
Cluster-Based Analysis of Novice Coding Misconceptions
in Block-Based Programming

Andrew Emerson1, Andy Smith1, Fernando J. Rodríguez2, Eric N. Wiebe1, Bradford W. Mott1,
Kristy Elizabeth Boyer2, James C. Lester1

 1North Carolina State University, Raleigh, North Carolina
1{ajemerso, pmsmith4, wiebe, bwmott, lester}@ncsu.edu

2University of Florida, Gainesville, Florida
 2{fjrodriguez, keboyer}@ufl.edu

ABSTRACT
Recent years have seen an increasing interest in identifying
common student misconceptions during introductory
programming. In a parallel development, block-based
programming environments for novice programmers have grown
in popularity, especially in introductory courses. While these
environments eliminate many syntax-related errors faced by
novice programmers, there has been limited work that
investigates the types of misconceptions students might exhibit in
these environments. Developing a better understanding of these
misconceptions will enable these programming environments and
instructors to more effectively tailor feedback to students, such as
prompts and hints, when they face challenges. In this paper, we
present results from a cluster analysis of student programs from
interactions with programming activities in a block-based
programming environment for introductory computer science
education. Using the interaction data from students’
programming activities, we identify three families of student
misconceptions and discuss their implications for refinement of
the activities as well as design of future activities. We then
examine the value of block counts, block sequence counts, and
system interaction counts as programming features for clustering
block-based programs. These clusters can help researchers
identify which students would benefit from feedback or
interventions and what kind of feedback provides the most benefit
to that particular student.

CCS CONCEPTS
• Social and professional topics → Computing education;
• Applied computing → Education

KEYWORDS
Block-based programming; introductory programming education;
cluster analysis

ACM Reference format:

Andrew Emerson, Andy Smith, Fernando J. Rodríguez, Eric N. Wiebe,
Bradford W. Mott, Kristy Elizabeth Boyer, and James C. Lester. 2020.
Cluster-Based Analysis of Novice Coding Misconceptions in Block-Based
Programming. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (SIGCSE’20). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3328778.3366924

1 Introduction

A long-standing issue in computer science education is the set of
challenges many students face in introductory courses. These
struggles can take many different forms, making it difficult to
identify what intervention would best support learning [16].
While there is a broad range of research on student
misconceptions in more traditional text-based programming
environments in the computer science education [2, 18],
educational data mining [22], and learning analytics communities
[5], there has been limited work on novice coding misconceptions
in block-based programming.

A growing trend in undergraduate introductory programming
courses for both majors and non-majors is the use of block-based
programming environments. These environments are designed to
address the challenges many students face in introductory courses
[23], particularly novice learners who lack substantial prior
programming experience. Block-based programming languages
offer several potential benefits, including reducing cognitive load
[25], assisting with better understanding of program structure
[24], and increasing the efficiency in completing coding tasks [13].
However, many learning environments built around block-based
programming provide limited support, relying on teaching
assistants and instructors who often have limited availability.

In this paper, we present a data-driven exploration of student
programs created in PRIME, a block-based programming
environment for undergraduate introductory computer science
education. We clustered students’ unsuccessful attempts at two
particular programming activities using Bayesian Gaussian
Mixture Models. Qualitative analysis of the resulting clusters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGCSE '20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366924

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

825

https://doi.org/10.1145/3328778.3366924
mailto:Permissions@acm.org
https://doi.org/10.1145/3328778.3366924
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3328778.3366924&domain=pdf&date_stamp=2020-02-26

reveals interesting patterns of student misconceptions and
provides insight into how different supports, such as focusing on
remedial activities or focusing on specific concepts, could be used
by instructors and adaptive learning environments to best address
the needs of individual students.

2 Related Work

A large body of work has investigated student code analysis, often
through the lens of automated assessment and plagiarism
detection [21]. This work includes static analysis systems [19]
that assess code without running it, dynamic analysis systems [17]
that assess code based on the output of defined test cases, and
hybrid systems combining both approaches [6]. Additionally,
clustering has been used to visualize student programs and
programming behaviors [6], to generate formative feedback for
students [10, 12], and to provide feedback to instructors [8].
Building on these advances, we apply analogous techniques to
block-based programs to investigate how this information can be
used to improve instruction rather than automated assessment.

