated purpose of the ISBSG in compiling the 
dataset is to aid the software industry in estimating 
aspects of their projects such as their size, effort, 
duration, and speed of delivery. The dataset is also said 
to be useful for benchmarking of projects—so that an 
organization might compare itself to ‘best practice’ as 
represented in the dataset—as well as in the effective 
planning and management of software projects via 
software productivity improvements, team size 
planning, and project risk management. The dataset is 
available for a fee for commercial organizations. The 
March 2016 re- lease of the dataset is composed of 
7,518 projects with 264 attributes. The size measures 
used for most of the projects are based on IFPUG 
function points, but other size measures include 
NESMA FPs, COSMIC-FP, Mark II FPs, LOC, Dreger, 
and “Backfired.” That said, for reasons discussed later 
in the paper, researchers often use a subset of the data 
for modeling, after applying several filters to arrive at 
the data of interest.  

The Kemerer dataset (Kemerer 1987) was collected 
from an American Computer and Consulting firm that 
developed data-processing software. The data were 

collected in 1985, and the oldest project at that time was 
started in 1981, with most of the projects starting in 
1983. The projects were said to be medium to large in 
size based on thousands of source lines of code 
(measured in KSLOC). The dataset is composed of 15 
projects with eight attributes.  

The Kitchenham dataset (Kitchenham et al. 2002) was 
collected from American-based multi- national 
Computer Sciences Corporation (CSC). This dataset 
contains information related to 145 software 
development and maintenance projects that CSC 
undertook for several clients. There are 10 attributes 
considered, and the size attribute was measured in 
function points. The attributes also include start date 
and estimated completion dates, and the projects were 
undertaken between 1994 and 1999.  

The Maxwell dataset was collected from a Finnish 
commercial bank. It is composed of 62 projects 
represented by 27 attributes (Maxwell 2002). There are 
22 categorical attributes that were asserted to have an 
influence on software productivity. The size attribute 
was again measured in function points. The start years 
of projects were between 1985 and 1993.  

The Miyazaki94 dataset was collected by Fujitsu’s 
Large Systems Users Group (Miyazaki et al. 1994). The 
data were obtained from 48 COBOL systems developed 
in 20 different organizations and across multiple 
departments within those organizations. There are nine 
attributes for each project/system; the size attribute was 
measured in the number of COBOL source lines of code 
(in thousands).  

The NASA93 dataset was collected by NASA from five 
of its development centers (Kocaguneli et al. 2012; 
Minku and Yao 2013). It comprises 93 projects 
undertaken between 1971 and 1987. The dataset 
consists of 24 attributes of which 15 are cost drivers, as 
the approach is based on that used in COCOMO81. The 
size attribute was measured in (estimated) lines of code.  

The SDR dataset was collected from five software 
organizations in Turkey and is based on the COCOMO 
II format, having 22 of its 25 attributes as cost drivers 
(Kocaguneli et al. 2012; Minku and Yao 2013). There 
are 12 projects in this dataset, and the size attribute was 
measured in (estimated) lines of code.  

The Telecom dataset (Shepperd and Schofield 1997) 
consists of data on 18 software enhancement projects 
that were undertaken on a U.K. telecommunications 
product. The version of the dataset used in this study 
comprises four attributes. Having said that, only the 
number of files attribute is used in effort estimation, 
since the other three attributes are not available at the 
time that estimation would occur.  
 

4. DATA QUALITY ASSESSMENT 
APPROACH  
In this section, we provide a description of the methods 
that we applied to the selected datasets to evaluate them 
against the taxonomy (Bosu and MacDonell 2013a), 
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which has been briefly described in Section 2.3. The 
intention is not to develop or promote any particular 
data quality assessment techniques; rather, the objective 
is to use known methods to establish the extent to which 
the data quality challenges identified in the taxonomy 
may be found in real, widely used ESE datasets. This is 
important, as we found previously (Bosu and 
MacDonell 2013b) that data quality assessment is 
generally not reported in ESE publications. Thus, there 
is a tendency to simply adopt datasets for analysis 
without consideration—or perhaps even awareness—of 
their quality.  

Perhaps because of data scarcity, ESE does not use a 
Kaggle-like approach, wherein datasets are ranked by 
their users while being made freely available. Much 
ESE data are proprietary or are closely curated (e.g., by 
the ISBSG), the Promise repository being the main 
exception. Under such an approach, the higher-quality 
datasets would be ranked more highly and so would 
gain greater prominence, while those with quality 
problems might lose visibility—and therefore see 
limited use. While this idea seems appealing in terms of 
promoting high-quality modelling, it is really moot at 
present given the limited public access to such datasets.  

In the analysis that follows, as many as possible of the 
available variables and records in each dataset were 
considered, with the exception of the ISBSG16 dataset, 
where subsets of attributes and records were used. 
While the ISBSG16 dataset includes 264 attributes, 
many records have missing values for a number of these 
characteristics (due to their not being applicable to a 
given project, or not being mandatory so not provided 
by the submitting organization). Therefore, a partial set 
of the attributes (comprising Functional Size, Summary 
Work Effort, Development Type, Development 
Platform, and Language Type) was used in the 
determination of noise, whilst the (continuous) 
Functional Size and Summary Work Effort variables 
were considered in determining outliers. The 
independent variables selected are known from 
previous studies to have some degree of influence on 
effort (Letchmunan et al. 2010; Lokan and Mendes 
2009; Seo et al. 2008). Deng and MacDonell (2008) 
highlighted seven reasons why it might not be possible 
to use the entire ISBSG dataset for effort estimation, as 
follows:  

• Some variables are not normalized into atomic 
values.  

