
User-Centered Design of a Mobile Java Practice App:
A Comparison ofQuestion Formats

Mohona Ahmed
mohonaahmed@ufl.edu
University of Florida
Gainesville, Florida

Kimberly Michelle Ying
kimying@ufl.edu

University of Florida
Gainesville, Florida

Kristy Elizabeth Boyer
keboyer@ufl.edu

University of Florida
Gainesville, Florida

ABSTRACT
Learning computer science presents many challenges to students,
and providing resources for meaningful practice is recognized as a
way to support rigorous learning and diverse student participation.
At the same time, mobile phones are increasingly ubiquitous, creat-
ing an underutilized opportunity for practice outside of traditional
methods. This experience report presents a user-centered approach
to designing a practice app for introductory Java. We investigated
user preferences through a series of small studies, first conduct-
ing think-aloud sessions and focus groups, and finally conducting
a usability study comparing two prototype versions. The initial
studies suggested how to leverage the affordances of small screens,
ruling out free-response practice problems in favor of either fill-in-
the-blank (FB) or multiple-choice (MC) questions. The comparison
study revealed statistically significant differences in students’ sur-
vey responses: (1) usability scores were significantly higher for the
MC version than the FB version; (2) students reported significantly
greater satisfaction and desire to learn for the MC version; and (3)
students reported enjoying and being more comfortable with the
MC version compared to the FB version. We contextualize this ob-
servation within related research on question formats. Takeaways
from this experience report can provide guidance on designing
mobile applications that give students opportunities for meaningful
practice.

CCS CONCEPTS
• Social andprofessional topics→Computing education;Com-
puter science education; Adult education; • Human-centered
computing;

KEYWORDS
Question formats; introductory programming; user-centered de-
sign; mobile practice application

ACM Reference Format:
Mohona Ahmed, Kimberly Michelle Ying, and Kristy Elizabeth Boyer. 2020.
User-Centered Design of a Mobile Java Practice App: A Comparison of
Question Formats. In The 51st ACM Technical Symposium on Computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366942

Science Education (SIGCSE ’20), March 11–14, 2020, Portland, OR, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.3366942

1 INTRODUCTION
Novices learning computer science may find it challenging to solid-
ify coding concepts. Providing meaningful practice opportunities
to engage students can strengthen their grasp of computer science
knowledge [11]. Many tools have been developed to aid students
in learning computer science; however, an underutilized platform
for practice problems is mobile applications. Although research has
been done on incorporating mobile applications for practice within
the classroom [6], offering a practice tool that can be used outside
the classroom could be especially useful for students.

Mobile applications are ubiquitous and are used often in the
day-to-day lives of young adults. In 2018, 95% of teens in the U.S. re-
ported having access to a smartphone [2]. The Pew Research Center
also reported that smartphone ownership is "universal," as access is
not significantly different across gender, race/ethnicity, and socioe-
conomic backgrounds, in contrast to a computer, for which access
varies by level of education among parents and household income.
Additionally, many students in American colleges reported using
their phone "very often" or "fairly often" to get information quickly
(73%) or when they are bored (77%) [9]. Given their widespread
use, mobile applications are a promising platform for educational
initiatives. Mobile tools can provide meaningful opportunities for
students to practice and reinforce concepts in a way that fits their
lifestyle.

This experience report outlines the user-centered process we fol-
lowed for designing a mobile practice app for Java. It discusses key
takeaways and design decisions resulting from the small studies we
conducted. User input from think-aloud sessions and focus groups
informed the development of two versions of an initial prototype.
We focused largely on the decision for an appropriate question
format, specifically comparing multiple-choice (MC) and fill-in-the-
blank (FB) versions of an otherwise identical mobile app in the
A/B testing phase. Seventeen participants from collegiate computer
science courses were recruited to use each version and report their
experience through completion of a three-pronged survey that eval-
uated usability, motivation to learn, and perceived effectiveness.
After the participants used both versions of the application, they
were given an additional survey of questions that asked them to
compare the two versions directly.

