
Challenges with Learning to Program and Problem Solve: An
Analysis of Student Online Discussions

Paul Piwek
∗

Simon Savage
∗

Paul.Piwek@open.ac.uk

S.A.Savage@open.ac.uk

School of Computing and Communications

The Open University

Milton Keynes, United Kingdom

ABSTRACT
Students who study problem solving and programming (in a lan-

guage such as Python) at University level encounter a range of

challenges, from low-level issues with code that won’t compile to

misconceptions about the threshold concepts and skills. The current

study complements existing findings on errors, misconceptions,

difficulties and challenges obtained from students after-the-fact

through instruments such as questionnaires and interviews. In our

study, we analysed the posts from students of a large cohort (~1500)

of first-year University distance learning students to an online

‘Python help forum’ - recording issues and discussions as the stu-

dents encountered specific challenges. Posts were coded in terms of

topics, and subsequently thematically grouped into Python-related,

problem solving/generic programming related, and module spe-

cific. We discuss the set of topics and rank these in terms of the

number of forum discussions in which they occur (as a proxy for

their prevalence). The top challenges we identified concern student

understanding and use of a mix of programming environments (in

particular, Python IDLE for offline programming and CodeRunner

for programming quizzes) and code fragment problems. Apart from

these, Python-specific topics include, among others, collections,

functions, error messages, iteration, outputting results, indentation,

variables and imports. We believe that the results provide a good

insight into the challenges that students encounter as they learn
to program. In future work we intend to study the discussions in

further detail in terms of theories of conceptual change.

CCS CONCEPTS
• Social andprofessional topics→Computing education;Com-
putational thinking; Software engineering education;Adult education;
• Applied computing→ Distance learning; E-learning.

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00

https://doi.org/10.1145/3328778.3366838

KEYWORDS
programming, Python, problem solving, online student discussions,

challenges, misconceptions, threshold concepts and skills

ACM Reference Format:
Paul Piwek and Simon Savage. 2020. Challenges with Learning to Program

and Problem Solve: An Analysis of Student Online Discussions. In The 51st
ACM Technical Symposium on Computer Science Education (SIGCSE ’20),
March 11–14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3328778.3366838

1 INTRODUCTION
The introduction to a text-based procedural programming language

poses a range of challenges for students, especially when this is

done in a distance learning environment. Introducing students to

programming (and problem solving) is generally acknowledged as

difficult or at least perceived as a significant challenge [4, 5].

Students encounter threshold concepts and skills [9, 14, 15] and

can get entangled in misconceptions [3, 12]. These issues may

be amplified in distance and, more specifically, online learning

environments, which have gained ground not only in the form of

moocs and courses offered by online education providers, but also

in more traditional teaching establishments that apply the ‘flipped

classroom’ approach [1].

The purpose of the current study is to examine the challenges

that first year distance learning students face when learning a pro-

cedural programming language such as Python over the course of

a 21-week computing and IT course which includes 6 weeks on

problem solving and programming with Python. So far, much of

the evidence on students’ challenges is based on retrospective sur-

veys/interviews with students and instructors, and analysis of stu-

dent assessment results or student-authored concept maps [12, 15].

To our knowledge, no results draw on large data sets of contempo-

rary student discussions in their own language around challenges.

The current study provides an additional perspective by examining

the evidence from a large collection of student online discussions

as they learn to program.

In Section 2, we summarise research methods and findings from

the literature on the challenges faced by students when learning to

program. Section 3 introduces the methodology of the current study,

which uses (online) discussions that took place as students encoun-

tered and struggled with specific challenges. Section 4 presents the

results of our study, grouping challenges by topic and, at a higher

level, into themes. In Section 5 we discuss our findings. Finally,

https://doi.org/10.1145/3328778.3366838
https://doi.org/10.1145/3328778.3366838

our conclusions and suggestions for further work are presented in

Section 6.

2 RELATEDWORK
Awide range of instruments have been used to study the challenges

that students face when learning to program. Perhaps the most

direct evidence comes from studies that analyse compiler error

messages when students attempt to execute their code. [8] found

that such errors (in Java) can be classified into different types with

good reliability. Errors found this way can be ordered by frequency

and therefore provide some indication of their prevalence. However,

the error types are relatively low-level – e.g. the top five reported

by [8] are: variable not declared, colon missing, incorrectly written

variable name, invalid syntax, method naming incorrect.

