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ABSTRACT
The use of automatic grading tools has become nearly ubiquitous
in large undergraduate programming courses, and recent work has
focused on improving the quality of automatically generated feed-
back. However, there is a relative lack of data directly comparing
student outcomes when receiving computer-generated feedback
and human-written feedback. This paper addresses this gap by split-
ting one 90-student class into two feedback groups and analyzing
differences in the two cohorts’ performance. The class is an intro
to AI with programming HW assignments. One group of students
received detailed computer-generated feedback on their program-
ming assignments describing which parts of the algorithms’ logic
was missing; the other group additionally received human-written
feedback describing how their programs’ syntax relates to issues
with their logic, and qualitative (style) recommendations for im-
proving their code. Results on quizzes and exam questions suggest
that human feedback helps students obtain a better conceptual un-
derstanding, but analyses found no difference between the groups’
ability to collaborate on the final project. The course grade distribu-
tion revealed that students who received human-written feedback
performed better overall; this effect was the most pronounced in the
middle two quartiles of each group. These results suggest that feed-
back about the syntax-logic relation may be a primary mechanism
by which human feedback improves student outcomes.
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1 INTRODUCTION
The use of automatic grading tools has become nearly ubiquitous
in large undergraduate programming courses to accommodate for
increased enrollment in traditional CS programs as well as online
courses. Several authors have addressed automatic grading plat-
forms [1, 3, 4, 7–9, 12]. Many of the systems used so far have been
focused on binary criteria: Does the program run?, does the pro-
gram produce the right output for problem 1?, does the program
produce the right output for problem 2?, etc. These systems offer
limited feedback to the student. Recently there has been some ef-
fort to provide better feedback using automatic grading [2, 5, 6, 11].
In particular, in [6], the authors utilize existing autograding sys-
tems and designed knowledge maps to classify common errors to
automatically generate hints meant to address said errors.

However, the current body of work is focused on introductory
computer science classes. Our work here focuses on a 300-level
class where the programming assignments are a bit more involved,
as well as the concepts students are implementing. More than mas-
tery of a programming language, we were interested in assessing
students’ understanding of the algorithmic concepts covered in
class as well as programming style according to [13]. Moreover,
we found that current autograding systems did not provide ways
to offer feedback at the level of granularity we desired to provide
to our students. Given that our class is focused on implementing
AI algorithms, we hoped to provide students with a checklist of
the steps and concepts necessary for a working implementation
of each algorithm, and then evaluate them using this checklist to
assist them in improving their code. Our teaching staff developed
an in-house grading tool for intermediate classes that we plan to
share to the larger CS community.

Additionally, much of the current literature assesses grading
approaches according to the similarity of grades and feedback to
human feedback [1, 4, 6, 12], rather than by student outcomes. Given
the extent to which automatic grading has become commonplace,
it is natural to ask what (if anything) is lost in the real world by
replacing human grading with automatic feedback. A primary aim
of our current research is to answer this question.

So the two main contributions of our work are: (i) an open-
source grading tool that can be used by any CS educator who
would like to provide more granularity in the automatic feedback
generated, and (ii) a direct comparison of students’ understanding
of the algorithmic concepts from lecture as well as programming
style, when graded by a very informative automatic grading system
and when additional feedback is provided by human graders (TA).
We discuss our findings in detail in Section 4.
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1.1 Description of the Class
This is a 300-level class that serves as an introduction to artificial
intelligence, covering topics such as logic, constraint satisfaction
problems, search algorithms, games, decision trees, and neural net-
works. The class is taught every semester and there are usually
around 80 students that finish the class. The only official prereq-
uisite is an introductory programming class, though in practice
several students have also taken a discrete math class, a second pro-
gramming class, or even a data structures class. Students work on
individual assignments that contain both a programming and a the-
oretical component. The programming component is implemented
in Python and is designed to be a mini-project, such as building a
Sudoku solver or implementing an AI to play Connect Four. Each
mini-project includes significant scaffolding for students to write
their code around, and requires students to accurately implement
the algorithms covered in lecture. The theoretical component of
the HW assignments, which is due before the programming compo-
nent, is designed to help the students understand the algorithms “on
paper” before they are to implement them. The students also have
weekly quizzes and two exams during the semester that test the
concepts seen in class, and there is a final project where students
work in teams of 2 or 3. We offer over 30 office hours per week and
a Piazza board, and utilize undergraduate TAs due to their many
benefits in the classroom (as discussed in [10]).