The rise in prevalence of block-based programming
environments has also led to a growing body of work focused on
analyzing block-based programs. The iSnap environment uses a
Contextual Tree Decomposition algorithm to compare student
block-based programs to generate next-step hints [14, 15]. Wang
et al. [22] used deep learning based approaches to generate
representations of student block-based program trajectories to
create clusters of learning styles. Swidan et al. [20] analyzed
multiple-choice questionnaires created based on examples in the
Scratch environment to better understand common
misconceptions afforded by the block-based interface. Our work
extends this area of research by presenting a novel approach to
clustering block-based programs, as well as a qualitative analysis
of how these clusters relate to patterns of misunderstanding.

Cluster analysis has been used extensively in disciplines
outside of computer science. Min et al. [11] and Akram et al. [1]
utilized clustering based on student problem-solving behaviors to
inform stealth assessment models. Amershi & Conati [3] used
clustering of student behaviors in an interactive lab environment
to inform classification models of student behavior. Kardan et al.
[9] clustered users based on log-data from a complex simulation
environment to gain a better understanding of student behavior
and misconceptions. Though none of these environments
involved programming, the work reported here builds on the
types of features and clustering techniques they introduced, as
well as extending it to the post-hoc analysis of the clusters.

3 PRIME Environment

The studies in this paper were conducted within the context of
PRIME, an adaptive block-based programming environment
designed to support novices as they learn introductory
programming concepts. Within the environment, there are
twenty programming activities, where each successive activity
builds on the skills learned from the previous one. The activities
cover the following fundamental CS concepts: input/output,
numeric data types, mathematical expressions, variables,

iterations (both definite and indefinite), abstraction, functions,
parameters, return values, Boolean data types, conditionals, and
debugging. Within PRIME, students build their programs utilizing
a customized version of Google’s Blockly block-based
programming plugin [7].

 3.1 Study Design
We conducted a study using PRIME at a large university in the
southeastern United States. The target courses for this study were
two online sections of an introductory course for undergraduate
engineering majors. A total of 248 participants logged on to the
PRIME system, and we analyzed the programs of the 222 students
who attempted at least one activity. These participants had an
average age of 18, with 31.5% of them reporting their gender as
female. Students who reported being from primarily Non-CS
Engineering majors made up 90.3% of the sample; 6.9% reported
their major as Computer Science, while the remaining students
reported majors such as Math, Agricultural Science, or Undecided.
Of these students, 75.8% reported their ethnicity as White, 12.9%
as Asian, 3.2% as African American, and 1.2% as Hispanic or
Latino.

Figure 1: Sample correct student solution to the
Accumulator Programming Activity.

In this work, we focused on two activities in the PRIME
environment that were of a sufficient data size to conduct
clustering and had a significant number of incorrect solution
attempts in the activity itself. The first activity, Accumulator, had
35 correct attempts out of 102 total student attempts. The second
activity, Repeat Loop, had 38 correct attempts out of 65.

Figure 2: Sample correct student solution to the Repeat
Loop Programming Activity.

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

826

In the Accumulator activity, students are asked to display the
sum of five numbers entered by the user while using only two
variables. This exercise builds on previous exercises where
students were introduced to concepts such as user input, output,
basic mathematical expressions, and variables. In PRIME, user
input is accomplished through the prompt block. Figure 1 shows a
sample solution to the exercise. The following sections identify
and describe the clusters derived from the data for the
Accumulator Activity.

In the Repeat Loop activity, students built upon the concepts
from the Accumulator activity and were tasked with removing the
repeated segments of code by using a repeat loop. Figure 2 shows
an example of a successful solution to this activity.