This paper provides novel contributions to the computer science
education community, including an overview of the user-centered
design approach and insights on design decisions for mobile prac-
tice applications. The design process used to create the prototype
can be followed to create other applications and potentially make

Paper Session: Learning Tools  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1158

https://doi.org/10.1145/3328778.3366942
https://doi.org/10.1145/3328778.3366942
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3328778.3366942&domain=pdf&date_stamp=2020-02-26


them more motivating for students to use. Additionally, this paper
gives insight on the benefits and shortcomings of implementing
two different question formats for a mobile application used for
practice. The findings in this paper can inform those interested
in developing or using mobile practice tools to support student
learning.

2 BACKGROUND
There has been considerable effort invested in creating learning
tools for students in computer science such as coding environments
[21, 29], virtual tutors [5], serious games [27], in-class assessment
tools [20], web applications [8], and feedback tools [28]. Most of
these learning tools were created to be used on a traditional com-
puter or laptop. While the latter two learning tools are web-based,
only Zheng and colleagues emphasize their in-class feedback tool
for use on mobile devices [28]. This avenue could be underinves-
tigated due to the challenges of adapting to a small screen size.
Despite this limitation, mobile tools such as an in-class visualiza-
tion tool have been implemented, showing that mobile devices are
a viable platform for learning tools [6]. To initiate the development
of mobile tools, the interfaces of mobile applications need to be
designed to accommodate for the "reduction in real estate" due to
their small screen size [4]. One practical approach for creating a
mobile Java practice app is to follow a user-centered design pro-
cess. This process is used commonly in industry (e.g., [12]), leads
to better products using fewer resources [26], and makes product
development more efficient and effective [1].

Conventional ways to practice coding involve writing out code,
which is difficult to do on a mobile phone. Another method of prac-
ticing coding, such as answering multiple-choice or fill-in-the-blank
questions, must be facilitated instead. Educators might suspect that
a student would learn less from not writing out code, but Harring-
ton and Cheng found no statistically significant difference in the
achievement gap of students who traced code versus those who
wrote it [10]. Utilizing code tracing questions for a practice tool
aimed toward novice programmers may also be beneficial, since it
is suggested that beginners trace code before writing out code [16].
These findings motivate the use of practice questions on mobile
platforms which exclusively require code tracing instead of writing
out code.

This study investigates two question formats based around trac-
ing code: multiple-choice (MC) and fill-in-the-blank (FB) questions.
Specifically, students had to read snippets of code and complete
the code to obtain a desired output. A sample question from the
FB prototype is "Write a statement that fills in the blank so that
the loop runs 4 times". Similarly, for the MC prototype, the synony-
mous sample question is "Pick the statement that fills in the blank
so that the loop runs 4 times". While both these formats incorpo-
rate tracing code, there may exist skepticism between the question
formats with regards to their success in helping students practice.
Computer science educators may believe that FB questions help
students learn more than MC questions, given it is more similar
to writing out code. MC, or "closed" question formats, can actually
be good for question design because they can promote students to
think about all aspects of a question by "remind[ing] respondents of
material that they may otherwise not consider" [23]. FB questions,
on the other hand, require more cognitive load because students

(a) Our Process (b) Alternative Process

Figure 1: a) Our process involved think-aloud sessions and
focus groups independently influencing A/B testing. (b) An
alternative process could involve strictly sequential user
studies.

must think of their own answers that are not primed or scaffolded
by answer choices. Educational psychologists who study cognitive
load theory describe the limitations of working memory and the
learning difficulties that can arise from high cognitive load [24].
Cognitive load is especially important to consider in the context of
an educational mobile app, since users may be on-the-go, possibly
riding the bus or walking from one class to the next, with their
attention divided.

3 USER-CENTERED DESIGN PROCESS
This section describes a user-centered design process and defines
techniques for gathering user feedback. This approach involves
using a series of user studies to inform the design of a prototype.
This paper used think-aloud studies, focus groups, and A/B testing
to curate and iterate on the prototype design. For best results, user
feedback should be solicited early and often throughout the process.

