
Can Majoring in Computer Science Improve General
Problem-solving Skills?

Shima Salehi∗
Stanford University
salehi@stanford.edu

Karen D. Wang∗
Stanford University

kdwang@stanford.edu

Ruqayya Toorawa
Stanford University

ruqayya@alumni.stanford.edu

Carl Wieman
Stanford University

cwieman@stanford.edu

ABSTRACT
Teaching students to become skillful problem solvers is a goal of
university education, but it has been difficult to measure such skill
or demonstrate the benefits of particular educational experiences.
This paper presents a study of college students solving a problem
unrelated to their academic majors. The analysis suggests that the
educational experiences of Computer Science (CS) students may
better train them in problem-solving than the experiences of other
majors. In this study, students from a variety of undergraduate ma-
jors and grade levels were given a 15-minute problem-solving task
embedded in an interactive science simulation. The complex task
calls upon many problem-solving practices needed by scientists
and engineers in their professions. Although this task has little
resemblance to the problems encountered in a computer science
course, CS students performed significantly better than students
in any other major. In addition, only for CS students was there an
indication of improvement in problem-solving from lower to upper
grade levels. We propose that general problem-solving and compu-
tational thinking share some common practices, such as problem
decomposition and comprehensive data collection. Furthermore, we
present preliminary evidence that training in computational think-
ing is transferable to problem-solving tasks across domains and
discuss how the unique features of CS programming assignments
could be generalized to other science and engineering courses to
foster students’ general problem-solving skills.

KEYWORDS
computational thinking, problem solving, simulations, computer
science education, student assessment
ACM Reference Format:
Shima Salehi, Karen D. Wang, Ruqayya Toorawa, and Carl Wieman. 2020.
CanMajoring in Computer Science Improve General Problem-solving Skills?.
In The 51st ACMTechnical Symposium onComputer Science Education (SIGCSE

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366808

’20), March 11–14, 2020, Portland, OR, USA.ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3328778.3366808

1 INTRODUCTION
Although universities emphasize the importance of problem-solving,
there has been little progress in demonstrating how to measure or
teach general problem-solving practices, or the specific practices
that go into solving problems. We have been carrying out a research
program to first identify, and then to teach and evaluate productive
problem-solving practices that apply across a variety of disciplines.
To do this, we have developed a tool for analyzing problem-solving
based on a short activity embedded in an interactive simulation
environment. The detailed description of this tool and our extensive
studies will be discussed in longer publications currently in process
[23].As part of a more extensive study on the teaching and eval-
uation of specific problem-solving practices, we used this tool to
measure the problem-solving practices of university students from
a variety of different majors and grade levels. We were intrigued by
the qualitative observation that the students who performed well
in the task were frequently majoring in computer science.

The observation led us to pursue the following research questions
in this paper: 1) is there indeed a difference in problem-solving
performance between CS and non-CS majors? and 2) how does
the CS educational experience lead to improved problem-solving
performance? This paper first presents the results of the post hoc
analyses of students’ performance on a 15-minute problem-solving
task, followed by a discussion exploring the link between general
good problem-solving practices and computational thinking using
evidence from this analysis.

2 BACKGROUND
Effective science and engineering education goes beyond teach-
ing content knowledge and encompasses training problem-solvers
who can use their knowledge in practice to solve complex prob-
lems. Over the past decade, the science and engineering education
community [1, 5, 17, 25, 27] has acknowledged the significance of
training good problem solvers. However, there remain essential
questions about teaching and learning of problem solving that are
under investigation, including "What are the characteristics of good
problem-solving?"; "How can problem-solving be measured?"; and
"How can problem-solving be taught?" [6]. The work presented
here is a small part of our larger research project investigating these
three questions.