1.2 Motivation for the Project
Over the past several years, the programming assignments for this
course have been graded by standard test-case based automatic
grading programs along the lines of Autolab [9]. These programs
have streamlined grading dramatically and allowed for highly con-
sistent grading; however, they do not have easy mechanisms to
provide students with highly specific feedback. For example, the
grading program for students’ A* search implementation would fail
an incorrect implementation, providing a starting state for which
the implementation did not take the optimal path to the goal state,
but it did not provide any explanation for which part of the student’s
code was causing the failure or award any partial credit.

To provide students with more helpful feedback, the instructors
for the course considered two possible modifications to the course’s
grading: developing a program that gives students more granular
feedback, and writing feedback by hand in order to give the most
detail possible. To maintain consistency, manual graders would also
base their feedback on the findings of a testing program.

It was resolved to trial both of these options in order to answer
the following two questions: (1) do specific references to the syntax
of a student’s program help the student better understand the logic
of the algorithm? and (2) does feedback on the style of a student’s
code help them write readable and maintainable code well-suited
to collaboration? This experiment revealed evidence that (1) holds,
but little evidence for (2). In addition, unexpectedly, students in
the middle two quartiles of the human feedback group performed
much better overall than those that received computer feedback.

2 METHODS
After receiving IRB approval, we took the following approach: at
the beginning of the semester, the class was randomly divided into

Figure 1: Sample output of the grading tool on an iteration
of breadth-first search. Students in the automatic feedback
group received only this logic feedback; those in the human
feedback group also received specific references to syntax.

two groups. The programming assignments of the first group were
graded entirely by an in-house grading tool, and those of the sec-
ond group were graded by teaching assistants with reference to the
tool’s output. A common difficulty facing researchers in education
is the slew of biases that can be introduced when a new method
is tested out during a semester. By splitting a single class into two
groups, many variables such as instructor motivation or quality of
materials were kept the same between the two groups, in a way
they could not be over two semesters. In order to maintain fair-
ness, the grade distributions of each programming assignment were
closely compared and ensured to be virtually identical. Additionally,
following the end of the semester, corrective action was taken to
ensure that the course grade distributions of the two groups were
comparable.

2.1 Tool-based treatment
Students in the tool-based grading group were graded by a grading
tool developed specifically for this experiment. As opposed to test
case-based automatic grading where edge cases for each criterion
are devised and tested, this grading tool functioned by checking
the calls made by student code for every logical element of a proper
implementation of the algorithm in question. It makes heavy use
of the flexibility of the Python interpreter, renaming functions and
providing inputs designed to trace students’ logic. This means that
partial credit can be assigned according to students’ adherence to
the logic of the algorithm, rather than by the proportion of test cases
they solved satisfactorily. One particular advantage of this approach
is that code that never returns anything can still receive partial
credit. Our grading tool is highly well-suited to an intermediate
class in which students implement specific algorithms covered in
lectures. See Figure 1 for a sample of the grading tool’s output.
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2.2 Human-assisted treatment
Students in the human-assisted grading group generally received
the output of the grading tool; however, human graders reviewed
this output, adding clarifications when necessary, and added two
additional types of feedback difficult for computers to generate.

First, graders added specific references to the syntax that caused
students’ code to fail a criterion – a type of introspection that we
cannot reliably perform in an automatic way. For example, this is
the grader feedback for the student code from Figure 1:

Your condition “fringe == None” is really close to
what you want. You need to know when the fringe
is an empty list, so you can check if it’s equal to the
empty list, or you can check if it evaluates to False in
a conditional.