Note that in our user study, the focus groups and think-aloud
studies independently informed the design of the initial prototype
(see Figure 1a), but we also recommend a sequential approach in
which the focus group findings impact the design of the paper
prototype used in the think-aloud studies (see Figure 1b).
3.1 Focus Group Overview
Focus groups are a great way to understand the wants, needs, and
opinions of end users. Before exerting resources toward developing
a new product, we must determine whether the target users have
an interest in it. As the name implies, focus groups involve facili-
tating a group of participants to focus on and discuss a particular
topic or set of topics. A moderator uses a semi-structured inter-
view protocol, which outlines the topics and questions, to direct
the conversation. The ideal size of a focus group depends on the
topic and the familiarity that participants have with the topic, but
Krueger and Casey recommend groups of five to eight participants
for noncommercial topics [14]. The moderator should preface the
focus group by explaining to all participants that their input is
valuable. During the session, the moderator should be impartial
and ensure every participant has a chance to express their thoughts,
calling on specific individuals to contribute when necessary.
3.2 Think-Aloud Overview
After summarizing user needs, developers can define user require-
ment specifications and start designing a prototype. Think-aloud
studies can be conducted to observe users interacting with a proto-
type and understand their thought process. A think-aloud study is
generally a one-on-one session in which an investigator asks the

Paper Session: Learning Tools  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1159



participant to complete a series of tasks using the prototype while
describing what they are thinking.

Think-aloud studies are valuable and economical ways to ob-
tain usability feedback at different stages of development. During
early stages, a think-aloud study using a low-fidelity prototype
can inform high-level design decisions such as layout and flow. A
low-fidelity prototype, commonly referred to as a wireframe (e.g.,
Figure 2), is a simple mock-up of an application that allows for
feedback on the high-level design idea and application flow by leav-
ing out fine details. During later stages, a think-aloud study using
a high-fidelity prototype can inform low-level design decisions
such as typography, color scheme, and icons, as well as high-level
design decisions. A high-fidelity prototype is functional and de-
tailed, closely resembling the final product (see Figure 4 and Section
4.5 for more detail). Even after deployment, think-aloud studies
can be conducted on completed applications to determine areas of
improvement.
3.3 A/B Testing Overview
A/B testing can be used to understand the advantages and disadvan-
tages of two versions of an application. Specifically, the versions
should be identical except for the one feature or aspect in question.
High-fidelity prototypes or deployed applications are most appro-
priate for A/B testing. There are many different ways to conduct
A/B testing and sometimes the goal is not just improved usability,
but potentially greater profits [13]. Web developers commonly de-
ploy to a live site and randomly direct traffic between two versions
to test new features. Analysis for this type of A/B testing generally
involves checking traffic logs or user flow patterns.

For more direct feedback from users, participants in A/B testing
should complete surveys on their experiences. The System Usability
Scale (SUS) is a validated 10-item survey that is widely used as an
industry tool to evaluate the usability of a system or application
[3, 19]. Participants score each of the 10 items, such as "I thought the
system was easy to use," on a five-point Likert scale from "Strongly
Agree" to "Strongly Disagree". The SUS can be modified to replace
all instances of "system" with a more appropriate word to describe
the technology in question. We used "application" for our studies.

Another important decision for A/B testing is whether to use a
within-subjects or between-subjects experimental design. A within-
subjects design is when all participants use both versions, in con-
trast to a between-subjects design in which each participant only
uses one of the versions. Our A/B testing employed a within-
subjects design so that we could include survey questions that
asked users to directly compare the two versions. Although awithin-
subjects design has the advantage of allowing a direct comparison
of versions, it is important to be aware of possible order effects, such
as users learning or being biased from one condition to the next.
Counterbalancing is a popular method to minimize order effects
[18]. In the context of A/B testing, the participants are split into
two groups of equal sizes; one group uses Version A first and the
other group uses Version B first (see Figure 3).

