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ABSTRACT 
Recent years have seen an increasing interest in identifying 
common student misconceptions during introductory 
programming. In a parallel development, block-based 
programming environments for novice programmers have grown 
in popularity, especially in introductory courses. While these 
environments eliminate many syntax-related errors faced by 
novice programmers, there has been limited work that 
investigates the types of misconceptions students might exhibit in 
these environments. Developing a better understanding of these 
misconceptions will enable these programming environments and 
instructors to more effectively tailor feedback to students, such as 
prompts and hints, when they face challenges. In this paper, we 
present results from a cluster analysis of student programs from 
interactions with programming activities in a block-based 
programming environment for introductory computer science 
education. Using the interaction data from students’ 
programming activities, we identify three families of student 
misconceptions and discuss their implications for refinement of 
the activities as well as design of future activities. We then 
examine the value of block counts, block sequence counts, and 
system interaction counts as programming features for clustering 
block-based programs. These clusters can help researchers 
identify which students would benefit from feedback or 
interventions and what kind of feedback provides the most benefit 
to that particular student. 
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1 Introduction 

A long-standing issue in computer science education is the set of 
challenges many students face in introductory courses. These 
struggles can take many different forms, making  it difficult to 
identify what intervention would best support learning [16]. 
While there is a broad range of research on student 
misconceptions in more traditional text-based programming 
environments in the computer science education [2, 18], 
educational data mining [22], and learning analytics communities 
[5], there has been limited work on novice coding misconceptions 
in block-based programming. 

A growing trend in undergraduate introductory programming 
courses for both majors and non-majors is the use of block-based 
programming environments. These environments are designed to 
address the challenges many students face in introductory courses 
[23], particularly novice learners who lack substantial prior 
programming experience. Block-based programming languages 
offer several potential benefits, including reducing cognitive load 
[25], assisting with better understanding of program structure 
[24], and increasing the efficiency in completing coding tasks [13]. 
However, many learning environments built around block-based 
programming provide limited support, relying on teaching 
assistants and instructors who often have limited availability. 

In this paper, we present a data-driven exploration of student 
programs created in PRIME, a block-based programming 
environment for undergraduate introductory computer science 
education. We clustered students’ unsuccessful attempts at two 
particular programming activities using Bayesian Gaussian 
Mixture Models. Qualitative analysis of the resulting clusters 
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reveals interesting patterns of student misconceptions and 
provides insight into how different supports, such as focusing on 
remedial activities or focusing on specific concepts, could be used 
by instructors and adaptive learning environments to best address 
the needs of individual students. 

 

2 Related Work 

A large body of work has investigated student code analysis, often 
through the lens of automated assessment and plagiarism 
detection [21].  This work includes static analysis systems [19] 
that assess code without running it, dynamic analysis systems [17]  
that assess code based on the output of defined test cases, and 
hybrid systems combining both approaches [6].  Additionally, 
clustering has been used to visualize student programs and 
programming behaviors [6], to generate formative feedback for 
students [10, 12], and to provide feedback to instructors [8]. 
Building on these advances, we apply analogous techniques to 
block-based programs to investigate how this information can be 
used to improve instruction rather than automated assessment. 

The rise in prevalence of block-based programming 
environments has also led to a growing body of work focused on 
analyzing block-based programs. The iSnap environment uses a 
Contextual Tree Decomposition algorithm to compare student 
block-based programs to generate next-step hints [14, 15].  Wang 
et al. [22] used deep learning based approaches to generate 
representations of student block-based program trajectories to 
create clusters of learning styles. Swidan et al. [20] analyzed 
multiple-choice questionnaires created based on examples in the 
Scratch environment to better understand common 
misconceptions afforded by the block-based interface. Our work 
extends this area of research by presenting a novel approach to 
clustering block-based programs, as well as a qualitative analysis 
of how these clusters relate to patterns of misunderstanding. 