4 Clustering Student Programs

In determining a data-driven grouping of student programs, we
used a cluster-based algorithm to assign labels to each program.
Specifically, we have adopted Bayesian Gaussian Mixture Models
[4], which attempt to find the smallest number of clusters that
separate the data, in this case, student programs. This approach
utilizes an expectation-maximization (EM) approach to select the
minimum number of clusters based on the minimal Bayesian
Information Criterion (BIC). In choosing the number of clusters,
the algorithm will set clusters that are not useful to have a weight
of zero, which results in that cluster not being used. For this work,
we clustered a static representation of a student’s block-based
program at the point when they left an activity. We derive this
representation of the student’s programming workspace such that
it can be used in the clustering algorithm and for further analysis.

The features we used in representing the student programs
include the following three families of features: Basic Block
Features, N-Gram Block Counts, and System Interaction Counts.

• Basic Block Features: This family consists of the total
number of blocks, the total number of variables used,
the total number of blocks attached to the Start block,
and the total number of blocks not attached to the Start
block.

• N-Gram Block Counts: For each programming activity,
we defined five unigram, three bigram, four trigram, and
one 4-gram sequence of blocks that are specific to the
programming activities and count how many times each
sequence occurs in the program.

• System Interaction Counts: This family includes the total
number of times the student executed their program and
the total number of hints requested for the activity.

In analyzing student programs, we extracted n-grams
consisting of key sub-sequences of blocks that likely exist in
correct student programs. We construct a count of these sub-
sequences and use this as an individual feature.

Using the described feature set and clustering algorithm, we
clustered the student programs. In order to describe differences
between the derived clusters, we conducted multiple one-way
ANOVA tests between each feature for each cluster. To correct for
the family-wise error rate when conducting several statistical
tests, we used a Bonferroni correction. These tests were conducted

to better describe how the clusters were being separated rather
than validating the actual cluster assignments.

4.1 Accumulator Programming Activity

Through the clustering algorithm, we derived a total of three
clusters for this activity. We will now describe the three clusters.

4.1.1 Exploration Cluster

Programs from the first cluster in this activity are defined as
Exploration programs. In this group, sixteen students exhibited
traits that we interpret as either a lack of effort or lack of
conceptual knowledge to complete the problem. When observing
the features that were crucial in separating programs into this
cluster, we noticed several that stood out. For example, we
observed Exploration programs as having fewer blocks on average
compared to the other clusters (F=110.17, p<0.0026). Programs in
this cluster seemed to also be grouped by a lesser number of
prompt blocks (F=144.32, p<0.0026). Additionally, programs in this
group had fewer sequences of arithmetic operations between the
two variables (i.e., summing the inputs) compared to other
clusters (F=125.89, p<0.0026).

Figure 3: An example of testing smaller ideas without
attempting the entire program.

None of the attempts in this group of student programs
prompt the user for enough values (i.e., five inputs). The most
prompt blocks that exist in any student program for this cluster is
four. Several students with programs in this group actually did
construct the correct pattern of blocks for a portion of the
solution, but they did not complete the program. For example, one
student (Figure 3) correctly summed the values of two inputs but
then failed to continue to ask the user for input. This pattern of
testing a smaller idea without completing the entire program was
exhibited by six students. Some student programs seemed to even
try clever tricks using composition of arithmetic blocks (Figure 4).
However, these ideas did not ultimately work because the
programs associated with these were left unfinished.

Figure 4: An example of attempting a composition of
arithmetic blocks.

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

827

The types of issues present in the incomplete student
programs of this cluster highlight several implications. First, the
issue may be related to motivation or self-efficacy, which could be
mitigated by providing real-time encouragement at key moments,
inspiring students to persist. However, if the issue is a lack of
understanding of key concepts for the activity, there is no
common error that occurs in each program to identify a single
hint or feedback. It may be practical to flag students whose
programs fall into this cluster, allowing the instructor to support
the student with finer-grained instruction.

4.1.2 Near Miss Cluster

This cluster of student programs consisted of forty-two total
programs, which is the largest group. The programs in this group
are best described as Near Misses. In general, these students
seemed to have assembled the largest number of blocks and put in
a significant amount of effort towards completing the activity.
Programs in this cluster have a higher frequency of arithmetic
sequences (i.e., summing the inputs) when compared to the other
clusters (F=125.89, p<0.0026). In addition, the programs in this
cluster were observed to have a higher frequency of the sequence
prompt-to-set variable (F=175.42, p<0.0026), which is a crucial
component of the program.