4 PILOT STUDIES AND FINDINGS
4.1 Laying the Groundwork
All user studies were conducted at a large public university in the
Southeastern United States in Fall of 2018 and Spring of 2019. For

Figure 2: Low-fidelity paper prototype of the multiple-
choice version of the mobile application, which was used in
the think-aloud sessions.

each user study (think-aloud, focus group, or A/B testing), new par-
ticipants were recruited such that no student participated in more
than one user study. Thirty-five participants were recruited from
one of three computer science courses: Computer Programming us-
ing Java for non-majors (CS0), Programming Fundamentals 2 (CS2),
and Introduction to Computer Organization. Participants ranged
in age from 18 to 25. Additional demographic information will be
provided in more detail for each user study below. All of the studies
reported here were conducted within IRB-approved protocol and
students provided informed consent. Students who consented were
offered extra credit for their participation, and there was no penalty
for students who did not participate.
4.2 Initial Prototype Design Choices
The prototype built is intended for use on a mobile device, designed
for a user to practice programming concepts in Java. Each prac-
tice question included a snippet of code for the user to trace, and
they had to complete one of the lines of code to obtain a desired
output. The original wireframe used only a MC question format
for uniformity during the think-aloud study (see Figure 2). Partic-
ipants used the mobile prototype to practice questions regarding
the programming concept of loops. This concept was chosen be-
cause participants were already introduced to it in their courses.
This reflects how we expect participants to use the final product,

Figure 3: A/B testing within-subjects experimental design.
Seven participants followed path 1 and ten followed path 2.
Ideally these two groupswould be equal, but due to absences,
this was not the case for our pilot study.

Paper Session: Learning Tools  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1160



(a) (b) (c)

(d) (e) (f)

Figure 4: High-fidelity screenshots of themobile application
prototype.

as practice after being introduced to it in class. Participants were
also given feedback every time they picked an answer based on the
number of times an incorrect answer was chosen. Once the user
exhausted three attempts on a question or answered the question
correctly, an explanation on how to solve the question was given.

4.3 Think-Aloud Study
4.3.1 Experimental Process. The think-aloud study was conducted
to evaluate the perception of our initial mock-up for the mobile
app. Four students from the CS0 course participated in a think-
aloud session. Three participants were female and one was male,
and they ranged in age from 18 to 21 years old. The participants
were given a low-fidelity paper prototype and were asked to ver-
bally communicate their first impressions of design features while
performing tasks (see Figure 2). The layouts and widgets of the
prototype’s wireframe were designed using an online tool, InVi-
sion1. These components were printed and cut out to be presented
to the participants. To mimic animations that the application would
have, the cutouts of the application were moved and verbalized
by the researcher conducting the think-aloud session according to

1https://www.invisionapp.com/

the participant’s gestures. These sessions were recorded and later
transcribed to document user suggestions and feedback.

In addition to the user interface design, the wireframe included
practice coding questions inspired by computer science textbooks
such as Programming in Java from zyBooks [17] and Introduction
to Java Programming [15] and written by the authors of this paper.
This is more detail than usual for a low-fidelity prototype, but we
felt it was necessary for participants to be able to contextualize the
interface.

4.3.2 Key Takeaways. The original design presented in the think-
aloud sessions was a wireframe of the multiple-choice version
of the application. It limited the user to three attempts on the
practice problems since there were only four answer choices. The
prototype also provided unique feedback to users after attempting
each question. Restricting the number of attempts a user has to
complete the problem received no negative feedback. Additionally,
none of the participants mentioned wanting fewer or more attempts
for each question, but they were not specifically asked about this.
Participants also had positive sentiments toward the answer-choice
feedback feature.

4.4 Focus Group Study
4.4.1 Experimental Process. A focus group study was conducted to
evaluate user preferences for practicing Java and determine how a
mobile prototype could be adapted to fulfill those needs. The focus
group study included 14 students in total, with 13 students from CS0
and one student from Introduction to Computer Organization. Five
participants were female and nine were male, and their ages ranged
from 19 to 25 years old. We aimed to have five to six participants in
each focus group, but there were absences and scheduling conflicts
when conducting this study. Four focus groups were conducted:
two five-participant groups, one three-participant group, and one
one-participant interview. Participants were asked questions such
as "What types of practice questions would be most helpful for you
in learning Java?" and were able to discuss their responses among
one another. This study was used to gauge interest and gather user
requirements for a mobile Java practice app.