In addition, manually graded students received style feedback on
the clarity, efficiency, and syntax usage of their code. Clarity feed-
back primarily focused on students’ documentation, whitespace
usage, and variable names. Efficiency feedback was largely based on
time and memory complexity. Syntax feedback assessed students’
adherence to Python’s PEP8 style guidelines [13] and the readability
of their syntax choices. For example, students were encouraged to
directly iterate over lists and generators wherever possible, rather
than iterating over indices. A small number of points were allo-
cated to these criteria to encourage students to take this feedback
seriously. See below for some examples of grader style feedback:

In new_heuristic, more descriptive variable names
could be used for x and y.
Try not to use the length of a list when checking to
see if it’s empty.

To ensure consistency, each student submission was evaluated by
two graders, who rotated by assignment so that every hand-graded
student would get feedback from the same distribution of graders
over the course of the semester.

2.3 Measures
It was necessary to develop several measures to test the authors’ hy-
pothesis that students given specific references to the logic of their
syntax would understand their code’s function, and ultimately the
algorithms they are implementing, better. A number of assessments,
including quizzes and exam questions, were written to measure stu-
dents’ deeper understanding of the algorithms they implemented
on the homework assignments. These assessments specifically fo-
cused on the logical steps of the algorithms implemented for the
programming assignments, but were otherwise quite similar to the
understanding-based questions on exams from previous semesters
of the class. Additionally, one quiz was written to assess students’
algorithmic thinking at the beginning of the semester, before they
had received any feedback. All of these measures are available upon
request.

To test our hypothesis that students given feedback about their
code’s style would write code better suited to collaboration, we
analyzed the two groups’ performance on the end-of-semester final
project. This project has been used in the class for some time to help
students develop their collaborative programming skills. In order to

facilitate comparison of the two groups, project teams were chosen
to each contain students from only one out of the two groups.

We excluded students who received failing grades in the class
and students who dropped the class from our sample. Most of these
students only made submissions for one or two of the assignments.

3 DATA
To determine to what extent the two groups can be statistically
distinguished, Welch’s T-test analyses were performed on all nu-
merical data collected about students, including scores on problems,
final project assessments, and overall class data. To avoid cherry-
picking biases, only results on the problems and assignments that
were written or selected for this project before the semester be-
gan are reported and discussed. Additional data are available upon
request.

After seeing the grade distribution for the class we decided to
additionally report this information because it is so striking. A
very large percentage of students in the manual grading group
received A grades in the class overall, whereas a wide plurality of
students in the automatic grading group received Bs. At the end
of this section, we have additionally included statistical analyses
of the middle two quartiles of each group, where the overall grade
distribution suggested the greatest effect. As it was conducted post-
hoc, interpretation of the grade distribution and middle quartiles
should be considered limited to qualitative discussion.

3.1 Understanding of algorithm logic
The results for Quiz 1, which was intended to ensure that the
two groups were reasonably comparable, indeed suggest that the
randomly selected groups of students have similar prior aptitudes.
However, results on the later Quiz 5, designed to assess students’
understanding of the backtracking algorithm, are highly suggestive
(𝑝 = 0.067) that students who received human feedback gained
a better understanding than those who received only computer-
generated feedback. Quiz 8, which asked students to extend their
understanding of the alpha-beta pruning technique beyond that
covered in class, does not show any significant improvement from
the human feedback (𝑝 = 0.81), though it is worth noting that the
automatic feedback group received a very slightly higher mean
score than the human assisted group.