Cluster analysis has been used extensively in disciplines 
outside of computer science.  Min et al. [11] and Akram et al. [1] 
utilized clustering based on student problem-solving behaviors to 
inform stealth assessment models.  Amershi & Conati [3] used 
clustering of student behaviors in an interactive lab environment 
to inform classification models of student behavior.  Kardan et al. 
[9] clustered users based on log-data from a complex simulation 
environment to gain a better understanding of student behavior 
and misconceptions. Though none of these environments 
involved programming, the work reported here builds on the 
types of features and clustering techniques they introduced, as 
well as extending it to the post-hoc analysis of the clusters. 

 

3 PRIME Environment 

The studies in this paper were conducted within the context of 
PRIME, an adaptive block-based programming environment 
designed to support novices as they learn introductory 
programming concepts. Within the environment, there are 
twenty programming activities, where each successive activity 
builds on the skills learned from the previous one. The activities 
cover the following fundamental CS concepts: input/output, 
numeric data types, mathematical expressions, variables, 

iterations (both definite and indefinite), abstraction, functions, 
parameters, return values, Boolean data types, conditionals, and 
debugging. Within PRIME, students build their programs utilizing 
a customized version of Google’s Blockly block-based 
programming plugin [7]. 

 3.1 Study Design 
We conducted a study using PRIME at a large university in the 
southeastern United States. The target courses for this study were 
two online sections of an introductory course for undergraduate 
engineering majors. A total of 248 participants logged on to the 
PRIME system, and we analyzed the programs of the 222 students 
who attempted at least one activity. These participants had an 
average age of 18, with 31.5% of them reporting their gender as 
female. Students who reported being from primarily Non-CS 
Engineering majors made up 90.3% of the sample; 6.9% reported 
their major as Computer Science, while the remaining students 
reported majors such as Math, Agricultural Science, or Undecided. 
Of these students, 75.8% reported their ethnicity as White, 12.9% 
as Asian, 3.2% as African American, and 1.2% as Hispanic or 
Latino. 

Figure 1: Sample correct student solution to the 
Accumulator Programming Activity. 
 

In this work, we focused on two activities in the PRIME 
environment that were of a sufficient data size to conduct 
clustering and had a significant number of incorrect solution 
attempts in the activity itself. The first activity, Accumulator, had 
35 correct attempts out of 102 total student attempts. The second 
activity, Repeat Loop, had 38 correct attempts out of 65. 

Figure 2: Sample correct student solution to the Repeat 
Loop Programming Activity.  
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In the Accumulator activity, students are asked to display the 
sum of five numbers entered by the user while using only two 
variables. This exercise builds on previous exercises where 
students were introduced to concepts such as user input, output, 
basic mathematical expressions, and variables. In PRIME, user 
input is accomplished through the prompt block. Figure 1 shows a 
sample solution to the exercise. The following sections identify 
and describe the clusters derived from the data for the 
Accumulator Activity. 

In the Repeat Loop activity, students built upon the concepts 
from the Accumulator activity and were tasked with removing the 
repeated segments of code by using a repeat loop. Figure 2 shows 
an example of a successful solution to this activity. 
 

4 Clustering Student Programs 

In determining a data-driven grouping of student programs, we 
used a cluster-based algorithm to assign labels to each program. 
Specifically, we have adopted Bayesian Gaussian Mixture Models 
[4], which attempt to find the smallest number of clusters that 
separate the data, in this case, student programs. This approach 
utilizes an expectation-maximization (EM) approach to select the 
minimum number of clusters based on the minimal Bayesian 
Information Criterion (BIC). In choosing the number of clusters, 
the algorithm will set clusters that are not useful to have a weight 
of zero, which results in that cluster not being used. For this work, 
we clustered a static representation of a student’s block-based 
program at the point when they left an activity. We derive this 
representation of the student’s programming workspace such that 
it can be used in the clustering algorithm and for further analysis. 

The features we used in representing the student programs 
include the following three families of features: Basic Block 
Features, N-Gram Block Counts, and System Interaction Counts.  