• Inconsistent recording of variable values. 
• There are too many distinct levels for some 

variables.  
• The contexts for some variable values are not 

discrete.  
• Some variables are derived from other variables.  
• Some variables are not relevant for effort estimation.  
• Some numerical variables have many missing 

values.  
 
The formalization of the ISBSG release 9 dataset by 
Deng and MacDonell (2008), with the objective of 
retaining as many data points and attributes as possible 
for software project effort prediction, resulted in the 

identification of 12 usable predictor variables. All of the 
attributes used here in the assessment of noise and in 
outlier identification were among those 12 variables. 
The total number of records retained by the same 
formalization was 2,862 of the 3,024 records in the 
ISBSG database. This number in fact represents a 
substantial proportion of those available, as most 
studies use fewer than 800 records for modeling. The 
quality assessment under the three classes of the 
taxonomy is now presented.  

4.1. Accuracy. This taxonomy class considers noise, 
outliers, inconsistency, incompleteness, and 
redundancy, each of which is now addressed in turn.  

Noise has been acknowledged as being difficult to 
determine in respect of ESE datasets (Liebchen et al. 
2007), especially when those datasets are secondary 
sources, meaning the re- searchers may be far removed 
from their origin. Since it is difficult to be certain about 
noise in a dataset, and given that researchers may be 
willing/able to tolerate a certain degree of noise, the 
assessments undertaken in this study should be 
interpreted as a guide to the potential state of the 
datasets rather than definitive statements that a dataset 
is noisy or otherwise. Even indicative noise assessments 
such as these are necessary, however, so that 
researchers and estimators are at least aware of the 
nature of the datasets they are using and can consider 
whether preprocessing might be beneficial in improving 
the quality of the data (and hence any models developed 
using that data).  

Following prior research, we employed two different 
approaches in determining noise for the 13 datasets 
selected here. The first approach was to examine 
whether any formulas used in deriving data were 
incorrect or violated relational integrity constraints 
(Shepperd et al. 2013), which are the stated 
rules/formulas or the expected outcome of a 
computation. The second technique utilized data 
classification, where incorrect classification represents 
a proxy for noisy instances in the data, as implemented 
by Liebchen et al. (2007). Classification algorithms are 
able to segment data into the required categories—in 
this study it is expected that data will be classified as 
“noisy” or “not noisy.” Specifically, for software effort 
estimation, the classification algorithm identifies a 
record as noisy where the predicted dependent value of 
the classifier is different from the actual value. We used 
a decision tree algorithm (specifically the C4.5 
algorithm available as part of the Weka data-mining 
toolbox) first because it is able to build relationships 
between data as well as to build models independent of 
the underlying assumptions of the relationships 
between the attributes under consideration. Second, 
decision trees are robust in the presence of missing data, 
an important consideration given the fact that 
missingness is a predominant problem in ESE datasets. 
Third, decision trees are accessible and simple to 
explain. As such, they have been widely used in general 
machine learning (González et al. 2008; Moser et al. 
2008; Teng 2000) and also in software defect prediction 
(Folleco et al. 2008; Tang & Khoshgoftaar 2004). Last, 
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to the best of our knowledge, the only two prior studies 
that attempted to identify or address noisy data in effort 
estimation datasets (Liebchen et al. 2006; 2007) used 
the decision tree algorithm. In this article, the effort 
attribute was discretized, because it was a continuous 
variable, forming the target class for all of the datasets. 
Preliminary analyses indicated that most of the datasets 
could be split into up to four classes; therefore, the 
discretized effort attribute values were divided into four 
classes for all 13 datasets. The classifier was then 
applied to the datasets using fivefold cross-validation. 
The percentages of the effort class that were incorrectly 
classified were deemed to be noisy.  

Prior to the application of the classifier, a degree of 
necessary preprocessing was undertaken. Project 
identifier attributes were removed from the relevant 
datasets (China, Desharnais, Finnish, Kitchenham, 
Miyazaki94, NASA93, SDR, and Telecom). As most 
studies that analyze the Desharnais dataset use the 
version with 77 projects, the classifier was also applied 
to this version in our study. One outlier project was 
removed from the Kitchenham dataset.  

Boxplots were generated using the R statistical tool to 
determine outliers in the datasets under consideration. 
The plots include the Effort attribute for all 13 datasets 
as the target outcome variable of interest in software 
project effort estimation. In general, categorical 
variables and other attributes that have limited ranges of 
values were omitted from the plots as follows:  

• The FPAdj and AdjFP of the Albrecht dataset were 
not included in the boxplot, because there is a 
transformation relation between them and the 
RawFPcounts. 