To further test the students’ understanding of the algorithms,
we designed questions for the two exams that would use the algo-
rithms they had implemented in novel ways. For example, Exam
1 included a series of questions on which students applied the A*
search algorithm (which was covered on a previous homework
assignment) to an unfamiliar domain. We label the questions by
Exam 𝑋 .𝑌 in Table 1, where 𝑋 denotes the exam (1 or 2) and the
𝑌 denotes the specific question in the exam. Concretely, the stu-
dents were asked to perform a simple breadth-first search on a
question in Exam 1.1, to construct a heuristic for the domain on
question Exam 1.2, and to apply the heuristic as in the A* algorithm
(calculating 𝑓 -values and forming a priority queue) on Exam 1.3.
Students who had received human feedback outperformed those
who received computer-generated feedback on all three questions
(𝑝 = 0.19; 𝑝 = 0.52; 𝑝 = 0.073). Although manually-graded students
outperformed computer-graded students on Exam 2 overall (Table
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Quiz 1 Quiz 5 Quiz 8 Exam 1.1 Exam 1.2 Exam 1.3 Exam 2.7
(10pts) (10pts) (10pts) (10pts) (10pts) (10pts) (13pts)

Mean (human-assisted) 8.82 9.40 7.38 6.64 7.68 4.94 11.58
Mean (tool-based) 8.97 8.74 7.51 5.57 7.2 3.17 12.14
Significance value 0.72 0.067 0.81 0.19 0.52 0.073 0.22
95% conf. interv. on diff. of means (-0.99, 0.69) (-0.07, 1.40) (-1.23, 0.97) (-0.56, 2.69) (-1.03, 2.00) (-0.16, 3.70) (-1.47, 0.33)
Sig. values on mid 2 quartiles 0.80 0.068 0.68 0.17 0.18 0.15 0.54
95% c.i. on mid 2 quartiles (-1.64, 1.26) (-0.05, 1.52) (-1.32, 0.87) (-0.72, 3.99) (-0.56, 2.88) (-0.63, 4.23) (-2.08, 1.06)

Table 1: Performance on assessments of student understanding of algorithm logic

Final Project Overall Class Data
Efficacy Code Style Report Quizzes HW Exam 1 Exam 2 Office Hour Final Grade
(20pts) (10pts) (25pts) (100pts) (100pts) (100pts) (100pts) Visits (100%)

Mean (human-assisted) 17.6 8.81 23.2 88.5 88.5 75.1 84.4 3.67 87.84
Mean (tool-based) 17.6 8.69 22.1 88.5 88.6 71.8 80.2 6.20 86.31
Significance value 0.97 0.64 0.26 0.98 0.97 0.35 0.27 0.16 0.46
95% conf. interv. on diff. (-1.74, 1.81) (-0.38, 0.62) (-0.87, 3.02) (-6.03, 6.14) (-6.03, 5.82) (-3.7, 10.3) (-3.3, 11.7) (-6.11, 1.04) (-2.54, 5.60)
Sig. vals on mid 2 quartiles 0.28 0.10 0.40 0.97 0.91 0.16 0.040 0.20 0.010
95% c.i. on mid 2 quartiles (-3.45, 0.97) (-0.10, 1.33) (-1.39, 3.42) (-4.38, 4.50) (-4.46, 5.00) (-2.2, 13.5) (0.9, 17.7) (-10.6, 2.2) (0.78, 4.46)

Table 2: Performance on collaborative final projects and overall class data

Grade Distribution Withdrew F D- D D+ C- C C+ B- B B+ A- A A+ Total
Human-assisted 8 3 0 1 1 1 2 2 2 3 3 7 9 2 44

18% 7% 5% 11% 18% 41% 100%
Tool-based 8 3 0 0 1 1 3 1 2 12 5 4 4 2 46

17% 7% 2% 11% 41% 22% 100%
Total 16 6 0 1 2 2 5 3 4 15 8 11 13 4 90

18% 7% 3% 11% 30% 31% 100%
Previous Semester 22 1 0 2 2 2 7 9 13 10 12 6 5 9 100

22% 1% 4% 18% 35% 20% 100%
Table 3: Overall grade distributions

2, 𝑝 = 0.27), question Exam 2.7 was specifically written to assess
conceptual understanding of decision trees, which were covered
on the homework. Students were asked to apply a decision tree
to various inputs, and then provide inputs that would minimize
and maximize the execution time of recursively applying the tree.
The results on this question actually suggested higher performance
among students who had received automatic feedback (𝑝 = 0.22).