• Basic Block Features: This family consists of the total 
number of blocks, the total number of variables used, 
the total number of blocks attached to the Start block, 
and the total number of blocks not attached to the Start 
block. 

• N-Gram Block Counts: For each programming activity, 
we defined five unigram, three bigram, four trigram, and 
one 4-gram sequence of blocks that are specific to the 
programming activities and count how many times each 
sequence occurs in the program. 

• System Interaction Counts: This family includes the total 
number of times the student executed their program and 
the total number of hints requested for the activity. 

In analyzing student programs, we extracted n-grams 
consisting of key sub-sequences of blocks that likely exist in 
correct student programs. We construct a count of these sub-
sequences and use this as an individual feature. 

Using the described feature set and clustering algorithm, we 
clustered the student programs. In order to describe differences 
between the derived clusters, we conducted multiple one-way 
ANOVA tests between each feature for each cluster. To correct for 
the family-wise error rate when conducting several statistical 
tests, we used a Bonferroni correction. These tests were conducted 

to better describe how the clusters were being separated rather 
than validating the actual cluster assignments.  

4.1 Accumulator Programming Activity 

Through the clustering algorithm, we derived a total of three 
clusters for this activity. We will now describe the three clusters. 

4.1.1 Exploration Cluster 

Programs from the first cluster in this activity are defined as 
Exploration programs. In this group, sixteen students exhibited 
traits that we interpret as either a lack of effort or lack of 
conceptual knowledge to complete the problem. When observing 
the features that were crucial in separating programs into this 
cluster, we noticed several that stood out. For example, we 
observed Exploration programs as having fewer blocks on average 
compared to the other clusters (F=110.17, p<0.0026). Programs in 
this cluster seemed to also be grouped by a lesser number of 
prompt blocks (F=144.32, p<0.0026). Additionally, programs in this 
group had fewer sequences of arithmetic operations between the 
two variables (i.e., summing the inputs) compared to other 
clusters (F=125.89, p<0.0026). 
 

 
Figure 3: An example of testing smaller ideas without 
attempting the entire program. 
 

None of the attempts in this group of student programs 
prompt the user for enough values (i.e., five inputs). The most 
prompt blocks that exist in any student program for this cluster is 
four. Several students with programs in this group actually did 
construct the correct pattern of blocks for a portion of the 
solution, but they did not complete the program. For example, one 
student (Figure 3) correctly summed the values of two inputs but 
then failed to continue to ask the user for input. This pattern of 
testing a smaller idea without completing the entire program was 
exhibited by six students. Some student programs seemed to even 
try clever tricks using composition of arithmetic blocks (Figure 4). 
However, these ideas did not ultimately work because the 
programs associated with these were left unfinished.  

 
Figure 4: An example of attempting a composition of 
arithmetic blocks. 
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The types of issues present in the incomplete student 
programs of this cluster highlight several implications. First, the 
issue may be related to motivation or self-efficacy, which could be 
mitigated by providing real-time encouragement at key moments, 
inspiring students to persist. However, if the issue is a lack of 
understanding of key concepts for the activity, there is no 
common error that occurs in each program to identify a single 
hint or feedback. It may be practical to flag students whose 
programs fall into this cluster, allowing the instructor to support 
the student with finer-grained instruction. 

4.1.2 Near Miss Cluster 

This cluster of student programs consisted of forty-two total 
programs, which is the largest group. The programs in this group 
are best described as Near Misses. In general, these students 
seemed to have assembled the largest number of blocks and put in 
a significant amount of effort towards completing the activity. 
Programs in this cluster have a higher frequency of arithmetic 
sequences (i.e., summing the inputs) when compared to the other 
clusters (F=125.89, p<0.0026). In addition, the programs in this 
cluster were observed to have a higher frequency of the sequence 
prompt-to-set variable (F=175.42, p<0.0026), which is a crucial 
component of the program. 