The majority of errors in this cluster can be characterized as
small logic errors, shown in Figure 5 (Left). Several students
correctly set an existing variable to the sum of the previous two
inputs, but they would often overwrite a variable that stores one
of the inputs before using it, thus making the sum incorrect.
Several other programs in this cluster solve most of the activity
but leave out one key component, such as the last print block.
Another set of students seem to have a misunderstanding of how
variables operate and would constantly overwrite variables or set
a variable equal to itself (e.g., x = x). While there were only five
students who exhibited this trait, they often used a large number
of blocks to attempt to overcome the incorrect code.

Figure 5: (Left) An example of a logic error in the first set
variable block; (Right) An example of not following the
instructions of only using two variables.

A slightly different category of error in this cluster of student

programs was not following instructions carefully as seen in

Figure 5 (Right). For example, this activity requires students to use
only two variables. However, at least eight students used
additional variables in their program. A different version of this
phenomenon was exhibited by three student programs that did
not prompt the user for all five inputs but would otherwise
complete the activity.

The family of errors present in student programs in this
cluster could likely be handled better within the system, by
providing hints related to the specific error states identified above.
Predictive models could be trained on specific error states to
identify which type of error a student’s program exhibits, which
could then generate a specific type of hint or feedback. Having
students test smaller components of their code would help fix the
overall functionality of the entire program. Another way to
address issues with programs in this cluster would be to remind
students to carefully follow instructions (e.g., “Remember to only
use two variables”), or provide feedback after the system has
detected excessive variable usage.

 4.1.3 Disorganized Cluster

The final cluster within this activity consisted of only 9 student
programs. Programs in this cluster generally consisted of many
more cluttered workspaces than the other clusters, but the
programs were generally Disorganized. While these programs
may resemble those in the Near Misses cluster, they consist
primarily of unfinished ideas and more exploration-based coding.
This group exhibited more effort than the Exploration group, but
still had many errors. Specifically, programs in the Disorganized
group seemed to attempt to overcome early strategic error by
adding more blocks, making their programs comparably large.

Students in this cluster tended to approach the problem from
a slightly different perspective. Instead of using the set variable
block, they would often choose the change variable by block
instead. This resulted in a less intuitive and more complex
program. Students in this cluster often struggled with the logic of
setting variables. Additionally, several students in this group
would use too many blocks, often disconnected from the Start
block and presumably left as unexplored or discarded, but
interesting, ideas to the students. With the surplus of blocks, the
programs seem less organized, and the workspaces would appear
cluttered. One student used too many variables in their solution,
while another student attempted to complete this problem with
only one variable.

To address the student programs within this cluster, it would
be useful to indicate to students that they can delete blocks and
test smaller portions at a time. A possible remedy would be to
break the problem up into smaller segments for the students to
construct from the ground up.

4.2 Repeat Loop Programming Activity
Through the clustering algorithm, we again derived a total of
three clusters for this activity. We will now describe the three
clusters.

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

828

4.2.1 Exploration Cluster

The first cluster of student programs for this group was labeled
Exploration due to its similarity with the cluster from the previous
activity. There were only eight students in this cluster, with
programs consisting mostly of incomplete ideas and low effort,
while block functionality was explored broadly through small,
experimental block configurations. When observing key
differences in feature patterns for this cluster, we noticed that
programs in this cluster have a lower frequency of the set variable
block (F=48.59, p<0.0026). Additionally, programs in this cluster
were clustered as such by having fewer usages of the sequence
prompt-to-set variable, especially when inserted within a loop
(F=33.78, p<0.0026).

Figure 6: (Left) Student testing the functionality of the
repeat block; (Right) Student not inserting blocks into the
repeat block.

A key problem in four out of the eight programs in this cluster

was that students did not insert any blocks within the repeat block
as seen in Figure 6 (Right). Thus, they failed to complete a critical
portion of the program. One student did actually insert blocks into
the repeat block, but did not include other key functionality, such
as printing the result of the program. Some students seemed to be
purely testing what the repeat block performed, as was the case
with one other student as seen in Figure 6 (Left).