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

156

https://doi.org/10.1145/3328778.3366808
https://doi.org/10.1145/3328778.3366808
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3328778.3366808&domain=pdf&date_stamp=2020-02-26

In the literature of problem-solving, a problem has been defined
as a goal-oriented task for which a set of required actions to reach
the desired goal is not known in advance [7, 15, 19, 20]. Extending
this definition, we characterize problems in science and engineering
domains as goal-directed tasks that: 1) require employing relevant
scientific and engineering knowledge; 2) do not come with a pre-
scribed set of actions to reach the goal; and 3) encompass multiple
parts and have multiple possible solution paths.

We have identified eight specific practices important for solv-
ing problems with the listed characteristics [23]. These practices
include:

(1) problem definition and decomposition of the problem into
suitable sub-problems

(2) data collection
(3) data recording
(4) data interpretation
(5) reflection on problem definition and assumptions
(6) reflection on knowledge (what is known and what needs to

be known)
(7) reflection on effectiveness of strategy used to solve the prob-

lem
(8) reflection on solution, including testing and verification of

the solution

Although we derived these from empirical observations, many of
these practices have been also noted in previous works related to
engineering education [2, 22, 28, 30].

These practices also have some overlap with elements of com-
putational thinking. Computational thinking (CT) refers to a set of
thinking practices that are fundamental to computer scientists and
can be used to solve complex problems in many disciplines [31].
Research has been undertaken in the past decade to identify and
operationalize computational thinking in practice. Identified CT
practices include systematic processing of information, problem
abstraction and decomposition, data collection and manipulation,
and testing and debugging solutions [3, 5, 8, 11, 29].

3 METHODS
3.1 The Black Box Problem

Figure 1: The user interface of a black box problemwith four
terminals ©PhET Interactive Simulations

To measure individual’s problem-solving performance, we de-
signed a set of complex problems named "CCK black box" embed-
ded in the circuit construction kit of PhET Interactive Simulations
(http://phet.colorado.edu) [18]. The black box problem consists of
a black box hiding a circuit structure with four wires ("terminals")
protruding from the box (Figure 1). Solvers are asked to figure out
the circuit structure behind the black box by using electrical compo-
nents and measurement tools available in the simulation interface
to collect data and interpret them. The richness of the interactive
environment provides capabilities for evaluating problem-solving
practices far beyond what is possible with traditional paper-and-
pencil tests. The data log of problem solvers’ interaction with the
black box problem yields detailed information on their chosen prac-
tices.

The black box problem features all the characteristics of prob-
lems in science and engineering domains listed in a previous section
of the paper. Specifically, the problem requires scientific knowledge
about electrical circuits, including Ohm’s law, structural charac-
teristics of circuits, as well as characteristics of different electrical
components. The set of actions required for solving the problem is
not clear in advance. In addition, the problem is complex with multi-
ple parts and numerous possible solution paths. While the problem
is different from the typical assignment problems that students
encounter in science or engineering courses, its deep structure
resembles the authentic problem-solving endeavors of scientists
and engineers. They have to decide what data are needed, how to
collect the data effectively, how to interpret the collected data and
construct a model of the scientific / engineering phenomenon at
hand, and how to evaluate and test their solution [12, 13, 23, 24].

Although the black box problem is complex and difficult enough
to capture many important scientific problem-solving practices,
it is constrained enough be carried out within the limited time
(15 minutes) allocated in the study. Our goal is to make the black
box problem a challenging, but not overwhelming, task for all
participants. To this end, we first pre-screened study participants
to ensure that they possess the basic content knowledge about
electrical circuits required for solving the problem. Second, we
adjusted the difficulty level of the problem to be suitable for this
population by appropriately choosing the number of connections
and the type of electrical components (wire, battery or resistor) in
the black box. Generally speaking, the more connections behind
the black box, the harder the problem. Nearly all the participants
could meaningfully engage with the problem and come up with a
proposed solution. This allows us to evaluate their problem-solving
performance, even though most did not achieve a fully correct
answer in the allotted time.