• In the China dataset, the Resource and Dev_Type 
attributes were excluded, because they are 
categorical variables. N_effort was also excluded as 
it is a transformation of the Effort attribute. 

• The LOC and Effort attributes were those plotted for 
the COCOMO81 dataset, because the other 
attributes were the cost drivers that are assigned 
according to a fixed range of values in relation to the 
application’s characteristics. 

• For the Desharnais dataset, TeamExp and 
ManagerExp were not plotted, because they contain 
discrete values that range from 1 to 4 and 1 to 7, 
respectively. YearEnd was removed, because it 
represents project completion date (and so is not 
known in advance). The Envergure and PointsAjust 
attributes have a relation with the PointsNonAjust 
and as such PointsNonAjust was plotted, as it has not 
been subjected to any transformation. 

• The hw (hardware type), at (application type), and 
co (function point contribution of each type) 
attributes in the Finnish dataset were not plotted, 
because they are limited-range categorical variables. 
The lnsize and lneff are the log transformations of 
size and effort, respectively, and as such they are not 
also plotted, since our primary interest lies with 
original values or attributes (although it is worth 
noting that the log transformation is a valid 
preprocessing technique that is often a sensible 

choice in the case of highly skewed data 
distributions). The product delivery rate, prod, was 
also not plotted, because it is a derived attribute 
based on the effort and size attributes. 

• Size and Effort are the only attributes plotted for the 
ISBSG16 dataset due to the categorical nature 
and/or high proportion of missing values for many 
of the other characteristics. Note that the Size and 
Effort records themselves contained several 0s and 
blanks, and these were removed (leaving a total of 
4,805 records) before the boxplots were generated. 
It is worth noting that the number of records used in 
the boxplots is higher than that used in the 
determination of noisy records, because five 
attributes were considered in finding the noisy 
instances whilst only two attributes were considered 
in the generation of the boxplots. 

• In the Kemerer dataset, Language and Hardware are 
categorical values and as such were not plotted. 
AdjFP, which is a transformation of the RAWFP, 
was also not included on the boxplot. 

• In the Kitchenham dataset, the Start_Date and 
Estimate_CDate attributes were not plotted, because 
they represent dates rather than numeric values. The 
Client, Type, and Method attributes are categorical, 
and so they were also not plotted. 

• In the Maxwell dataset, the Duration, Size, and 
Effort were the only attributes plotted, because 
Syear represents the start year of projects and the 
other attributes were categorical variables. 

• All the attributes of the Miyazaki94 and Telecom 
datasets were plotted. 

• Only the LOC and Effort attributes were plotted for 
the NASA93 and SDR datasets, because the other 
attributes were categorical and/or had limited ranges 
of values. 

In determining inconsistency, we sought original 
source information about the data and variables so that 
we could assess the extent to which data might have 
“moved” from their original state or where questionable 
and/or repeated values had been included or introduced. 
Most ESE researchers work with secondary data, and as 
such we need to be sure we have datasets that are as 
close to “ground truth” as possible. More than that, if 
summary statistics were routinely provided with 
datasets, then this would enable users to check whether 
the data are likely to be true to the original, as these 
computations can be quickly performed on other 
versions of the data (similar to calculating a checksum). 
More generally, information that accompanies the data 
in the form of metadata, which explains the relevant 
details of the attributes and values of a dataset, would 
seem to be increasingly necessary as it further supports 
verification of the dataset. Our proposed template is one 
attempt at promoting the inclusion of such metadata.  

Incompleteness was relatively easy to determine, as 
some of the datasets actually state the number of records 
with missing values. In addition, missing values were 
represented uniformly as “?” or null values in some of 
the fields (and such indicators are evident in most ESE 
datasets). However, when missing values are 
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represented—inappropriately—with zeros (0s), then 
domain knowledge or metadata are required to interpret 
such instances correctly.  

While the taxonomy considers duplicates and 
multicollinearity in datasets under the subject of 
redundancy, in this benchmarking exercise only 
duplicates are sought, because there is no intention at 
this point to build estimation models with the datasets. 
We used the advanced filter feature in Microsoft Excel 
to identify duplicate records. In any case, 
multicollinearity would be an issue only if certain, 
related variables were included in a given model. 
Though multicollinearity is not being given specific 
attention in this study, we suggest that ESE researchers 
should routinely ex- amine the correlations among 
independent variables once they have decided to 
develop prediction models. This should enable them to 
avoid introducing the destabilizing effects of 
multicollinearity in their models.  

4.2. Relevance. The second of the three classes in the 
taxonomy considers the amount of data, their 
heterogeneity, and their timeliness.  