The majority of errors in this cluster can be characterized as 
small logic errors, shown in Figure 5 (Left). Several students 
correctly set an existing variable to the sum of the previous two 
inputs, but they would often overwrite a variable that stores one 
of the inputs before using it, thus making the sum incorrect. 
Several other programs in this cluster solve most of the activity 
but leave out one key component, such as the last print block. 
Another set of students seem to have a misunderstanding of how 
variables operate and would constantly overwrite variables or set 
a variable equal to itself (e.g., x = x). While there were only five 
students who exhibited this trait, they often used a large number 
of blocks to attempt to overcome the incorrect code.  

 

Figure 5: (Left) An example of a logic error in the first set 
variable block; (Right) An example of not following the 
instructions of only using two variables. 

 
A slightly different category of error in this cluster of student 

programs was not following instructions carefully as seen in 

Figure 5 (Right). For example, this activity requires students to use 
only two variables. However, at least eight students used 
additional variables in their program. A different version of this 
phenomenon was exhibited by three student programs that did 
not prompt the user for all five inputs but would otherwise 
complete the activity. 
 

The family of errors present in student programs in this 
cluster could likely be handled better within the system, by 
providing hints related to the specific error states identified above. 
Predictive models could be trained on specific error states to 
identify which type of error a student’s program exhibits, which 
could then generate a specific type of hint or feedback. Having 
students test smaller components of their code would help fix the 
overall functionality of the entire program. Another way to 
address issues with programs in this cluster would be to remind 
students to carefully follow instructions (e.g., “Remember to only 
use two variables”), or provide feedback after the system has 
detected excessive variable usage. 

 4.1.3 Disorganized Cluster 

The final cluster within this activity consisted of only 9 student 
programs. Programs in this cluster generally consisted of many 
more cluttered workspaces than the other clusters, but the 
programs were generally Disorganized. While these programs 
may resemble those in the Near Misses cluster, they consist 
primarily of unfinished ideas and more exploration-based coding. 
This group exhibited more effort than the Exploration group, but 
still had many errors. Specifically, programs in the Disorganized 
group seemed to attempt to overcome early strategic error by 
adding more blocks, making their programs comparably large. 

Students in this cluster tended to approach the problem from 
a slightly different perspective. Instead of using the set variable 
block, they would often choose the change variable by block 
instead. This resulted in a less intuitive and more complex 
program. Students in this cluster often struggled with the logic of 
setting variables. Additionally, several students in this group 
would use too many blocks, often disconnected from the Start 
block and presumably left as unexplored or discarded, but 
interesting, ideas to the students. With the surplus of blocks, the 
programs seem less organized, and the workspaces would appear 
cluttered. One student used too many variables in their solution, 
while another student attempted to complete this problem with 
only one variable.  

To address the student programs within this cluster, it would 
be useful to indicate to students that they can delete blocks and 
test smaller portions at a time. A possible remedy would be to 
break the problem up into smaller segments for the students to 
construct from the ground up.  

4.2 Repeat Loop Programming Activity 
Through the clustering algorithm, we again derived a total of 
three clusters for this activity. We will now describe the three 
clusters. 
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4.2.1 Exploration Cluster 

The first cluster of student programs for this group was labeled 
Exploration due to its similarity with the cluster from the previous 
activity. There were only eight students in this cluster, with 
programs consisting mostly of incomplete ideas and low effort, 
while block functionality was explored broadly through small, 
experimental block configurations. When observing key 
differences in feature patterns for this cluster, we noticed that 
programs in this cluster have a lower frequency of the set variable 
block (F=48.59, p<0.0026). Additionally, programs in this cluster 
were clustered as such by having fewer usages of the sequence 
prompt-to-set variable, especially when inserted within a loop 
(F=33.78, p<0.0026). 
 

Figure 6: (Left) Student testing the functionality of the 
repeat block; (Right) Student not inserting blocks into the 
repeat block. 