In terms of [12] most of these errors go back to difficulties in

syntactic knowledge. However, [12] identify two further levels at

which misconceptions can arise: the conceptual and strategic levels.

E.g., at the conceptual level a student may fail to understand that

a variable can only hold one value at a time. Strategic knowledge

or know how concerns expertise on how to go from a problem

to an implemented solution for that problem. This includes for

instance problem decomposition, development of an algorithm and

implementation of this algorithm in a specific language, whilst

testing and debugging the code as it is developed.

Within computing, specific attention has been given to ‘Thresh-

old concepts’, originally proposed by [9] as transformative, inte-

grative, irreversible, potentially troublesome and often indicating

the boundaries of a discipline. Early research identified for instance

objected orientation and pointers as threshold concepts [2]. More

recently, [15], in their literature review, enumerate a long list of

further concepts that have since been identified, from data abstrac-

tion and design patterns to polymorphism and program-memory

interaction. Additionally, [14] highlight that not only concepts, but

also skills, can play the role of thresholds in computing.

[15] enumerate the instruments that have been used so far for

collecting data on threshold concepts. They distinguish evidence

from faculty and students. Much of the evidence focuses on after-

the-fact data collection through surveys and interviews. Similarly,

work building concept inventories (e.g. [3], a concept inventory is a

multiple-choice questionnaire where each distractor answer maps

to a specific student misconception) typically relies on question-

naires to gather initial evidence on where students face difficulties

in understanding concepts.

[17] argue that collecting evidence from students on where they

experienced difficulties in the past can be unreliable, with students

struggling to recall and recount specific occasions on which chal-

lenges were encountered. This suggest that records of challenges

as they occur may be more informative on actual problems that

students encounter.

As described by [10], specific challenges can arise in distance

learning contexts. These are related to the type of students (distance

learning students often study part-time whilst being in full-time

employment) and reliance on technology to allow students to com-

municate and collaborate with each other.

3 METHODOLOGY
Our research question is: What are the challenges that first-year
distance learning students face when learning to program in Python?
Rather than rely on post-hoc accounts of what students remember

about the challenges they encountered, we examine records of

discussions around the challenges as they emerged for our students.
The results in this study concern the cohort that took Introduction

to computing and information technology 2 (henceforth TM112) at

the UK’s Open University from April to September 2018. A further

detailed description of the module is provided elsewhere (see [11]).

The TM112 module included a dedicated online ‘Python help

forum’ where students could discuss challenges with their study of

Python. The online forum relied primarily on peer support (enabled

partly by a broad range of backgrounds among our students, from

absolute novices to programming experts seeking a qualification).

We also observed that students were particularly effective in pro-

viding emotional support and motivating each other, when they

faced difficulties. In addition to the peer support, there was a team

of moderators (three) who monitored the forum discussions and

would steer the discussion if needed.

3.1 Student demographics
We studied the 2018 TM112 cohort of about 1500 students. More

than half of students were between 25 and 39 years old; 10 students

were over 65 years old; approximately 200 were under 21. The

female to male ratio is 24 to 76. Race/ethnicity of students (rounded):

89% of students were White, 2% Black, 3% Asian, 1% Mixed, 1%

Other and 3% did not specify. 19% of students declared a disability.

16% of students are classified as low socio-economic status by the

university, with a further 5% being unknown.

TM112 is the second module for most Computing and Informa-

tion Technology undergraduate students at the Open University

and is also taken by some students on other pathways, such as Data

Science. Most students will have completed a predecessor module

Introduction to computing and information technology 1 (TM111)

[18] which introduces students to University level study, a range

of computing and IT topics and basic programming in a visual

programming language.

All students (both those who completed and those who did not

complete the module) are surveyed at the end of the module (before

they receive their results). The response rate for the survey for the

April 2018 cohort was 16%. Most students, over 90% agreed with

the statement ‘I was satisfied with the quality of the module’ (and

less than 5% disagreed). About 80% agreed that ‘My studies have

helped me develop my self-confidence’, (less than 4% disagreed).

Also, more than 90% agreed that ‘It was obvious how the module

materials related to the assessed tasks on this module’, (less than

3% disagreed).