A straightforward indication of the amount of data in 
each dataset was determined by simply counting the 
number of records; in some cases this information is 
helpfully stated in the metadata that accompanies 
datasets. Dataset size is an important consideration in 
terms of having a sufficient number of records to satisfy 
the assumptions of the various modeling and analysis 
methods that are used in effort prediction. In assessing 
heterogeneity, information on whether the data had 
been collected from multiple organizations or from a 
single organization was also sought from dataset 
metadata. Heterogeneity also relates to other factors, 
however, such as the different types of application that 
constitute the projects—data subsets might have 
distributional characteristics that are distinct from 
others. It is also worth noting that feature subset 
selection practices can indicate another form of 
heterogeneity or the broader aspects of relevance for 
datasets used in modeling as it selects the variables or 
features that have the most predictive power instead of 
using all features for model building. In this article, 
information on the heterogeneity of datasets was 
extracted from prior publications that had used these 
datasets. If a new dataset is donated to a repository and 
has yet to be reported in a publication, however, then 
current submission practice and the limited prior 
reporting of data quality characteristics means that it 

might be difficult for a researcher or practitioner to 
know the state of the data with respect to heterogeneity 
based on its origin. In considering heterogeneity 
alongside the amount of data, while a single dataset may 
seem sufficiently large in absolute terms, if it is 
heterogeneous, then the size of the data subsets 
becomes another important consideration in terms of 
their adequacy for analysis.  

To benchmark the timeliness of the datasets, we 
determined whether projects were recorded with start 
and/or completion dates. We used three criteria in 
determining the era of a dataset from which its general 
age could be computed:  

1. Wherestartand/orcompletiondateshavebeenrecorde
dinadatasetthedate(year)ofthe dataset was listed as 
the range of the earliest project and the latest project 
recorded. For instance, if the projects in a dataset 
were noted to have been undertaken between 1998 
and 2006, then “1998-2006” was recorded as the 
year for the dataset.  

2. Where start and/or completion dates are not 
recorded in a dataset, but where there are 
publications that stated the period in which projects 
were conducted, the range of the years as indicated 
in 1 was used to represent the year of the dataset.  

3. Where start and/or completion dates are not 
recorded in a dataset nor stated in a publication, the 
year of the first publication that referred to the 
dataset was used as the year of the dataset.  

Provenance. This third class in the taxonomy considers 
issues of commercial sensitivity, accessibility, and 
trustworthiness.  

To assess whether datasets faced commercial sensitivity 
issues, we sought information that might indicate 
dataset, variable, record, or data item anonymization or 
transformation. Commercial sensitivity information 
could also be indicated as part of the metadata 
embedded in a dataset or provided in a separate 
document. Since all of the datasets studied here are in 
public repositories, we deemed all of them to be 
accessible. In regard to trustworthiness, we sought any 
documentation that would provide us with detailed 
information about how and when the datasets were 
collected, with the intention that the data generation 
procedure could be checked and/or replicated. Though 
this detailed information was generally not available, 

Table 2. 	Results of Noise Classification Assessment  
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for some of the datasets there was contact information 
about the donors of the datasets.  

The results of our evaluation of the 13 datasets against 
the quality criteria in the taxonomy are presented next. 

  

5. DATA QUALITY ASSESSMENT 
RESULTS  
Accuracy Results. In applying the first criterion used 
in noise determination—that is, revisiting any formulas 
that were used in generating specific attribute values of 
a dataset—our analysis suggests that all such 
formulations were correct, thus implying the absence of 
noise in the thirteen datasets. However, applying the 
classification approach with the C4.5 algorithm, where 
incorrect classification is used as a proxy for noise, 
yielded incorrect classification rates of between 2% and 
50% for the datasets under consideration (as shown in 
Table 2). Overall, the results in Table 2 indicate an 

inverse rank relationship between dataset size and 
noise—the larger datasets tend to be less noisy than 
their smaller counterparts. Depending on the percentage 
of the dataset that was incorrectly classified, a 
researcher might decide to investigate the dataset 
further, which could result in the dataset either being 
used or discarded if it would not result in a consistently 
accurate predictive model.  

Outliers were evident for at least one variable in all of 
the datasets, a finding that is consistent with prior 
literature on this issue that has noted that outliers are a 
common phenomenon in empirical software 
engineering datasets (Buglione and Gencel 2008; 
Liebchen and Shepperd 2005). In particular, there were 
outliers in the distributions of Effort values for all 13 
datasets considered; a subset is shown in Figures 2–4 
due to space constraints. The boxplots (Figures I–X) for 
the other datasets are shown in the electronic appendix. 
(Note that, for clarity, the boxplots are depicted using 
different scales.)  

 
Figure 2. 		Boxplots of Albrecht dataset showing outliers.  

 
Figure 3.		Boxplots of China dataset showing outliers.  
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The percentage of outliers in the untransformed Effort 
attribute of the respective datasets is shown in Table 3, 
falling between 3% (Finnish) and 17% (SDR) and 
bearing no relationship with dataset size. (For this 
study, data that fall outside the whiskers of the boxplots 
were deemed to be outliers.) The identification of 
outliers is important in terms of the reliability of any 
models generated from a dataset. Researchers and 
practitioners need to determine the reasons for the 
incidence of outliers and also employ suitable methods 

of dealing with the outliers. While not an uncommon 
practice, it is not appropriate for the outliers to simply 
be discarded with the only reason being that they are 
considered noisy without establishing the reasons why 
those values arose or how their inclusion or exclusion 
might affect any models generated. Finally, the 
presence of outliers might also influence the selection 
of modeling methods (as some, such as robust 
regression, are more resilient to outlier observations 
than others).  