3.2 Participants
74 undergraduate students (43 female, 31 male) were recruited for
this study via email listservs at a highly-selective R1 university.
To be included in the study, students needed to (a) have taken a
high school physics course (usually AP Physics) and/or a university
course covering electric circuits; and (b) not be advanced majors in
physics or electrical engineering. The inclusion criteria ensured that
participants have some, but not extensive, background in electric
circuits. Seven participants were excluded from this analysis: four

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

157

due to extremely low engagement level and/or lack of electricity
knowledge; one due to prior exposure to the black box problem,
and two freshmen who did not report any intended major.

The remaining 67 students were categorized into three groups
according to their reported major: quantitative natural science and
engineering ("quant S&E"), computer science ("CS"), and all oth-
ers ("nonquant") (Table 1). This distribution of majors is roughly
consistent with the school’s overall undergraduate student body
major distribution [16]. To examine the problem-solving differences
across major and year, the three categories of majors were further
split according to whether students are first-year or upper-level
(predominately second, third, and fourth year, with two fifth-year
students). First-year students would only be in their second quarter
of college classes and have very limited exposure to the courses in
a specific discipline, while upper-level students would have taken
at least a few courses in their major.

Table 1: Major and year of participants (N = 67)

Group CS Quant S&E Nonquant
N
(first-year)

11 7 11

N
(upper-level)

11 16 11

Majors CS Chemical Eng.
Chemistry
Civil Eng.
Electrical Eng.
Environmental
Systems Eng.
Management
Science & Eng.
Materials Science
& Eng.
Math
Mechanical Eng.
Product Design
unspecified Eng.

African American
Studies
Architectural De-
sign
Biology
Classics
Economics
Human Biology
International Re-
lations
Philosophy
Political Science
Psychology
Science Technol-
ogy & Society

In a one-on-one lab setting, students first read and signed a
consent form, then completed a short tutorial to become familiar
with features of the simulation. This included building a complete
circuit and being reminded of Ohm’s law (V =IR, or voltage = current
times resistance). Upon finishing the tutorial, students were given
15minutes to figure out the hidden circuit structure behind the black
box and record their solutions on paper (Figure 2). In the full study,
students received experimental interventions after attempting this
black box problem and proceeded to solve more black box problems
to study their improvements in problem-solving practices. Here
we only consider their performance on the first black box problem
before any intervention.

3.3 Solution Scores
The quality of students’ problem-solving performance is assessed by
a rubric measuring the degree of similarity between their solutions

Figure 2: Circuit behind the black box and samples of solu-
tions submitted by students

and the correct answer. The rubric evaluates a proposed solution in
three dimensions: 1) identification of the correct circuit structure;
2) identification of the correct components of the structure (e.g.,
two resistors); and 3) identification of the correct values of the
components (e.g., 15 ohms). A solution receives a score in each of
the three dimensions of zero for incorrect, one for partially correct
and two for correct, making the total score range from zero to six.

4 ANALYSIS AND RESULTS
4.1 Differences in Problem-solving

Performance
Overall, the black box was a challenging problem for most partici-
pants. Students’ solution scores ranged from 0 to 6, with a mean
of 2.67 and a standard deviation of 1.76. Only 18% of the solutions
received a score of 5 or higher. As shown in Figure 3, upper-level
CS students reached substantially higher solution scores than all
other groups. Non-parametric Mann-Whitney U tests were used in
lieu of t-tests to examine whether there were significant differences
in solution scores across the six groups because of the non-normal
distribution of solution scores (Shapiro-Wilk = 0.91, p = 0.0002). The
upper-level CS majors performed significantly better than upper-
level students in both Quantitative science and engineering and
Non-quant groups (CS upper vs. Quant upper: p = 0.05, CS upper
vs Non-quant upper: p = 0.008).

The best argument for a causal relationship between studying a
discipline and developing problem-solving skill would come from
the comparison of the differences of scores with grade level. Only
for CS was there an indication of a difference between first-year
and upper-level students. Although the sample size was small, the
difference in solution scores between CS first-year and upper-level
students was still marginally significant (CS first-year vs. CS up-
per: p = 0.09). In contrast, there was clearly no difference between
first-year and upper-level students in non-CS majors (Quant first-
year vs. Quant upper: p = 0.97, Non-quant first-year vs. Non-quant
upper: p = 0.87). These results suggest that only in CS major are
students learning something that improves their problem-solving
performance.