3.2 Instructor demographics
The online ‘Python help’ forum was moderated by two tutors (male

and female). Additionally, the course leader (male) monitored the

forums and supported the two tutors. All three staff involved are

white and have, each individually, over 20-years of computing and

Information Technology teaching experience.

3.3 Programme components
TM112 runs over 21 study weeks (300 hours in total for 30 study

credits). Six of these weeks are on ‘Problem solving with Python’:

Week 2 Sequence, selection, variables, lists and (nested) itera-

tion, Python Turtles library.

Week 4 Formula problems, case analysis, Booleans, testing,

documentation, pattern for generating a sequence.

Week 7 Generating lists, Reduce (count and aggregate), Search

(finding a value/the best value), Combining patterns.

Week 9 Python functions (and automated testing of functions

with assert), Python objects and names.

Week 10 Worked example of analysis, with Python, of Office

for National Statistics (ONS) health and wellbeing dataset.

Week 15 Worked example implementing a simple flashcards

program for the module glossary using Python dictionairies,

interactive loops, the random library and reading from a file.

During each week of TM112, students work with printed mate-

rials and online activities and during some weeks attend tutorial

events (face-to-face or online). At the end of each week, there is a

formative quiz. To encourage students to engage with the quizzes,

they are rewarded with a small number of marks for including

evidence of engagement with the questions in their assignments.

Marks are for the evidence of engagement and personal narra-

tive/reflection on their engagement with the quiz questions. Since

the quiz questions were not summatively assessed, students were

also encouraged to discuss their attempts and answers with their

peers on the module forums. For the weeks covering Python, see

above, they are referred specifically to the Python help forum.

Students were made aware of the forums through several routes.

Initial contact from their tutors mentioned the forums and that it is

permissible to discuss quiz questions in them. This latter point was

reinforced in the introductory video that students watch during

their first week of study. Students were also encouraged to explore

the module website, including the forums, during that first week

and the ‘Python Help’ contained a pinned post explaining that it

is okay to discuss quiz questions in it. Students who posted in less

appropriate forums were redirected to the correct forum. Forums

consist of a series of discussions, with each discussion consisting

of one or more posts.

3.4 Data analysis methods
Our raw data was the full collection of posts to the Python help

forum. We extracted the post data from the forum site and stored

it in a spreadsheet. Information which could identify participants

was anonymised. One or more topics were assigned to each post,

providing a descriptive label for the content of the post (i.e. during

the First Cycle coding we applied Descriptive coding [13]). In the

first instance, all coding was carried out by one of the authors and

subsequently validated by the other author. On some occasions,

some topics were combined. Coding at the level of individual posts

means that some discussions encompassed multiple topics. A sec-

ond thematic grouping of the topic labels was carried out (as part of

the Second Cycle coding [13]). This led us to a division of topics into

three higher level themes: Python related, problem solving/generic

programming related, and module specific. The top ten of topics

that were identified for the first two themes are shown in Tables 1

and 2 together with quantitative information that emerged based

on the qualitative coding.

3.5 Scope and limitations
There is a limitation with the core data in that it doesn’t record the

engagement of non-speakers. This means that we can’t accurately

measure how individual discussions reverberatedwithin the student

community. We can, however, be confident that discussions are

being read with some potentially attracting hundreds of readers.

The methodology does have other potential limitations. The

manual nature of the coding process means that it may be biased by

the opinion of the encoder’s choice of a single topic and turn-type

per turn. This is somewhat mitigated by team members review-

ing the coding process to ensure consensus, although inter-rater

reliability scores were not calculated.

Furthermore, the ‘Python Help’ forum’s primary purpose was

to support students in their understanding of Python concepts

and problem-solving concepts raised in TM112 (see above) with

the tools that were available in TM112. Topics which are beyond

TM112 are unlikely to be raised, thus skewing the results in favour

of TM112-related concepts. Similarly, the student cohort in ques-

tion was constituted primarily of part-time distance learning under-

graduate computing and information technology students, whose

profile is likely to differ from, for instance, full-time computer sci-

ence students. For many of our students, TM112 helps to decide

the subsequent study pathway, with options ranging from com-

puter science (with a significant programming and theoretical CS

component) to information and communications technology.

The ‘Python Help’ forum is unlikely to be the students’ only

point of support and we could reasonably expect them to utilise

their tutors, external social network facilities and specialist websites

for support. It is not possible to quantify the effect of this on our

results.