The Desharnais and ISBSG16 datasets exhibited issues 
of inconsistency. In regard to the Desharnais dataset, 
questions have been raised over an inconsistency due to 
the swapping of two variables’ labels in some versions 
of the dataset—PointsNonAjust and PointsAjust were 
shown above the opposite columns. While their being 
written in French may have contributed to this 
occurrence, simple calculations readily made the issue 
evident and resolvable. Yet researchers have continued 
to use the wrong data in ongoing analyses of this 
dataset. In the ISBSG16 dataset, in- consistency was 
observed in terms of functional size being measured 
with different units of measurement (NESMA FPs, 
IFPUG FPs, COSMIC-FFP FPs, Mark II FPs, 
Backfired, Dreger, Automated, LOC, and Retrofitted). 
Since data submitters have reported different units for 
function size measurement, it is the responsibility of 
those who will use the data for analysis to ensure that 
they use the right subset of data so as to avoid problems. 
In addition, implementation date values are not 
recorded in a uniform format.  

In the other datasets, there was no evidence of any 
inconsistency issues, as shown in Table 4. As a general 
comment, inconsistency was a challenge to determine, 
because the information needed was not found in most 
of the datasets. The provision of provenance 
information for each dataset would have helped address 
this situation.  

 Incompleteness was evident in five of the 13 datasets, 
which had missing values for some of their attributes, 
while the remaining eight exhibited no missing data 
points, as shown in Table 5.  

Just over 20% of values in the Inquiry attribute of the 
Albrecht dataset were missing. Though we found 
several 0’s in some of the fields in the China dataset, we 
computed missingness in this dataset as reflecting the 
absence of a value (that is, a blank field), and this 
resulted in a result of 0.2% missingness for the Effort 
attribute. This may not be a true reflection of 
incompleteness in this case, but we are not able to be 
certain of the meaning of attributes in the China dataset 
because of a lack of provenance or background 
information. Five percent (5%) of values in the original 
81-record version of the Desharnais dataset were 
missing, comprising two entries for TeamExp and three 
for ManagerExp.  

The Kitchenham dataset had missing values in two 
attributes: About 10% of values in the Project.Type 
attribute were missing, while 2% of the 
Estimated.completion.date attribute were missing.  

 
Figure 4. Boxplots of COCOMO81 dataset showing 
outliers.  

Table 3.  Extent of Outliers in the Effort Attribute of the 
Datasets  

 

Table 4. Results of Inconsistency Assessment  

 
Table 5. Results of Incompleteness Assessment  
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The extent of missingness of selected attributes of the 
large ISBSG16 dataset is presented separately in Table 
6.  

An additional attribute (Effort Implement) of the 
ISBSG dataset that was not of particular im- portance to 
this study was randomly selected and assessed for 
missingness, and it was established that close to 78% of 
its values were missing. This confirms the Deng and 
MacDonell (2008) study that contended that it would be 
difficult to conduct software project effort estimation 
using all the data points in the ISBSG database.  

It was also observed that the presentation of missing 
values was not uniform, in that datasets noted them 
differently. For instance, in the Kitchenham dataset, 
missing values were presented as “?,” a “0” was used in 
the Albrecht dataset, “–1” in the Desharnais dataset, and 
(presumably) a blank in the China dataset. In the ISBSG 
dataset, missing values were recorded as both blanks 
and 0s. Understanding missing data points in these 
datasets would therefore require domain knowledge. 
There was no redundant data identified in any of the 
datasets using the method discussed in Section 4. (Note 
that redundant data points are more prevalent, however, 
in defect datasets that utilize items such as bug reports.)  

Relevance Results. The amount of data in the datasets 
varied markedly, between 12 and 7,518 records (shown 
in Table 7). Four of the datasets comprised fewer than 
30 records, which raises a question over whether they 
could support conclusions with sufficient statistical 
power if these datasets were to be used in model 

development (Kitchenham et al. 2002). Moreover, in 
experiments where splitting of datasets is required 
(perhaps due to project diversity), this may also result 
in subsets that are too small to be useful in modeling.  

Heterogeneity was difficult to determine from the 
datasets directly, with the ISBSG16 and SDR datasets 
being exceptions. Although there was no direct 
evidence provided in or with the other datasets 
themselves to indicate whether data were sourced from 
a single company or multiple organizations, we were 
often able to derive this information from publications 
that had used these datasets previously. Five of the 
datasets were collected from multiple organizations (as 
shown in Table 8), seven were sourced from single 
organizations, while there was no evidence either from 
the dataset itself or publications to indicate the 
heterogeneity status of one dataset—the China dataset. 
It is worth noting that, although a dataset may be 
classified as multi-organization, there is the potential 
for it to contain a significant number of records that 
belong to a single organization (and an example 
considered here is the ISBSG dataset that uses a unique 
(though not visible) ID to identify individual 
organizations).  

The identification of all the single organizations and the 
total number of records that belong to each would 
provide an overview of one of the aspects (number of 
organizations) of data diversity introduced by 
MacDonell and Shepperd (2007) in their study that 
compared local and global software estimation models. 
It would also facilitate further single-company and 
cross-company analyses.  