A possiblemundane explanation for the change in solution scores
with level could be that upper-level CS students have taken courses

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

158

Figure 3: Average solution scores by major and year with er-
ror bars representing standard error of the mean

in which they learn more about electric circuits. This can be ruled
out for two reasons. First, for this experiment, we selected our sam-
ple and designed the tutorial session to ensure that participants
have comparable knowledge about circuits, further minimizing the
effects of physics content knowledge. Second, there was no signifi-
cant difference between Quant S&E and CS upper-level students
in terms of their amount of coursework covering electric circuit
(Fisher’s exact test, p = 0.66).

We conclude that CS students probably have learned problem-
solving practices in the study of their discipline and were able to
apply these practices in solving the black box problem. Yet the na-
ture and details of the problem-solving practices involved remains a
question. In the next section, we present an examination of the iden-
tified problem-solving practices listed above, which contributed to
CS students’ problem-solving success.

4.2 Differences in Problem-solving Practices
To better understand the problem-solving processes that partic-
ipants went through, a JSON file of their interaction data with
the black box problem was obtained from the developers of the
simulation platform. The file was first parsed into a time-stamped
sequence of actions taken by individual participants when investi-
gating the circuit configuration behind the black box (e.g., at Time
0: connect a wire to Terminal 1, at Time 1: connect a battery to Ter-
minal 3). The Python NetworkX package [9] was then employed to
analyze the structural properties of the circuits built by participants
based on their time-sequenced actions. Four types of circuits were
identified (Figure 4):

(1) simple circuits connecting two terminals (i.e., wires protrud-
ing from the black box)

(2) complex circuits connecting more than two terminals at a
time

(3) naive circuits connecting only one terminal
(4) external circuits built separately from the black box
Drawing on existing literature in computational thinking and

our own research on scientific problem solving [23], we highlight
the following two practices: problem decomposition and compre-
hensive data collection. The interaction data log provided evidence
as to the quality of the these two practices for each student.

Figure 4: Different types of circuits built by students and
their respective NetworkX representation in Python

ProblemDecomposition For complex problems, an effective problem-
solving practice is to break down the problem into smaller sub-
problems that are easier to solve. In the context of the black box
problem, the practice of problem decomposition is manifested in
the construction of simple circuits connecting only two terminals at
a time. The building of complex circuits, which connects more than
two terminals, is evidence of poor decomposition practice as the
resulting data from such circuits is far more difficult to interpret.
A decomposition index was calculated based on the percentage
of simple circuits built (out of the total number of circuits built)
for individual students (Table 2). Linear regression analysis was
conducted to examine the relationship between the decomposition
index and a categorical variable combining year and major. The
year-major variable had the following six levels: first-year nonquant
(baseline), upper-level nonquant, first-year quant S&E, upper-level
quant S&E, first-year CS, and upper-level CS. Upper-level CS stu-
dents significantly outperformed first-year nonquants in problem
decomposition (p = 0.03), while there was no significant difference
between the other groups and first-year nonquants (upper-level

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

159

nonquant: p = 0.24, first-year quant S &E: p = 0.23, upper-level
quant S &E: p = 0.15, first-year CS: p = 0.13).

Table 2: The Decomposition Index for different year & ma-
jors (percentage of simple circuits built)

first-year upper-level
CS 78% 89%

Quant 76% 75%
Nonquant 56% 73%

Comprehensive Data Collection Given the interconnected nature
of the circuit configuration behind the black box, students need to
collect data from all six pairs of terminals in order to fully investi-
gate the problem. To measure the comprehensiveness of data collec-
tion, we assigned a binary variable "comprehensive_data_collection"
to each student indicating whether they have constructed simple
circuits between each of the six pairs of terminals. Table 3 presents
the percentage of students who collected all the data in each ma-
jor & year category. Logistic regression analysis was used to test
the effects of major and year on the likelihood of comprehensive
data collection. The upper-level CS students were the only group
who significantly outperformed the first-year nonquant students in
comprehensive data collection (p = 0.02). The difference between
first-year nonquant and upper-level quant S&E student was mar-
ginal (p = 0.06), and insignificant for the other groups (upper-level
nonquant: p = 1.00, first-year quant S &E: p = 0.10, first-year CS: p
= 0.18).