In addressing the issues with this cluster of student programs,
it is critical to encourage students to continue persisting in their
programming, even after exploring block functionality.
Additionally, providing worked examples of properly
implemented loops may help scaffold that difficult portion of the
exercise.

4.2.2 Near Miss Cluster

Of the students who did not complete this programming activity,
the Near Misses cluster was the most common category for these
programs. Eleven student programs fell into this cluster. These
students generally followed instructions, clearly showed signs of
significant effort, and had one or two minor mistakes in their
program.

The mistakes in these programs primarily consisted of slightly
incorrect logic. For instance, several students overwrote a variable
exactly one time in their loop, which caused the variable to not
update correctly during each iteration. One student added the two
variables together one too many times, thus resulting in a sum

that was too large (Figure 7). This error is common in
programming, analogous to “off by one” errors in looping. This
student essentially performed the loop for one additional
unnecessary iteration. Another student included all of the logical
steps that would go inside of their loop block but did not actually
use the loop block.

Figure 7: Program that added the variables one too many
times.

Similar to the Near Misses cluster in the Accumulator
Programming Activity, the students in this cluster could benefit
from hints based on addressing slight logical errors. Feedback
triggered on these common error states, such as checking to see if
a variable is getting overwritten or if the loop is iterating the
incorrect number of times, could be critical to producing a correct
program.

4.2.3 Disorganized Cluster

This cluster of student programs also consisted of eight student
programs. These programs were exclusively very large programs
that either did not follow instructions or did not adjust code from
the previous problem. Programs in this cluster seemed to be
clustered as such by having a higher frequency of the sequence
prompt-to-set variable (F=76.35, p<0.0026). Additionally, this
cluster of programs was distinguished by its higher frequency of
blocks in general (F=27.72, p<0.0026). Programs in this cluster
were also distinguished as having higher counts of blocks that
were not attached to the Start block, on average (F=16.61,
p<0.0026).

Some aspects of this cluster, such as the large number of
blocks used and a large number of blocks not attached to the Start
block, mirror the Disorganized Cluster of the Accumulator activity.
Six of the eight students used too many prompt or set variable
blocks. These students also borrowed the same structure as the
previous problem in their solution, which is only a small
component specified by the instructions. These students generally
had portions of correct logic in their programs but did not appear
to follow the provided instructions, specifically in regard to
utilizing the repeat block. Several students also had disconnected
blocks in the program, making the workspace appear cluttered.
Several other students seemed to have an overall acceptable
program structure, but had errors in their looping logic (e.g., the
prompt block was outside of the loop).

In addressing these student errors, reminding students to
change the structure from their previous program could help
encourage the correct solution. The logical flow of the two

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

829

activities is the same, but there is a fundamental difference in
structure when using a repeat block.

5 Discussion and Limitations

In clustering student programs, common patterns emerged across
both activities. Within the Accumulator and Repeat Loop
activities, we were able to distinguish Exploration, Disorganized,
and Near Miss programs. While the characteristics of the clusters
for each activity were unique to the content of that activity, the
overall patterns were similar. Exploration programs tended to be
small, modular programs that either seemed to be testing an
individual component or functionality, or they were a low-effort
attempt at assembling any sort of blocks. Feedback designed to
continue to motivate the student, or designed to encourage low
self-confidence students, could be used to address these programs.
Additionally, if the system flagged the student for this category of
programs, the instructor could provide additional support.
Disorganized programs tended to be large, cluttered programs that
frequently had blocks that were not attached to the Start block.
Students in this cluster seemed to not follow instructions.
Feedback designed to focus on the details of the program
requirements, then break the problem down into smaller focused
components could help students overcome challenges exhibited
by these programs. Students with Near Miss programs were more
intentional with the blocks they used, and often only lacked a
small component to achieve a correct submission. These programs
frequently suffered from minor logic errors, which can be
addressed through feedback. Identifying the specific logic error
state would allow for targeted feedback to address these
programs.