3.6 Data collection and analysis approval
All data collection and analysis complied with approval processes

and methods (regarding both ethics of research with human par-

ticipants/students and data protection) at the University, ensuring

participant privacy, confidentiality, and protection. Neither partic-

ipants nor researchers received monetary or gift incentives. The

data analysis was financially supported through a grant from the

UK’s Institute of Coding.

4 RESULTS
The Python help forum contained 178 discussions with a total of

1430 posts. The encoding process identified 63 topics within the

forum posts: 29 Python-related, 19 on problem solving and general

programming skills, and 15 focusing on module-specific questions

and issues. Tables 1 and 2 show the top ten Python and problem-

solving/generic topics. For the full set of topics, their definitions

and example snippets from the forum discussions, see [16].

The IDE was an issue in 40 discussions (22%). Prominent in these

was confusion between how to use the IDLE Shell and the Editor.

For example, a student experienced a syntax error. It transpired

that they had authored their code in the Shell, saved it as a .py file

and then tried opening it in the Editor. Apart from the Editor and

Table 1: Statistics for top ten Python-related topics

Topic Number of Min. discus. Max. discus. Rounded mean Rounded median

discussions size (posts) size (posts) discus. size (posts) discus. size (posts)

IDE 40 1 57 10 7

Collections 21 4 57 13 8

Functions 16 2 31 14 12

Error messages 15 1 57 12 10

Iteration 14 2 39 11 9

Outputting results 12 2 33 14 9

Indentation 10 3 16 8 6

Variables 8 3 57 15 8

Imports 7 7 17 12 11

If structures 5 2 30 11 5

Table 2: Statistics for top ten problem-solving/generic topics

Topic Number of Min. discus. Max. discus. Rounded mean Rounded median

discussions size (posts) size (posts) discus. size (posts) discus. size (posts)

Code fragment problem 73 1 57 9 6

Bug finding 21 2 20 8 5

Learning Python 15 6 57 16 14

Maths 10 2 57 12 7

Code review 7 7 57 24 21

Problem-solving workflow 6 1 30 17 17

Code explanation 5 5 30 13 8

Following instructions 5 10 18 13 12

Patterns 3 7 12 10 10

Algorithm 2 10 36 23 23

Shell, students also wrote code in the browser with CodeRunner

[7]. In particular, CodeRunner was used for the module’s forma-

tive quizzes involving programming questions. An issue here was

students wanting to test their answers in IDLE prior to submitting,

a reasonable approach since the quiz penalises incorrect answers.

However, they hadn’t appreciated that the quiz questions may have

underpinning supporting code. Generally, some students found it

challenging to fully grasp the purpose and details of authoring code

using these three different tools.

For the problem solving/generic topics, in terms of number of dis-

cussions, code fragment problems were most prevalent. Typically,

these posts initiated a discussion where students knew they needed

support, but in many cases the information provided was insuffi-

cient to receive targeted support and indicated that they may not

have the language, confidence, or knowledge to seek that support.

For example:

‘hello all would be grateful for advice i am practising

python anf from the book have just typed in program

2:4 but when running programme it gives me error

code saying traceback but have followed completely

to process so should be no problems please see dia-

gram’

Unfortunately, the diagram wasn’t provided despite requests

from other forum contributors. Another student starts with:

‘Just catching upwith the quiz, but can’t see where I’m

goingwrong; am just getting themoderate earthquake

response >= line 6 (haha.). Any direction would be

great. (...)’

The student who posted this contribution did include, with their

posting, a screen capture with part of their code, as shown in Figure

1, and the feedback from the CodeRunner programming environ-

ment.

5 DISCUSSION
For reasons of space we have only described first-ranked topics for

two themes (with further detail available in [16]) – nevertheless, it

is notable that in terms of number of discussions they outnumbered

the second-listed items by a factor of 2 and 3, respectively (with

frequency of further lower-ranked topics also quickly decreasing).

When we compare our results with those in the literature, we

find a significant degree of agreement. For instance, even though

[3] focuses on misconception relating to Java, there is a definite

similarity with our results: e.g., their Table 4 includes topics such

as returning values, calling functions, iteration, conditionals and

maths which match with ones found in our study.

Many of our Python specific topics seem to be under ‘Basic

Programming Principles’ in Table 1 of the literature review on

threshold concepts by [15]. In our Python-specific top ten, functions

Figure 1: Example of a student forum contribution of a screen capture as part of a code fragment problem

and outputting results resonate with the identification of function-

related threshold concepts in [6].