Table 3: Percentage of students practicing comprehensive
data collection for different year & majors

first-year upper-level
CS 45% 73%

Quant 57% 50%
Nonquant 18% 18%

Problem decomposition and comprehensive data collection are
both practices that we have identified as important problem-solving
practices in our previous work, and they are related to the skills
emphasized in the computational thinking literature. As discussed
below, these practices are explicitly called upon in many program-
ming assignments, so it is plausible that CS students improve their
problem-solving practices as they take multiple courses involving
programming.

5 DISCUSSION
The results presented in this paper support the crosscutting na-
ture of computational thinking, and provide initial evidence that
computational thinking skills that are practiced in CS courses im-
prove problem-solving in other contexts. What makes computer sci-
ence education a powerful context for the development of problem-
solving skills? To answer this question, we examined the instruc-
tional materials and homework assignments of several CS courses,

and we identified a few particular features. First, CS instructional
materials often include explicit teaching and modeling of effective
problem-solving practices. For instance, students are taught to thor-
oughly cover the search space and avoid off-by-one errors when
they learn to use loop statements to solve the Fencepost problem
[4]. Furthermore, CS programming assignments are highly effec-
tive in helping students develop specific problem-solving practices.
Assignments of introductory programming courses commonly take
the form of creating an entire program/game "from scratch". Stu-
dents are expected to come up with appropriate requirements, con-
straints and assumptions to make the goal of the problem better
specified. These assignments also require decomposing the problem
into parts/subproblems that are easier to solve, often with explicit
guidance on how to do this. The following example (Table 4) illus-
trates how problem decomposition is expected and modeled for
students in an introductory CS class assignment to create the classic
arcade game of Breakout [21]:

Table 4: An excerpt from a programming assignment mod-
eling problem decomposition

Success in this assignment will depend on breaking up the
problem into manageable pieces and getting each one working
before you move on to the next. The next few sections describe
a reasonable staged approach to the problem:

(1) set up the bricks
(2) create the paddle
(3) create a ball and get it to bounce off the walls
(4) check for collisions
(5) finish up

The interactive programming environments also enable students to
practice collecting and interpreting real-time data and iteratively
construct and test proposed solutions. When debugging a program,
for instance, students must learn to seek and interpret various
outputs of the program in order to determine what is not working
and how it could be fixed. In this way, CS programming assignments
are explicitly and repeatedly supporting students developing good
problem-solving practices that we see are relevant to solving a wide
variety of complex problems.

6 CONCLUSION
In this study, we used an interactive simulation to examine the
problem-solving performance of undergraduate students. A post
hoc analysis indicates that upper-level CS students possess better
problem-solving performance than students in other majors as well
as first-year CS students. Unlike CS majors, non-CS majors show
no problem-solving improvements from first-year to upper-level.
This supports the causal link between taking CS courses and im-
proved problem-solving performance. This interpretation is further
supported by analyses of specific problem-solving practices, show-
ing that the same practices regularly required in CS assignments
are also valuable for solving the CCK black box problem. The re-
sults support Wing’s claim that computational thinking "represents
a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use"[31].

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

160

The nature of computer science assignments contrasts with
many procedurally "well-structured" problems used in other STEM
courses[26, 30]. Those "well-structured" problems short-circuit
many of the identified authentic problem solving practices and
the decisions they involve [14]. In these problems, all information
needed to solve the problem is specified in the problem statement,
and students simply have to choose one from a limited number of
rules and principles to plug in the numbers [10]. An over-reliance
on these problems in education leaves students ill-prepared for solv-
ing problems that they will encounter in the real world. However,
this does not have to be the case. Just as CS programming assign-
ments help students learn and practice computational thinking
and good problem-solving practices, assignments in other STEM
courses can be changed to make effective problem-solving practices
explicit and required. This would likely improve students general
problem-solving performance.