While this work is specific to two activities within the PRIME
environment, results from this endeavor reveal that by using
system-logged features, a clustering algorithm can identify
students who are facing common difficulties. These clusters can
be visually interpreted, which allows educators and system
designers to better understand the types of feedback students need
that is informed by the context. Since introductory CS courses
often have a high student-to-instructor ratio, clustering provides
a strategic, scalable tool that can be leveraged by both machine
and human to formatively assess and support students.

Overall, this work further highlights the need for instructors
to engage in post-hoc investigation of student errors at a more
granular level to identify what types of interventions can be
deployed to best address these struggles in future iterations of the
course. For example, while interventions such as presenting well-
chosen example programs or code-snippets may be effective
support for Near Misses, additional instruction focusing on testing
and debugging strategies may be more beneficial for students
creating Disorganized programs. While these specific clusters
may not exist for all exercises, combining data-driven approaches
with qualitative analysis can potentially move the community
towards shared taxonomies of misconceptions and a better
understanding of the effectiveness of different types of
interventions.

While this work was able to identify patterns of incomplete or
incorrect student programs, further validation is needed to make
a definitive connection between these programs and specific
student misconceptions demonstrated across multiple activities or
identified through survey instruments. Another limitation of this
work is that the clusters analyzed are specific to these PRIME
activities. However, the clustering techniques described above can
readily be applied to other block-based programming artifacts and
potentially text-based programming artifacts when n-
gram/segments of code can be defined and automatically detected.

6 Conclusion

With the goal of supporting student learning in introductory
undergraduate CS courses, we explored the use of clustering with
programs of students who did not complete two activities in the
PRIME block-based programming environment. Using system-
logged features and patterns of key block sequences (i.e., n-
grams), we identified three distinct clusters of these programs
using Bayesian Gaussian Mixture Models. The three distinct
clusters of Exploration, Disorganized, and Near Miss programs
indicated that there may be more general identifiable patterns
across block-based programs that can be automatically detected.
Identifying these in real-time could lead to a better support system
for novice programmers who may otherwise disengage from
the assignments.

In future work, it will be important to explore how to most
effectively use these clusters as a mechanism to provide adaptive
feedback for students. Additionally, it will be important to further
define key features for the analysis of student code. For example,
including features that indicate behavioral components of the
code, as well as test-case type analysis, will support more effective
code categorization. By creating and testing different feature sets
across different activities and block-based programming
environments, the community can move toward a more detailed
taxonomy of student errors and misconceptions, while at the same
time enabling researchers to investigate which types and
combinations of formative feedback, classroom instruction, and
learning activities can most effectively address the different
issues. This will also enable a more detailed comparison between
block-based and text-based programming environments, as well
as provide further insight into what learners can benefit most
from each modality and when in the learning process each
modality fits best.

It will also be informative to expand the analysis to examine
the trajectories of student programs. In addition to using the final
snapshot of code, it would also be useful to use the sequences of
student code and individual actions taken by the student as they
create their program, especially in larger, more open-ended tasks.
Beyond improving this particular learning environment, the
results call for a systematic study of student behavior in block-
based programming environments, as well as the investigation of
how best to support learners by providing guidance to address
misconceptions early in the learning process.

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

830

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under Grants DUE-1626235 and DUE-1625908. Any opinions,
findings, and conclusions expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] Akram, B., Min, W., Wiebe, E.N., Mott, B.W., Boyer, K.E. and

Lester, J.C. 2018. Improving stealth assessment in game-based
learning with LSTM-based analytics. In Proceedings of the
11th International Conference on Educational Data Mining,
208–218.

[2] Altadmri, A. and Brown, N.C.C. 2015. 37 million
compilations: Investigating novice programming mistakes in
large-scale student data. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, 522–
527.

[3] Amershi, S. and Conati, C.C. 2009. Combining Unsupervised
and Supervised Classification to Build User Models for
Exploratory. JEDM-Journal of Educational Data Mining. 1, 1,
18–71.

[4] Blei, D.M. and Jordan, M.I. 2006. Variational inference for
Dirichlet process mixtures. Bayesian Analysis. 1, 1 A, 121–
144.