3.2 Style and collaboration
Analysis on the grading rubrics for the class’s final projects show
that students from the human-assisted treatment receivedmarginally
better scores for coding style and on their final written reports, but
these differences fall significantly below the threshold of statistical
significance (𝑝 = 0.64; 𝑝 = 0.26) and no difference whatsoever was
found on the degree to which students accomplished their goals in
the projects (efficacy).

3.3 Overall performance
Most of the differences in student grades occurred in the exam cat-
egory. Although hand-graded students performed better on several
specific quizzes, after allowing students to drop their lowest two

quiz scores, the two groups’ results were highly similar (𝑝 = 0.98).
So were their homework scores, which included both the written
and programming assignments (𝑝 = 0.97). It is on the examination
scores that a macro-level difference is apparent: manually-graded
students outperformed their automatically-graded peers by an av-
erage of 3.3 points on Exam 1 (𝑝 = 0.35) and an average of 4.2
points on Exam 2 (𝑝 = 0.27). It is also worth note that the average
student receiving human feedback attended office hours 3.7 times
over the semester, compared with 6.2 times for the average student
receiving computer feedback (𝑝 = 0.16).

When examining means, there is not a sizable difference be-
tween the two groups’ final grades. However, the grade distribu-
tions reveal a stark difference: almost twice as large of a propor-
tion of human-graded students received A grades compared with
computer-graded students; conversely, more than twice as many
B grades were awarded to students in the computer-graded group.
This difference was not detected by mean/standard deviation tech-
niques because the manually graded group has a heavier lower
tail compared with the automatically graded group. However, the
distribution is highly similar for all students who received below
B’s and also at the top of the A range, suggesting that the greatest
effects of feedback are felt by students who are a priori more or less
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ordinary: neither the students who struggle the most, nor those
who are prepared to excel without any intervention.

3.4 Analysis on the middle quartiles
Since the grade distribution reveals the greatest effect for “average
students”, we have additionally included statistical analyses con-
ducted on middle two quartiles of each treatment group. Because
we decided to conduct them after beginning analysis of our results,
they must be considered strictly supplementary interpretation of
our results, without the same statistical weight that accompanies
direct testing and analysis of our hypotheses.

For the most part, analyses on the middle quartiles resemble
those conducted on the full treatment groups; however, many of
the results are less pronounced due to the loss of statistical power
from halving group size. One notable exception is Exam 1.2, which
yielded mixed results on the entire groups (𝑝 = 0.52) but a clearer
advantage for manually graded students when only the middle
quartiles are considered (𝑝 = 0.18). Another is the style component
of the final project grades, where little effect could be discerned
on the entire groups (𝑝 = 0.64) but a more significant effect was
revealed on the middle quartiles (𝑝 = 0.10).

It is also worth noting that tool-graded students in the middle
quartiles actually outperform their manually-graded peers by 2.2
points on efficacy (𝑝 = 0.28), whereas the entire groups were indis-
tinguishable on this criterion. This is likely caused by two outlier
students in the manual group whose project received a score of 7.5
on efficacy. The lowest score any other student in the middle two
quartiles received was a 14 out of 20.

Results are most striking on the exams (𝑝 = 0.16, 𝑝 = 0.040) and
on the final grade (𝑝 = 0.010). (Markings of significance are omitted
because of the post facto nature of this analysis.) Given that the
middle-quartile students in each group performed very similarly
on the initial standardizing quiz (𝑝 = 0.80), these figures show that
“average” students in the manually graded group had quantifiably
better outcomes in the class than those in the automatically graded
group.