We note there are several limitations with this work. First, as we
mentioned above, this study was not originally designed to estab-
lish causal relation between studying CS discipline and developing
problem-solving skills. Future studies should more directly exam-
ine the causal relation between CS education and problem-solving
performance. Longitudinal studies that track problem-solving of
CS and non-CS students over the course of their undergraduate
education would be better suited for this goal. Second, not all prac-
tices used in CS assignments will be applicable more generally, and
similarly, for most other types of problems there are likely to be
some practices that are not helped by a CS education. Those are
likely to be practices that are heavily dependent on the knowledge
in the field, something our black box problem was explicitly created
to minimize. Third, the number of participants in the various cate-
gories is obviously small, and the participants are selected from a
highly selective institution, which limits the generalization of such
claims across majors and broader student populations. In addition
to expanding the study populations, future work should examine
more carefully the effects of background knowledge (i.e. electricity
and circuits) on CCK black box problem performance and compen-
sate for this in studying the problem-solving of students with a
broader range of backgrounds. Finally, although we see that the
practices effective for solving the black box problems are useful
in solving other types of problems [23], the evidence that such
practices are broadly transferable is still limited. Nevertheless, this
work provides encouraging preliminary results on the impacts of
different forms of instruction on broadly useful problem-solving
practices.

ACKNOWLEDGMENTS
This research was supported by the Gordon and Betty Moore Foun-
dation.

REFERENCES
[1] ABET. 2000. Criteria for Accrediting Engineering Programs. Retrieved July 30,

2019 from https://www.abet.org/accreditation/accreditation-criteria/
[2] Cynthia J Atman, Robin S Adams, Monica E Cardella, Jennifer Turns, Susan

Mosborg, and Jason Saleem. 2007. Engineering design processes: A comparison
of students and expert practitioners. Journal of engineering education 96, 4 (2007),
359–379.

[3] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the 2012

annual meeting of the American Educational Research Association, Vancouver,
Canada, Vol. 1. 25.

[4] CodeHS. [n. d.]. Fencepost Problem. Retrieved July 30, 2019 from https:
//codehs.com/glossary/term/38

[5] National Research Council et al. 2012. A framework for K-12 science education:
Practices, crosscutting concepts, and core ideas. National Academies Press.

[6] Peggy Cuevas, Okhee Lee, Juliet Hart, and Rachael Deaktor. 2005. Improving
science inquiry with elementary students of diverse backgrounds. Journal of
Research in Science Teaching: the Official Journal of the National Association for
Research in Science Teaching 42, 3 (2005), 337–357.

[7] Karl Duncker and Lynne S Lees. 1945. On problem-solving. Psychological mono-
graphs 58, 5 (1945), i.

[8] Shuchi Grover and Roy Pea. 2013. Computational thinking in K–12: A review of
the state of the field. Educational researcher 42, 1 (2013), 38–43.

[9] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[10] David H Jonassen. 2000. Toward a design theory of problem solving. Educational
technology research and development 48, 4 (2000), 63–85.

[11] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32–37.

[12] Richard Lehrer and Leona Schauble. 2007. Scientific thinking and science literacy.
Handbook of child psychology 4 (2007).

[13] Richard Lesh and Helen M Doerr. 2003. Foundations of a models and modeling
perspective on mathematics teaching, learning, and problem solving. Beyond
constructivism: Models and modeling perspectives on mathematics problem solving,
learning, and teaching (2003), 3–33.

[14] Nathan JMcNeill, Elliot P Douglas, Mirka Koro-Ljungberg, David J Therriault, and
Ilana Krause. 2016. Undergraduate students’ beliefs about engineering problem
solving. Journal of Engineering Education 105, 4 (2016), 560–584.