[5] Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S.
and Koller, D. 2014. Programming pluralism: Using learning
analytics to detect patterns in the learning of computer
programming. Journal of the Learning Sciences. 23, 4, 561–599.

[6] Glassman, E.L., Scott, J., Singh, R., Guo, P. and Miller, R.C.
2015. OverCode: Visualizing variation in student solutions to
programming problems at scale. ACM Transactions on
Computer-Human Interaction. 22, 2, 7:1-35.

[7] Google blockly-a visual programming editor: 2013.
[8] Joyner, D.A., Salguero, E., Arrison, R., Wang, Z., Yin, K.,

Ruksana, M. and Wellington, B. 2019. From clusters to
content: Using code clustering for course improvement. In
Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 780–786.

[9] Kardan, S., Roll, I. and Conati, C. 2014. The usefulness of log
based clustering in a complex simulation environment. In
International Conference on Intelligent Tutoring Systems, 168–
177.

[10] Marin, V.J., Pereira, T., Sridharan, S. and Rivero, C.R. 2017.
Automated personalized feedback in introductory Java
programming MOOCs. In Proceedings of the International
Conference on Data Engineering, 1259–1270.

[11] Min, W., Frankosky, M.H., Mott, B.W., Rowe, J.P., Wiebe, E.,
Boyer, K.E. and Lester, J.C. 2015. DeepStealth: Leveraging
deep learning models for stealth assessment in game-based
learning environments. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence in Education,
277–286.

[12] Parihar, S., Das, R., Dadachanji, Z., Karkare, A., Singh, P.K.
and Bhattacharya, A. 2017. Automatic grading and feedback
using program repair for introductory programming courses.
In Annual Conference on Innovation and Technology in
Computer Science Education, 92–97.

[13] Price, T.W. and Barnes, T. 2015. Comparing textual and block
interfaces in a novice programming environment. In

Proceedings of the 11th International Conference on
International Computing Education Research, 91–99.

[14] Price, T.W., Dong, Y. and Barnes, T. 2016. Generating data-
driven hints for open-ended programming. In Proceedings of
the Ninth International Conference on Educational Data
Mining, 191–198.

[15] Price, T.W., Dong, Y. and Lipovac, D. 2017. iSnap: Towards
intelligent tutoring in novice programming environments. In
Proceedings of the Forty-Eighth ACM Symposium on Computer
Science Education, 483–488.

[16] Qian, Y. and Lehman, J. 2017. Students’ misconceptions and
other difficulties in introductory programming: A literature
review. ACM Transactions on Computing Education. 18, 1.

[17] Singh, R., Gulwani, S. and Solar-Lezama, A. 2013. Automated
feedback generation for introductory programming
assignments. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 15–26.

[18] Sorva, J. 2013. Notional machines and introductory
programming education. ACM Transactions on Computing
Education. 13, 2.

[19] Striewe, M. and Goedicke, M. 2014. A Review of static
analysis approaches for programming exercises. In
International Computer Assisted Assessment Conference, 100–
113.

[20] Swidan, A., Hermans, F. and Smit, M. 2018. Programming
misconceptions for school students. In Proceedings of the 2018
ACM Conference on International Computing Education
Research. August, 151–159.

[21] Ullah, Z., Lajis, A., Jamjoom, M., Altalhi, A., Al-Ghamdi, A.
and Saleem, F. 2018. The effect of automatic assessment on
novice programming: Strengths and limitations of existing
systems. Computer Applications in Engineering Education.

[22] Wang, L., Sy, A., Liu, L. and Piech, C. 2017. Learning to
represent student knowledge on programming exercises
using deep learning. In Proceedings of the 10th International
Conference on Educational Data Mining, 324–329.

[23] Watson, C. and Li, F.W. 2014. Failure rates in introductory
programming revisited. In Proceedings of the 19th Conference
on Innovation & Technology in Computer Science, 39–44.

[24] Weintrop, D. and Wilensky, U. 2017. Comparing block-based
and text-based programming in high school computer
science classrooms. ACM Transactions on Computing
Education. 18, 1, 1–25.

[25] Xie, B. and Abelson, H. 2016. Skill progression in MIT app
inventor. In Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, 213–217.

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

831