4 DISCUSSION
4.1 Understanding of algorithm logic
Our results partially support the hypothesis that human grading
helps students better understand the logic of the algorithms covered.
In particular, manually graded students outperformed automati-
cally graded students on Quiz 5, which reviewed the backtracking
algorithm on the same Sudoku task covered in the programming
assignment, and on Exam 1.1, 1.2, and 1.3, which applied the A*
search algorithm to a novel task.

However, they did not even marginally outperform automati-
cally graded students on Quiz 8, which asked students to analyze
the alpha-beta pruning optimization in a way not discussed on the
assignment. Neither did they outperform those students on Exam
2.7, where most of the points were an easy application of the recur-
sive decision tree application algorithm, but the remaining points
were dedicated to an unfamiliar run-time analysis of the algorithm.

All of these results hold for both the full groups and the middle-
quartile students in each group.

One plausible interpretation of these mixed results is that feed-
back on code’s syntax helps students understand the logic of their
implemented algorithms better over the course of the semester, in-
cluding when the algorithms are applied to novel tasks as on Exam
1.1, 1.2, and 1.3. However, this improvement would not extend to
questions that ask students to analyze the algorithms in ways not
covered in class. As this interpretation was not conceived prior to
the study’s execution, further research is needed to determine the
extent to which it holds more generally.

An alternative interpretation of these results might be that after
the first portion of the semester, students who had been receiving
automatic feedback realized that they were not meeting their per-
formance goals and spent more effort during the second half of the
semester. However, the overall results of exam 2 do not support
this interpretation: the performance gap was both wider and more
significant on the second exam than on the first (see Table 2).

We conclude that receiving human feedback very likely improves
students’ conceptual understanding, but that this improvement is
limited to certain, as-of-yet undetermined, areas. We posit that
students who receive human feedback are better able to grasp the
logic of the algorithms taught, but that this better grasp does not
significantly improve their ability to perform higher-level analysis
of that logic.

4.2 Style and collaboration
Most of our results suggest that human style feedback had little
effect on students’ final projects. When analysis is restricted to the
middle two quartiles, several small effects are revealed: students
who received human feedback appeared to do better on code style
and worse on efficacy.

It is not difficult to imagine that giving students feedback on
code style would result in them doing better when later graded on
the same points of style. However, that it should result in them pro-
ducing less successful projects is tougher to swallow. Efficacy was
assessed as the degree to which final project groups met the goals
they had set for themselves when proposing their final projects.
Perhaps manually graded students’ more promising grades earlier
in the semester led them to propose more ambitious projects, but
the difference in means is more likely due to an outlier effect from
the two manually graded students who received far lower scores
than any of the others.

All in all, we conclude that our results do not indicate that feed-
back on coding style improves the results on subsequent collabora-
tive projects as originally hypothesized. There may be some extent
to which students remember good style pointers, but even this is
not clear and may not justify the extensive labor of giving students
style feedback.

4.3 Overall performance
In spite of the previous equivocal results, our analyses of students’
overall performance revealed that students who received human
feedback had a (sub-significant) performance advantage on the
exams over those who received automatic feedback, and that this
advantage translated to higher overall course grades. This effect is
particularly pronounced among those students who performed in
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the middle two quartiles of their treatment groups – whom we call
“average students”.

In most courses, there will always be some students who are
well-enough motivated and prepared that they will excel no matter
what, and also students who are underprepared and need more
support than the course staff is ready to offer. In this course, those
students either did not need or could not receive detailed feed-
back from graders. One student who received an A in the class
reported never opening a single feedback report – they had al-
ready gotten full credit on all of the assignments. On the other
hand, our graders often had difficulty providing feedback to strug-
gling students whose submissions amounted to three or four lines
of first approach. We therefore find it unsurprising that the most
pronounced effects occurred for students in the middle two quar-
tiles, and would strongly encourage further research to examine
interventions for CS students in the bottom quartile.