4.4.2 Key Takeaways. In the focus groups, participants were asked
about the types of questions they would expect in a mobile ap-
plication to practice Java. Participants understood the limitations
of working on a small screen and therefore mentioned question
types such as writing short but complete pieces of code or matching
definitions to concepts. To accommodate the concern of interface
size while considering student suggestions, we explored the trade-
offs between different question types and decided that MC or FB
questions would be preferred by users.

During the focus group discussions, students presented concerns
with screen size in the case that questions required long blocks
of text. Many disliked the implementation of a scroll view for the
entire question; they preferred all of the information on a single
page view (see Figures 4c-f). Instead of users scrolling through
the entire content, widgets were chosen to implement the idea
of presenting all components of a question on a single page. If
individual sections of the interface required more space for text,
the user would be able to scroll through the widgets themselves.

Paper Session: Learning Tools  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1161



4.5 High-Fidelity Prototype
The feedback on the paper prototypes, the discussions of ideal
application features, and insight from studying practices informed
the user interface of the high-fidelity prototype. This prototype is
not a full-fledged application but rather a proof of concept.

The prototype was built on iOS using the development environ-
ment Xcode. The prototype includes a splash page (Figure 4a), a
topic selection page (Figure 4b), and a question page (see Figures
4c-f for examples). The question page has navigation tools at the
top right of the screen for progressing through the questions, and
a section below the code snippet that contains either buttons for
different answer options (MC version), or a text field for users to
input their answer (FB version). Once the user inputs the answer,
the question area moves down to provide feedback (see Figures
4d-e). A pop-up feature is incorporated to tell the user if the answer
chosen was right or wrong (see Figure 4c). To notify the user that
attempts have been exhausted or a correct answer has been chosen,
the feedback window and either the button with the correct answer
(MC version) or the input bar (FB version) changes in color Figure
4f).

Each version of the prototype consisted of an identical set of
four coding questions on the concept of loops. As this prototype is
merely a proof of concept, a fully developed prototype will have a
more complete set of questions. Since data collection was focused
on survey responses and not on practice score, researchers decided
that having four practice questions was enough for the participant
to develop an opinion of the experience with the prototype.

4.6 A/B Testing
4.6.1 Experimental Process. Seventeen participants tested two ver-
sions of a mobile prototype outside of class hours. This study pro-
cess included three students from CS0 and 14 students from CS2.
Sixteen participants had ages between 18 to 22; one participant
did not disclose their age. Thirteen participants were male and
four were female. Each participant went through the study process
one at a time with a researcher. Following traditional A/B testing
methodology, the participant would individually use both versions
of the prototype. The versions were identical except for the question
format; Version A consisted of fill-in-the-blank (FB) questions, and
Version B consisted of multiple-choice (MC) questions. To minimize
order effects resulting from the within-subjects design, roughly half
(n=10, 58.82%) of the participants were given Version A (FB) first
and the rest (n=7, 41.18%) used Version B (MC) first, as shown in
Figure 3.

Identical surveys were given after the participants used each
version of the prototype. The survey consisted of three sections:
the System Usability Scale (SUS) [3], a section regarding Satisfac-
tion/Desire to Learn, and an Effectiveness section. We created six
items each for the latter two sections. An example item from the
Satisfaction/Desire to Learn section is "This application meets my
expectations for a mobile application for practicing Java." An ex-
ample item from the Effectiveness section is "I feel more confident
in my mastery of Java concepts because of this system." For each
section, the participants were given a series of statements to rate
using a Likert scale. The SUS and the Satisfaction/Desire to Learn
sections were based on a 5-point Likert scale from Strongly Dis-
agree (1) to Strongly Agree (5). The Effectiveness section was based

on a 7-point Likert scale from Strongly Disagree (1) to Strongly
Agree (7).