[15] Allen Newell, Herbert Alexander Simon, et al. 1972. Human problem solving.
Vol. 104. Prentice-Hall Englewood Cliffs, NJ.

[16] Stanford Registrar’s Office. 2018. Enrollment Statistics. https://registrar.stanford.
edu/everyone/enrollment-statistics/enrollment-statistics-2018-19

[17] Honor J Passow and Christian H Passow. 2017. What competencies should
undergraduate engineering programs emphasize? A systematic review. Journal
of Engineering Education 106, 3 (2017), 475–526.

[18] Katherine Perkins, Wendy Adams, Michael Dubson, Noah Finkelstein, Sam Reid,
Carl Wieman, and Ron LeMaster. 2006. PhET: Interactive simulations for teaching
and learning physics. The physics teacher 44, 1 (2006), 18–23.

[19] George Polya. 2004. How to solve it: A new aspect of mathematical method. Number
246. Princeton university press.

[20] Frederick Reif. 1995. Understanding basic mechanics. Understanding Basic
Mechanics, by Frederick Reif, pp. 288. ISBN 0-471-11624-6. Wiley-VCH, January
1995. (1995), 288.

[21] Eric Roberts and Jerry Cain. 2017. Assignment3 Breakout! Retrieved July 30,
2019 from https://web.stanford.edu/class/cs106j/handouts/18-Assignment3.pdf

[22] Moshe F Rubinstein. 1974. Patterns of problem solving. Prentice-Hall.
[23] Shima Salehi and Carl Wieman. 2019. Science in Practice: Improving Scientific

Problem-solving through Reflection. Ph.D. Dissertation. Stanford University, Stan-
ford, CA.

[24] Christina V Schwarz, Brian J Reiser, Elizabeth A Davis, Lisa Kenyon, Andres
Achér, David Fortus, Yael Shwartz, Barbara Hug, and Joe Krajcik. 2009. Develop-
ing a learning progression for scientific modeling: Making scientific modeling
accessible and meaningful for learners. Journal of Research in Science Teaching:
The Official Journal of the National Association for Research in Science Teaching
46, 6 (2009), 632–654.

[25] Sheri Sheppard, Anne Colby, Kelly Macatangay, and William Sullivan. 2007.
What is engineering practice? International Journal of Engineering Education 22,
3 (2007), 429.

[26] Namsoo Shin, David H Jonassen, and Steven McGee. 2003. Predictors of well-
structured and ill-structured problem solving in an astronomy simulation. Journal
of research in science teaching 40, 1 (2003), 6–33.

[27] NGSS Lead States. 2013. Next Generation Science Standards: For States, By States.
Retrieved July 30, 2019 from http://www.nextgenscience.org/

[28] Paul S Steif, Jamie M Lobue, Levent B Kara, and Anne L Fay. 2010. Improving
problem solving performance by inducing talk about salient problem features.
Journal of Engineering Education 99, 2 (2010), 135–142.

[29] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. Defining computational thinking for mathe-
matics and science classrooms. Journal of Science Education and Technology 25, 1
(2016), 127–147.

[30] Kristen Bethke Wendell, Christopher G Wright, and Patricia Paugh. 2017. Re-
flective decision-making in elementary students’ engineering design. Journal of
Engineering Education 106, 3 (2017), 356–397.

[31] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

161

https://www.abet.org/accreditation/accreditation-criteria/
https://codehs.com/glossary/term/38
https://codehs.com/glossary/term/38
https://registrar.stanford.edu/everyone/enrollment-statistics/enrollment-statistics-2018-19
https://registrar.stanford.edu/everyone/enrollment-statistics/enrollment-statistics-2018-19
https://web.stanford.edu/class/cs106j/handouts/18-Assignment3.pdf
http://www.nextgenscience.org/

	Abstract
	1 Introduction
	2 Background
	3 Methods
	3.1 The Black Box Problem
	3.2 Participants
	3.3 Solution Scores

	4 Analysis and Results
	4.1 Differences in Problem-solving Performance
	4.2 Differences in Problem-solving Practices

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