As discussed previously, manually-graded students’ higher per-
formance likely stems in part from their greater facility with the
logic of the algorithms taught in class, and likely not from their
style feedback. However, we would also like to discuss two addi-
tional suggested mechanisms for this phenomenon. First, it might
be proposed that the simple knowledge that graders would read
students’ code would provide a significant incentive for students to
write more complete and polished code than they would otherwise,
increasing the effort they put into assignments. Indeed, this effect
would be greatest among average students, who are capable of
writing very good code, but only with effort. However, the similar
homework grades for the two groups, along with our evidence that
the two groups were a priori very comparable, seem to indicate
that the two groups spent more-or-less the same effort on their
assignments.

Second, it might be proposed that receiving human feedback
has a naturally demystifying effect: that a student might be unsure
whether they are interpreting the grading tool’s output correctly,
and that human feedback clarifies any such ambiguities for stu-
dents. This interpretation is in fact consistent with the algorithm
logic mechanism discussed above. Clarifying ambiguities intuitively
ought to lead to greater facility with concepts, because unambigu-
ously understanding how one’s code relates to a checklist of logical
criteria helps one better understand how these criteria are put into
practice. However, our graders’ references to syntax go beyond
mere disambiguation of error messages; they also directly connect
even an unambiguously identified error in students’ logic to the
code that produced it. This deepens students’ code-logic relation,
and provides something even a perfect test case-based automatic
grader cannot.

Finally, it is worth noting that human feedback appears to ful-
fill a similar need to office hours. Students who received human
feedback visited office hours roughly half as often as those who re-
ceived automatic feedback. This both suggests that disambiguation
is one main purpose of human feedback, and suggests an excit-
ing further direction. Massive Open Online Courses, an emerging
trend in CS education, are generally automatically graded. It may,
however, be worth dedicating some degree of instructor time to
providing human feedback on student submissions to compensate
for the impossibility of holding office hours. We strongly encourage
extensions of our research to MOOCs.

4.4 Challenges
One constant challenge facing the instruction team was to ensure
that students in the two cohorts were treated consistently. Human
graders were able to understand when students were very close
to satisfying criteria and award partial credit, and at the end of
the semester we found that although programming assignment
grades were overall very similar, automatically graded students at
the bottom of the distribution for each assignment were receiv-
ing lower scores than equivalent manually graded students. After
all assignments had been turned in, two of the TAs reviewed all
of those students’ submissions and awarded partial credit by the
same criteria used for the manually graded students. Although this
required significant labor on the part of the instruction team, it
ensured that the grading on every assignment had been equivalent.

Indeed, labor was one of the biggest disadvantages of conducting
this experiment. Even with 10 TAs, students received feedback on
their homework assignments slightly later than promised multiple
times throughout the semester.

Another issue observed was the use of the grading tool as a black-
box debugger since we offered students unlimited opportunities
to “test their code” for an estimated score but no feedback – the
precise opposite of the way students were intended to use it. One
student tested their code on an assignment over 200 times.

4.5 Future Semesters
As a result of our observations and to target those students that
will most benefit, we are switching from a group-based treatment
to offering human feedback on request after students receive their
grading tool results. This human feedback will be similarly detailed
to the feedback on student logic provided in the study, and serves
the same purpose of connecting students’ logic with their code.

We are eliminating style feedback and grader-assigned partial
credit. The style feedback appeared to have little effect on students’
performance on their collaborative final projects, and the students
who most often received grader-assigned partial credit were those
in the bottom quartile, who did not exhibit significant improvement
from receiving human feedback.

To deter the use of the grading tool as a black-box debugger, we
are replacing the estimated-score test with a no-score compilation
check, and extending the number of graded submissions from 2 to
15. In addition, we are awarding full credit to students’ first three
submissions. We intend this to encourage students to submit their
work for feedback before it is perfect and to debug more mindfully.
We hope this will result in students connecting their code with the
algorithms’ logic even without specific references to their syntax.

While our work strongly suggests that human feedback can lead
to better student outcomes, it lacks statistical significance due to
its small sample size. We strongly encourage fellow educators to
pursue replications of this work, with a particular focus on specific
references to syntax as a possible mechanism.
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