To quantitatively analyze the participant responses, the ques-
tions in each section of the survey were aggregated for analysis. A
paired t-test was used on these aggregate responses by converting
the participant reportings to numerical values. For example, if a
participant chose "Strongly Disagree," the response would be given
a numerical value of 1. To account for responses to the negative
statements, the assigned numerical responses were reversed. For ex-
ample, if a participant chose "Strongly Disagree" for the statement
"I would not use this application in the future," the numerical value
assigned to this question would be a 5 instead of a 1 for analysis.
We performed a two-tailed paired t-test using an alpha level of 0.05
and 16 degrees of freedom.

As SUS is an established usability metric, we calculated and
interpreted the SUS score following the traditional procedure [25].
SUS scores of 68 or higher are considered acceptable.

After participants used both versions of the prototype and re-
ported their experiences in the identical surveys, they were asked to
complete an additional survey. The survey required them to directly
compare the two versions based on four questions. This comparison
survey was analyzed using a one sample test of proportions. See
Table 1 for the questions.
4.6.2 Key Findings. System Usability Scale (SUS). The System
Usability Scale was used to measure the usability of the prototype
versions on a 100-point scale. Students reported that theMC version
was more usable than the FB version. The MC version yielded a
mean score of 78.97 (SD=12.69, n=17) and the FB version yielded a
mean score of 66.18 (SD=14.39, n=17). This difference is statistically
significant (paired-samples t-test, t(16)=4.14, p=0.0008).

Satisfaction/Desire to Learn. The Satisfaction/Desire to Learn
section was used to gain insight on the motivation users would
have to use an application similar to the prototype used in this pilot
study. Aggregate scores for this section were out of 30. Students
reported higher scores for MC than FB, meaning that students
may be more willing to use an application with multiple-choice
questions. The MC version yielded a mean score of 21.12 (SD=5.62,
n=17) and the FB version yielded a mean score of 18.76 (SD=5.32,
n=17). This difference is statistically significant (paired-samples
t-test, t(16)=2.33, p=0.0334).

Effectiveness.The Effectiveness sectionwas used to understand
the user’s perceived effectiveness of the app on their Java learning.
Aggregate scores for this section were out of 42. The MC version
yielded a mean score of 30.59 (SD=6.35, n=17) and the FB version
yielded a mean score of 29.00 (SD=6.82, n=17). This difference is not
statistically significant (paired-samples t-test, t(16)=1.22, p=0.2387).

Comparison of versions. Participants were asked four ques-
tions on preference between the two versions of the prototype.
Students reported enjoying the MC version more than the FB ver-
sion (one sample test of proportions, p = 0.0023). They were also
more comfortable using the MC version compared to the FB version
(one sample test of proportions, p=0.0003). See Table 1 for more
details.

5 DISCUSSION
This experience report describes a user-centered design approach
for the development of a mobile practice application for Java. The

Paper Session: Learning Tools  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1162



Table 1: Results from the one sample test of proportions for the comparison of versions survey. Items that are bold and itali-
cized are statistically significant.

prototype was designed for college students to provide meaningful
and easily accessible opportunities for practicing programming con-
cepts. Early in the design process, users expressed concerns about
using an educational application on a mobile platform because of
the limited screen size. This concern sparked the investigation to
determine what question format would be most appropriate for
practice problems on the app.

Focus groups and think-aloud sessions were important sources
of insight which directly informed the design. For instance, students
who participated in the think-aloud study preferred the implementa-
tion of a single-page view over a scrolling view. Single-page views
require less working memory, which is especially important to
minimize in this context, since users will be using much of their
cognition on solving the problem. Additionally, participants in the
focus groups expressed interest in receiving feedback when ap-
proaching a question to help facilitate further understanding of
the concepts presented. This also informed the decision to provide
feedback even on correct answers so that learners could double
check their reasoning.