 
A key problem in four out of the eight programs in this cluster 

was that students did not insert any blocks within the repeat block 
as seen in Figure 6 (Right). Thus, they failed to complete a critical 
portion of the program. One student did actually insert blocks into 
the repeat block, but did not include other key functionality, such 
as printing the result of the program. Some students seemed to be 
purely testing what the repeat block performed, as was the case 
with one other student as seen in Figure 6 (Left). 

In addressing the issues with this cluster of student programs, 
it is critical to encourage students to continue persisting in their 
programming, even after exploring block functionality. 
Additionally, providing worked examples of properly 
implemented loops may help scaffold that difficult portion of the 
exercise. 

4.2.2 Near Miss Cluster 

Of the students who did not complete this programming activity, 
the Near Misses cluster was the most common category for these 
programs. Eleven student programs fell into this cluster. These 
students generally followed instructions, clearly showed signs of 
significant effort, and had one or two minor mistakes in their 
program.  

The mistakes in these programs primarily consisted of slightly 
incorrect logic. For instance, several students overwrote a variable 
exactly one time in their loop, which caused the variable to not 
update correctly during each iteration. One student added the two 
variables together one too many times, thus resulting in a sum 

that was too large (Figure 7). This error is common in 
programming, analogous to “off by one” errors in looping. This 
student essentially performed the loop for one additional 
unnecessary iteration. Another student included all of the logical 
steps that would go inside of their loop block but did not actually 
use the loop block. 

Figure 7: Program that added the variables one too many 
times. 

Similar to the Near Misses cluster in the Accumulator 
Programming Activity, the students in this cluster could benefit 
from hints based on addressing slight logical errors. Feedback 
triggered on these common error states, such as checking to see if 
a variable is getting overwritten or if the loop is iterating the 
incorrect number of times, could be critical to producing a correct 
program. 

4.2.3 Disorganized Cluster 

This cluster of student programs also consisted of  eight student 
programs. These programs were exclusively very large programs 
that either did not follow instructions or did not adjust code from 
the previous problem. Programs in this cluster seemed to be 
clustered as such by having a higher frequency of the sequence 
prompt-to-set variable (F=76.35, p<0.0026). Additionally, this 
cluster of programs was distinguished by its higher frequency of 
blocks in general (F=27.72, p<0.0026). Programs in this cluster 
were also distinguished as having higher counts of blocks that 
were not attached to the Start block, on average (F=16.61, 
p<0.0026). 

Some aspects of this cluster, such as the large number of 
blocks used and a large number of blocks not attached to the Start 
block, mirror the Disorganized Cluster of the Accumulator activity. 
Six of the eight students used too many prompt or set variable 
blocks. These students also borrowed the same structure as the 
previous problem in their solution, which is only a small 
component specified by the instructions. These students generally 
had portions of correct logic in their programs but did not appear 
to follow the provided instructions, specifically in regard to 
utilizing the repeat block. Several students also had disconnected 
blocks in the program, making the workspace appear cluttered. 
Several other students seemed to have an overall acceptable 
program structure, but had errors in their looping logic (e.g., the 
prompt block was outside of the loop). 

In addressing these student errors, reminding students to 
change the structure from their previous program could help 
encourage the correct solution. The logical flow of the two 
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activities is the same, but there is a fundamental difference in 
structure when using a repeat block.  

 

5 Discussion and Limitations 

In clustering student programs, common patterns emerged across 
both activities. Within the Accumulator and Repeat Loop 
activities, we were able to distinguish Exploration, Disorganized, 
and Near Miss programs. While the characteristics of the clusters 
for each activity were unique to the content of that activity, the 
overall patterns were similar. Exploration programs tended to be 
small, modular programs that either seemed to be testing an 
individual component or functionality, or they were a low-effort 
attempt at assembling any sort of blocks. Feedback designed to 
continue to motivate the student, or designed to encourage low 
self-confidence students, could be used to address these programs. 
Additionally, if the system flagged the student for this category of 
programs, the instructor could provide additional support. 
Disorganized programs tended to be large, cluttered programs that 
frequently had blocks that were not attached to the Start block. 
Students in this cluster seemed to not follow instructions. 
Feedback designed to focus on the details of the program 
requirements, then break the problem down into smaller focused 
components could help students overcome challenges exhibited 
by these programs. Students with Near Miss programs were more 
intentional with the blocks they used, and often only lacked a 
small component to achieve a correct submission. These programs 
frequently suffered from minor logic errors, which can be 
addressed through feedback. Identifying the specific logic error 
state would allow for targeted feedback to address these 
programs. 