At the thematic level, [12]’s syntactic and conceptual levels (vari-

ables, conditional expressions, loops, etc.) correspond with our

Python-specific topics. Their strategic level corresponds to our

Problem solving/generic topic level.

Despite this significant overlap between our findings and those

in the literature, as we already saw, our top-ranked items are not

in any of the results reported previously. Of course, our study has

certain limitation and a specific scope (as described in Section 3), but

nevertheless some preliminary implications can be drawn relating

to these top-ranked challenges. Firstly, we would like to highlight

that conceptual issues can also emerge in relation to tool use (such

as IDEs). Early on in TM112, the focus wasmostly on the how, rather

than the underlying conceptual understanding of code execution.

This has been amended in a subsequent presentation of TM112 with

informal observations suggesting a positive effect. A note of caution

also emerges from our findings in relation to the recommendation

by Qian and Lehman [12] to make more use of existing tools. Our

results did suggest that students can find it challenging to cope

with several code authoring tools when learning to program.

With regards to problem solving skills, we observed that some

students struggle to solicit help, suggesting they need support early

on with formulating questions about their own code. For instance,

students could be encouraged to always include the code they wrote,

expected output and actual output (rather than a general comment

stating their code doesn’t work).

6 CONCLUSION AND FURTHERWORK
Our methodology, which differs in significant ways from most ex-

isting work on challenges for beginning programmers, has resulted

in findings that confirm many of the misconceptions and thresh-

old concepts that have been identified. However, the top-ranked

challenges in our study are not found in the previous literature.

This suggests further investigation, especially into tools used with

beginning programmers (and the potential benefits but also down-

sides) and ways to help students better express problems with their

code. We agree with Qian and Lehman [12] that a deeper under-

standing will require studying the challenges that are posed at a

more detailed level in terms of conceptual change theories. In future

work, we aim to further explore our data set of forum discussions,

performing an in-depth analysis of the learning and conceptual

change that occurs in the course of the discussions.

ACKNOWLEDGMENTS
This work has been completed with support from The Institute of

Coding, an initiative funded by the UK Office for Students.

REFERENCES
[1] Jacob Lowell Bishop, Matthew A Verleger, et al. 2013. The flipped classroom:

A survey of the research. In ASEE national conference proceedings, Atlanta, GA,
Vol. 30. 1–18.

[2] Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan Erik Moström, Mark

Ratcliffe, Kate Sanders, and Carol Zander. 2007. Threshold Concepts in Computer

Science: Do They Exist and Are They Useful?. In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’07). ACM, New

York, NY, USA, 504–508. https://doi.org/10.1145/1227310.1227482

[3] Ricardo Caceffo, Pablo Frank-Bolton, Renan Souza, and Rodolfo Azevedo. 2019.

Identifying and Validating Java Misconceptions Toward a CS1 Concept Inventory.

In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’19). ACM, New York, NY, USA, 23–29. https:

//doi.org/10.1145/3304221.3319771

[4] Chris Dobbyn and Frances Chetwynd. 2014. Transforming retention and

progression in a new Level 1 course. Retrieved August 29, 2019 from

http://www.open.ac.uk/about/teaching-and-learning/esteem/sites/www.open.

ac.uk.about.teaching-and-learning.esteem/files/files/ecms/web-content/2014-

05-C-Dobbyn-and-F-Chetwynd-final-report-May-14.pdf eSTEeM project Final

Report.

[5] Tony Jenkins. 2002. On the Difficulty of Learning to Program. In Proceedings of
the 3rd Annual HEA Conference for the ICS Learning and Teaching Support Network.
1–8.

[6] Maria Kallia and Sue Sentance. 2017. Computing Teachers’ Perspectives on

Threshold Concepts: Functions and Procedural Abstraction. In Proceedings of
the 12th Workshop on Primary and Secondary Computing Education (WiPSCE ’17).
ACM, New York, NY, USA, 15–24. https://doi.org/10.1145/3137065.3137085

[7] Richard Lobb and Jenny Harlow. 2016. Coderunner: A tool for assessing computer

programming skills. ACM Inroads 7, 1 (2016), 47–51.
[8] Davin McCall and Michael Kölling. 2014. Meaningful Categorisation of Novice

Programmer Errors, In Proceedings of the 2014 IEEE Frontiers in Education (FIE)

Conference. Proceedings - Frontiers in Education Conference, FIE 2015. https:

//doi.org/10.1109/FIE.2014.7044420

[9] Erik Meyer and Ray Land. 2003. Thresholds Concepts and Troublesome Knowl-

edge: Linkages to Ways of Thinking and Practising within the Disciplines.