In efforts to curb issues of limited screen size, we investigated
what question format would be most appropriate for a mobile prac-
tice application. Ruling out implementation of a question design
that requires a user to type code in a free response manner, we nar-
rowed down the choices to a comparison study of multiple-choice
(MC) versus fill-in-the-blank (FB) questions.

Results from the A/B testing revealed statistical differences in
the student survey responses. The usability scores for the MC ver-
sion were significantly higher than the scores reported for the FB
questions. Applications with SUS scores above 68 are considered
acceptable. Since the FB version had an average SUS score of 66.18,
it is just under the threshold for acceptability, while the MC version
is well over the threshold with a SUS score of 78.97. The compari-
son survey also indicated significantly greater student satisfaction
and desire to learn for the MC version. Users may have found the
MC version to be more usable, satisfactory, and desirable due to its
convenience and simplicity. Students also reported greater enjoy-
ment and being more comfortable with the MC version. The overall
preference for the MC version may be attributed to it requiring less
cognitive load from the user. Considering that students using this
app will likely be tracing the code in their head (not using scratch
paper), the added effort of answering via FB may cause cognitive
overload. Renkl and Atkinson suggest minimizing cognitive load
during initial cognitive skill acquisition, gradually increasing prob-
lem difficulty overtime since cognitive load gradually decreases
[22]. For these reasons, MC questions on mobile applications for

CS may be most appropriate to motivate repeated practice among
novices.

This design process makes a case that meaningful practice op-
portunities can be provided by a mobile application. Specifically,
the prototype supports the integration of MC questions into mobile
applications for practicing Java. This experience demonstrates that
a user-centered approach can give valuable insight into the effect
of application features such as question type on the user experience
within a mobile learning tool
Limitations. As the development of this application is in its early
stages, its impact on student learning has not yet been investigated.
Participants had relatively short interactions with each prototype
before completing the surveys on their experiences. Future studies
are needed to evaluate the final application’s real-world usability
and effectiveness.

6 CONCLUSION AND FUTUREWORK
The goal of this work was to gain insight regarding what users
would prefer from a mobile application for practicing Java. We used
an iterative design process and user-centered approach to curate the
design of the prototype. Compared to the fill-in-the-blank version,
the multiple-choice version of the prototype (1) had significantly
higher usability scores, (2) resulted in greater satisfaction and desire
to learn, and (3) was more enjoyable and comfortable to use.

This prototype is still in the early stages of development, with
only three iterations of the design. More user studies will be con-
ducted to refine the prototype’s usability. Specifically, we will solicit
user feedback on different implementations of inter-question navi-
gation: (1) should users be able to navigate and edit their answers
to previous questions or (2) should users be required to complete
one question before advancing to the next? We will also explore
other types of question formats like Parson’s problems [7], which
involve dragging and dropping code snippets to create a program
instead of writing out code.

In the future, we plan to develop the prototype into a fully func-
tioning system and incorporate an intelligent tutoring system that
will give users automated feedback and present appropriate practice
problems according to their progress and understanding of each
concept. Once user studies establish that the design is preferable
and has high usability scores, we will test the application’s ability
to improve learning gains. Insights from investigating the relation-
ship between usage and learning gain will be used to improve the
application and create an even better opportunity for meaningful
practice.

Paper Session: Learning Tools  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1163



ACKNOWLEDGMENTS
The authors are grateful to the members of the LearnDialogue
Group for their help and encouragement. This material is based
upon work supported by the National Science Foundation under
grant CNS-1622438. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES
[1] Chadia Abras, Diane Maloney-Krichmar, and Jenny Preece. 2004. User-Centered

Design. Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thou-
sand Oaks: Sage Publications 37, 4 (2004), 445–456. https://doi.org/10.3233/
WOR-2010-1109

[2] Monica Anderson and Jingjing Jiang. 2018. Teens, Social Media & Technology 2018.
Technical Report May. Pew Research Center.

[3] John Brooke. 1996. SUS: A ’quick and dirty’ usability scale. In Usability evaluation
in industry. 189–194.