It should also be noted, however, that the 
single/multiple organization distinction is a rather 
simplistic one in terms of being a dominant source of 
heterogeneity. If we take the Kitchenham dataset used 
here, for instance, while it was sourced from a single 

organization (CSC), then the actual projects themselves 
were undertaken for a wide variety of clients, whose 
specific contexts, in terms of technologies used, 
development methods employed, and so on, might 
mean that other sources of heterogeneity are far more 

Table 6.  Extent of Missing Values in Selected ISBSG16 
Attributes  

 

Table 7.  Results of Amount of Data Assessment  

 

      Table 9.  Results of Timeliness Assessment  

 

Table 8.  Results of Organizational Heterogeneity 
Assessment  
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influential in affecting the values for certain data items. 
Similarly, while the NASA93 projects were indeed all 
developed for NASA—a single “organization”— five 
distinct development centers were involved in that 
work. 

In considering the criteria for determining data 
timeliness, only 5 of the 13 datasets contained timing 
information related to the start date and/or completion 
date of projects (Desharnais, IS- BSG16, Kitchenham, 
Maxwell, and NASA93), as shown in Table 9.  

Timing information for two further datasets (Albrecht 
and Kemerer) was derived based on as- sociated 
publications that provided the start dates and 

completion dates of the projects (as per the second 
criterion stated in Section 4). The timing information 
for a third dataset (SDR), which was also derived based 
on the second criterion, only specified that the projects 
were carried out in the 2000s. Information regarding 
timing for the remaining datasets (China, Cocomo81, 
Finnish, Miyazaki94, and Telecom) was based on the 
third criterion described in Section 4—the year the 
dataset was first used in a publication. The results of the 
assessment of timeliness are shown in Table 9. Given 
the large size of the ISBSG16 dataset, Figure 5 further 
depicts the distribution of projects in that dataset 
according to their implementation date. Some ISBSG16 
projects specified the implementation date as a range: 
See the “1998–2000” class shown in Figure 5. Date 
information was also not routinely collected as part of 
the ISBSG approach until after 2003, hence the “prior 
to Feb-2004” class. Finally, the implementation date for 

78 projects in this dataset are recorded as “Completed.” 
Though on the face of it this might seem intuitive, it is 
impossible to interpret “Completed” in terms of an 
implementation date: an illustrative example of 
inconsistency in the recording of values as we have 
previously discussed.  

The dynamic nature of software engineering practice 
would seem to justify that the start and completion dates 
of projects should be routinely recorded in ESE 
datasets. This would facilitate analysis related to 
timeliness, meaning that, for instance, the ESE 
community would be able to examine longitudinal 
issues such as productivity variance over time. It would 
also support the investigation of whether the use of 
older datasets is relevant to modern day practice.  

Provenance Results. Commercial sensitivity was 
generally difficult to determine in any definitive sense 
in regard to these particular datasets, as no information 
had been provided regarding portions of the data being 
hidden or anonymized. The ISBSG16 dataset was the 
only one that explicitly reflected the issue of 
commercial sensitivity in the accompanying field 
description document (and as implemented through the 
randomizing of project IDs and the removal of any 
relationship between projects and organizations). That 
said, for eight of the datasets (excepting Albrecht, 
COCOMO81, Kitchenham, NASA93, and SDR) there 
is no information relating to the names of the 
organizations that collected and/or donated the data. 
The results of the commercial sensitivity benchmarking 
evaluation are shown in Table 10.  

Since the 13 datasets under consideration here are in a 
public repository, we deemed all of them to be 
accessible. In contrast, datasets such as the Experience 
Database and Tukutuku (Mendes et al. 2008), which 
have been used in some ESE studies, are not in the 
public domain and so would not be considered as 
accessible. There are further unknown and unavailable 
datasets (Abrahamsson et al. 2011; Lee et al. 2014) that 
have been used in previous ESE studies but have not 
been considered here.  

 
Figure 5. 	Results of Noise Classification Assessment 

Table 10.  Results of Commercial Sensitivity Assessment 
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Only five of the datasets (Albrecht, Desharnais, 
ISBSG16, NASA93, and SDR) provided any sort of 
provenance information (as shown in Table 11), 
although we consider this to be a minimal set, as it 
might not lead to the successful reproduction of such 
data (as it was mostly oriented to recording the 
contact/donor information for datasets).  

The ISBSG uses a questionnaire to collect data 
(www.isbsg.org), which might be useful in enabling a 
more reliable and repeatable process of data collection. 
The questionnaire provides sections for collecting 
detailed information from data submitters—although 
the ISBSG keeps this in- formation confidential. 
Information concerning the project process, comprising 
all the activities that took place during a project and the 
technology used for a particular project, are also 
recorded. The work effort expended by the people 
involved in a project is also recorded although no 
personal information is collected. Detailed information 
about the software product or application created and 
the functional size of the software are also recorded. 
Data concerning the entire project are recorded when a 
project is completed. Organizations that use the ISBSG 
questionnaire for collecting data about their projects can 
develop procedures for auditing the data collection 
process, which could lead in principle to an increase in 
the trustworthiness of the data collected.  
 