While this work is specific to two activities within the PRIME 
environment, results from this endeavor reveal that by using 
system-logged features, a clustering algorithm can identify 
students who are facing common difficulties. These clusters can 
be visually interpreted, which allows educators and system 
designers to better understand the types of feedback students need 
that is informed by the context. Since introductory CS courses 
often have a high student-to-instructor ratio, clustering provides 
a strategic, scalable tool that can be leveraged by both machine 
and human to formatively assess and support students. 

Overall, this work further highlights the need for instructors 
to engage in post-hoc investigation of student errors at a more 
granular level to identify what types of interventions can be 
deployed to best address these struggles in future iterations of the 
course. For example, while interventions such as presenting well-
chosen example programs or code-snippets may be effective 
support for Near Misses, additional instruction focusing on testing 
and debugging strategies may be more beneficial for students 
creating Disorganized programs.  While these specific clusters 
may not exist for all exercises, combining data-driven approaches 
with qualitative analysis can potentially move the community 
towards shared taxonomies of misconceptions and a better 
understanding of the effectiveness of different types of 
interventions. 

While this work was able to identify patterns of incomplete or 
incorrect student programs, further validation is needed to make 
a definitive connection between these programs and specific 
student misconceptions demonstrated across multiple activities or 
identified through survey instruments. Another limitation of this 
work is that the clusters analyzed are specific to these PRIME 
activities. However, the clustering techniques described above can 
readily be applied to other block-based programming artifacts and 
potentially text-based programming artifacts when n-
gram/segments of code can be defined and automatically detected. 
 

6 Conclusion 

With the goal of supporting student learning in introductory 
undergraduate CS courses, we explored the use of clustering with 
programs of students who did not complete two activities in the 
PRIME block-based programming environment. Using system-
logged features and patterns of key block sequences (i.e., n-
grams), we identified three distinct clusters of these programs 
using Bayesian Gaussian Mixture Models. The three distinct 
clusters of Exploration, Disorganized, and Near Miss programs 
indicated that there may be more general identifiable patterns 
across block-based programs that can be automatically detected. 
Identifying these in real-time could lead to a better support system 
for novice programmers who may otherwise disengage from 
the assignments. 

In future work, it will be important to explore how to most 
effectively use these clusters as a mechanism to provide adaptive 
feedback for students. Additionally, it will be important to further 
define key features for the analysis of student code. For example, 
including features that indicate behavioral components of the 
code, as well as test-case type analysis, will support more effective 
code categorization. By creating and testing different feature sets 
across different activities and block-based programming 
environments, the community can move toward a more detailed 
taxonomy of student errors and misconceptions, while at the same 
time enabling researchers to investigate which types and 
combinations of formative feedback, classroom instruction, and 
learning activities can most effectively address the different 
issues. This will also enable a more detailed comparison between 
block-based and text-based programming environments, as well 
as provide further insight into what learners can benefit most 
from each modality and when in the learning process each 
modality fits best. 

It will also be informative to expand the analysis to examine 
the trajectories of student programs. In addition to using the final 
snapshot of code, it would also be useful to use the sequences of 
student code and individual actions taken by the student as they 
create their program, especially in larger, more open-ended tasks. 
Beyond improving this particular learning environment, the 
results call for a systematic study of student behavior in block-
based programming environments, as well as the investigation of 
how best to support learners by providing guidance to address 
misconceptions early in the learning process. 
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