[10] Christian Murphy, Dan Phung, and Gail Kaiser. 2008. A distance learning ap-

proach to teaching eXtreme programming. ACM SIGCSE Bulletin 40, 199–203.

https://doi.org/10.1145/1384271.1384325

[11] Paul Piwek, Michel Wermelinger, Robin Laney, and Richard Walker. 2019. Learn-

ing to program: from problems to code. In Third Conference in Computing Edu-
cation Practice (CEP). Association for Computing Machinery (ACM), Durham,

United Kingdom. http://oro.open.ac.uk/58202/

[12] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other

Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages. https://doi.org/10.1145/

3077618

[13] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage,

London.

[14] Kate Sanders, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan Erik

Moström, Lynda Thomas, and Carol Zander. 2012. Threshold Concepts and

Threshold Skills in Computing. In Proceedings of the Ninth Annual International
Conference on International Computing Education Research (ICER ’12). ACM, New

York, NY, USA, 23–30. https://doi.org/10.1145/2361276.2361283

[15] Kate Sanders and Robert McCartney. 2016. Threshold Concepts in Computing:

Past, Present, and Future. In Proceedings of the 16th Koli Calling International
Conference on Computing Education Research (Koli Calling ’16). ACM, New York,

NY, USA, 91–100. https://doi.org/10.1145/2999541.2999546

[16] Simon Savage and Paul Piwek. 2019. Full report on challenges with learning

to program and problem solve: an analysis of first year undergraduate Open

University distance learning students’ online discussions. http://oro.open.ac.uk/

68073/

[17] Dermot Shinners-Kennedy and Sally A. Fincher. 2013. Identifying Threshold

Concepts: From Dead End to a New Direction. In Proceedings of the Ninth Annual
International ACM Conference on International Computing Education Research
(ICER ’13). ACM, New York, NY, USA, 9–18. https://doi.org/10.1145/2493394.

2493396

[18] Elaine Thomas. 2019. A new approach to teaching introductory Computing

and Information Technology by distance learning - addressing key issues. In

Connecting through Educational Technology - Proceedings of the European Distance
and E-Learning Network 2019 Annual Conference, Airina Volungeviciene and

András Szűcs (Eds.). 292–300. http://oro.open.ac.uk/62184/

https://doi.org/10.1145/1227310.1227482
https://doi.org/10.1145/3304221.3319771
https://doi.org/10.1145/3304221.3319771
http://www.open.ac.uk/about/teaching-and-learning/esteem/sites/www.open.ac.uk.about.teaching-and-learning.esteem/files/files/ecms/web-content/2014-05-C-Dobbyn-and-F-Chetwynd-final-report-May-14.pdf
http://www.open.ac.uk/about/teaching-and-learning/esteem/sites/www.open.ac.uk.about.teaching-and-learning.esteem/files/files/ecms/web-content/2014-05-C-Dobbyn-and-F-Chetwynd-final-report-May-14.pdf
http://www.open.ac.uk/about/teaching-and-learning/esteem/sites/www.open.ac.uk.about.teaching-and-learning.esteem/files/files/ecms/web-content/2014-05-C-Dobbyn-and-F-Chetwynd-final-report-May-14.pdf
https://doi.org/10.1145/3137065.3137085
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1145/1384271.1384325
http://oro.open.ac.uk/58202/
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1145/2361276.2361283
https://doi.org/10.1145/2999541.2999546
http://oro.open.ac.uk/68073/
http://oro.open.ac.uk/68073/
https://doi.org/10.1145/2493394.2493396
https://doi.org/10.1145/2493394.2493396
http://oro.open.ac.uk/62184/

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Student demographics
	3.2 Instructor demographics
	3.3 Programme components
	3.4 Data analysis methods
	3.5 Scope and limitations
	3.6 Data collection and analysis approval

	4 Results
	5 Discussion
	6 Conclusion and further work
	Acknowledgments
	References