6.  TOWARD MORE EFFECTIVE 
DATASET COLLECTION AND 
SUBMISSION  
In conducting the above analysis, it became apparent 
that it is not uncommon to find inconsistencies in the 
recording and reporting of ESE datasets—such as 
different studies reporting different numbers of 
attributes for the same dataset, differences in record 
numbers, and different names for the same dataset 
and/or the variables in it. The routine provision of 
provenance information, coupled with the use of the 
template proposed in this section, could address some 
of these problems. We provide a number of examples 
here—note that our intent is not to claim one source to 
necessarily be “more correct” than another but to simply 
highlight the prevalence of inconsistent reporting.  

Azzeh et al. (2010) reported the number of attributes in 
the Albrecht dataset to be 7, although this is contrary to 

the dataset in the PROMISE repository, which contains 
eight attributes and as per the original dataset shown in 
the first publication that used the Albrecht dataset. Two 
studies, Huang and Chiu (2009) and Reddy and Raju 
(2009), reported the COCOMO dataset to consist of 17 
effort drivers, which is contrary to both what was 
reported by Nguyen et al. (2008) and the dataset that is 
in the PROMISE Repository (which consists of 17 
attributes in total of which 15 are cost or effort drivers). 
Tosun et al. (2009) reported the Desharnais dataset to 
consist of 10 features, although the dataset used in this 
study is composed of 11 attributes, in line with what 
was reported in Desharnais’ thesis (Desharnais 1988) 
and also by Li et al. (2009). Banker et al. (1994) 
reported the number of records in the Kemerer dataset 
to be 17, which is contrary to the 15 we have sourced 
from the repository and as also noted by other 
researchers (Shepperd and Schofield 1997). Hsu and 
Huang (2007) reported the number of features of the 
Kemerer dataset to be 6, though 7 was originally 
reported. Though the Finnish dataset used in this study 
is composed of 38 records, which is the same as has 
been previously reported (Shepperd and Schofield 
1997), it was reported by Kitchenham and Kansala 
(1993) as consisting of 40 projects. Though several 
publications refer to the Kitchenham dataset as CSC 
(Amasaki et al. 2011; Amasaki 2012; Keung and 
Kitchenham 2008), the PROMISE repository refers to 
it as the Kitchenham dataset (as also used in this study). 
The Finnish dataset has been variously known as the 
Laturi, STTF, and initial Experience dataset 
(MacDonell and Shepperd 2007). Clearly it becomes 
challenging to identify a dataset if it is referred to using 
different names and the appropriate provenance 
information has not been kept. Though the Desharnais 
dataset was collected from 10 different organizations, 
some studies refer to it as coming from a Canadian 
software house, giving the impression that it is a single-
company dataset (Tosun et al. 2009), which could lead 
to it being used wrongly in comparisons of single-
company and multi-company analyses.  

Advances in science typically rely in part on 
replication—the construction of a compelling body of 
consistent evidence through a series of independent 
tests. Such tests are only possible, however, when 
sufficient detail is provided to enable faithful 
replications to be conducted. In this respect, the 
provision of ESE datasets for research needs to be 

Table 11. Results of Provenance-Trustworthiness Assessment  
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augmented by provenance information, so that 
researchers can readily verify the data they intend to use 
in modeling, or they can make an informed decision not 
to use certain data in modeling. Reflecting on the 
reporting inconsistencies presented above, and the 
issues that we encountered in our benchmarking 
exercise, we propose a template that could be used to 
accompany the collection and submission of datasets to 
public repositories with the objective of ensuring that 
such datasets are collected, submitted, and used in an 
informed and consistent manner by ESE researchers 
and practitioners. The template in Table 12 is intended 
to address this need by providing a means through 
which the nature and origin of an ESE dataset will be 
more transparent to its users. Adoption of this template 
(or something similar) should also provide support for 
the explicit identification (and perhaps the resolution) 
of data quality issues, as far more information about 
datasets will be provided than has typically been the 
case to date.  

Finally, it should also enable researchers and data 
collectors to adapt and improve the methods they use in 
collecting data, as they will be more aware of the 
challenges that can arise in relation to data quality. The 
overall objective of the template is to provide a uniform 
record to support data collection, submission, and use.  

In a related study, Mair et al. (2005) collected and 
reported information relating to ESE datasets from 
research papers published until 2004. The information 
collected included dataset name, version, public 
availability, contact person, start and completion dates, 
nationality, number of organizations, application 
domain (business sector), number of projects, project 
type, number of features, and missing values. A further 
study (involving the second author of this work) 
(MacDonell and Shepperd 2007) also classified datasets 
used in effort modeling according to the following 
criteria: data quality, including collection and 
verification; completeness and whether the submission 
of data had been incentivized in any way; and data 
diversity, including countries of origin, organizations of 
origin, and the targeted application domains.  

The template proposed above contains some but not all 
of the properties collected by these studies, in line with 
their different objectives. The intent of the Mair et al. 
(2005) study was to assess and characterize the types of 
datasets that were used in software project effort 
estimation. MacDonell and Shepperd (2007) evaluated 
a group of datasets in the context of their study of 
single- versus multi-organization predictions of 
development effort. In contrast, the goal of our template 
is to ensure that detailed information is provided with 
all datasets so that users can more readily assess the 
quality of the data as well as to increase the trust that is 
associated with various datasets. It is also intended as a 
means of providing uniform guidance in terms of which 
data should be collected and submitted to repositories 
where possible.  

Contributors of datasets who provide information 
concerning noise, outliers, inconsistency, in- 
completeness, redundancy, and the total number of 

records as stipulated by the template are also providing 
users of datasets with an opportunity to verify the 
correctness of those datasets. Where a discrepancy 
exists in dataset versions, users will be able to contact 
the right person to remedy this, using the information 
that fully addresses the dataset’s provenance. This 
should help to support more extensive replication of 
ESE data analyses.  

The provision of heterogeneity information should 
mean that the number and (possibly anonymized) 
identity of the organizations that contributed to a dataset 
are known. It should also provide information about 
factors that might be used to group projects, such as the 
type of ap- plication developed or the industry sector(s) 
that is meant to use the application. Information 
concerning relevant application and industries types is 
useful for organizations in benchmarking their datasets 
for similar applications and industries.  

Provision of timing information would ensure that start 
dates and completion dates are recorded for projects or 
within-project activities. This would enable the 
derivation of the duration of projects and would also 
offer the opportunity to model effort prediction over 
time.  

Mair et al. (2005) noted that much of the data used in 
empirical software engineering studies were at that time 
not publicly available. If commercial sensitivity can be 
more effectively managed, then this would offer the 
ESE community the opportunity to address issues that 
will make it more attractive (or at least more acceptable) 
for more organizations to make their data available for 
research. While the availability of repositories such as 
the ISBSG, PROMISE, and those comprising numerous 
open source projects might have been expected to lead 
to greater openness and more publicly available datasets 
for use in ESE studies, our own earlier study (Bosu and 
MacDonell 2013b), which reviewed empirical software 
engineering papers published between January 2007 
and September 2012, found that still a third of the 
datasets used were not in the public domain.  

Any problems encountered during data collection, if 
known and reported, should inform more justified use 
of the resulting data, as well as the potential 
development of better data collection methods. 
Inclusion of provenance information would provide the 
detail necessary to enable the replication of a data 
collection process. The recommendation of collecting 
provenance information as part of the proposed 
template is not intended to ignore the privacy and 
commercial sensitivity concerns of data submitting 
organizations. It is rather to ensure that repository 
managers can turn to owners of data when they discover 
challenges with data to facilitate easy and timely 
resolution of data quality problems. Research 
considering the possible application of techniques such 
as masking, transformation, and normalization of data, 
while retaining the integrity of the data values and the 
relationships between records and attributes, could 
underpin new techniques that organizations could use to 
“confidentialize” their data, lending them reassurance 
around its submission.  
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Where there is information that is not clear about a 
given dataset, the relevant contact information of the 
dataset collector would be available. More generally, 
use of the template should help to ensure that 
organizations that are submitting high-quality data are 
known—and their data collection methods and 
procedures could then be adopted by others to improve 
the general state of ESE data.  

Though the adoption of the template might increase the 
workload of software engineering professionals 
involved in data collection, it is contended here that 
most of the required information is already available—
it is simply not being recorded and/or submitted at 
present. To continue to improve empirical software 
engineering as an evidenced-based discipline, more 
effort along the lines just described should be exerted in 
supporting the transparent collection and sharing of 
high- quality data.  

We acknowledge that a ranking system, in which a 
weighted value is assigned to each data quality issue, 
could be an appropriate means to determine and 
represent the quality of ESE datasets. The state of data 

quality practice in ESE has not matured to this extent; 
however, we believe that this study and the proposed 
data quality template are a first step in providing some 
measure of objectivity in the selection of datasets for 
ESE modeling.  
 
7. CONCLUSION  
In this study, we have applied a range of data quality 
assessment techniques to 13 widely used ESE datasets 
with the objective of benchmarking them against the 
taxonomy proposed by Bosu and MacDonell (2013a). 
The issues were addressed one by one in our analysis, 
and the overall results of this exercise are summarized 
in Appendix A. It is evident that these datasets do not 
contain sufficient information to enable researchers to 
identify any inconsistencies, commercial sensitivities, 
and their provenance. Timing information was also not 
provided in most cases with these datasets. Considering 
the fact that software engineering is a dynamic 
discipline, it would seem to be imperative that timing 
information, such as the beginning and completion 
dates of projects, is provided with ESE datasets. This 

Table 12. Template for Dataset Collection/Submission 
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would enable researchers and practitioners to build 
models over time, thus supporting assessments of the 
impact of the adoption of new development techniques, 
for instance. It was also challenging to determine 
whether datasets were collected from a single 
organization or multiple organizations in several cases. 
Since there is still a degree of contention about the 
superiority of models generated with either dataset type, 
it would be appropriate if this information was included 
with datasets that are provided for modeling.  

Techniques have been developed by the empirical 
software engineering research community to address 
challenges such as outliers, incompleteness, and, to 
some extent, noise in datasets. Aspects of data quality 
that have received far less attention from the community 
are commercial sensitivity, inconsistency, and 
provenance. Use of the template proposed in Section 5 
would address this lack of attention, providing a 
transparent means of collecting, submitting, and 
assessing the quality of a dataset.  
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