[4] Qunicy Brown, Frank J. Lee, Dario D. Salvucci, and Vincent Aleven. 2008. The
design of a mobile intelligent tutoring system. In Proceedings of the 9th Inter-
national Conference on Intelligent Tutoring Systems. http://www.cs.drexel.edu/
{~}salvucci/publications/Brown-ITS08b.pdf

[5] Alan de Oliveira Santana and Eduardo Aranha. 2019. An approach to generate
virtual tutors for game programming classes. In SIGCSE 2019 - Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 246–252.
https://doi.org/10.1145/3287324.3287414

[6] Debzani Deb, M. Muztaba Fuad, and Mallek Kanan. 2017. Creating engaging
exercises with mobile response system (MRS). In Proceedings of the Conference on
Integrating Technology into Computer Science Education, ITiCSE. 147–152. https:
//doi.org/10.1145/3017680.3017793

[7] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new
exam question: Parsons problems. ICER ’08 Proceedings of the Fourth International
Workshop on Computing Education Research (2008), 113–124. https://doi.org/10.
1145/1404520.1404532

[8] Margaret Ellis, Clifford A. Shaffer, and Stephen H. Edwards. 2019. Approaches
for coordinating eTextbooks, online programming practice, automated grading,
and more into one course. In SIGCSE 2019 - Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 126–132. https://doi.org/10.1145/
3287324.3287487

[9] Richard C Emanuel. 2013. The American college student cell phone survey.
College Student Journal 47, 1 (2013), 75–81. http://ovidsp.ovid.com/ovidweb.cgi?
T=JS{&}PAGE=reference{&}D=psyc10{&}NEWS=N{&}AN=2013-10664-008

[10] Brian Harrington and Nick Cheng. 2018. Tracing vs. writing code: Beyond
the learning hierarchy. In SIGCSE 2018 - Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. 423–428. https://doi.org/10.1145/
3159450.3159530

[11] Beryl Hoffman, Ralph Morelli, and Jennifer Rosato. 2019. Student engagement is
key to broadening participation in CS. In SIGCSE 2019 - Proceedings of the 50th
ACM Technical Symposium on Computer Science Education. 1123–1129. https:
//doi.org/10.1145/3287324.3287438

[12] Eeva Kangas and Timo Kinnunen. 2005. Applying user-centered design to mobile
application development. Commun. ACM 48, 7 (2005), 55–59. https://doi.org/10.

1145/1070838.1070866
[13] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann.

2013. Online controlled experiments at large scale. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Vol. Part F1288. 1168–1176. https://doi.org/10.1145/2487575.2488217

[14] Richard A. Krueger and Mary Anne Casey. 2014. Participants in a Focus Group.
In Focus Groups A Practical Guide for Applied Research (5th ed.). 63–84.

[15] Y. Daniel Liang. 2015. Loops. In Introduction to Java Programming (10th ed.).
Pearson Education, Inc., 157–202.

[16] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further evidence of
a relationship between explaining, tracing and writing skills in introductory
programming. In Proceedings of the Conference on Integrating Technology into
Computer Science Education, ITiCSE. 161–165. https://doi.org/10.1145/1562877.
1562930

[17] Roman Lysecky and Adrian Lizarraga. 2012. Programming in Java. zyBooks.
https://www.zybooks.com/catalog/programming-in-java/

[18] I. Scott MacKenzie. 2013. Desigining HCI Experiments. In Human-Computer
Interaction: An Empirical Research Perspective (1st ed.). 157–190.

[19] S Camille Peres, Tri Pham, and Ronald Phillips. 2013. Validation of the system
usability scale (SUS): SUS in the wild. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, Vol. 57. SAGE Publications Sage CA: Los
Angeles, CA, 192–196.

[20] Leo Porter, Daniel Zingaro, and Raymond Lister. 2014. Predicting student success
using fine grain clicker data. ICER 2014 - Proceedings of the 10th Annual Inter-
national Conference on International Computing Education Research September
(2014), 51–58. https://doi.org/10.1145/2632320.2632354

[21] Thomas W. Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards
Intelligent Tutoring in Novice Programming Environments. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education. 483–488.
https://doi.org/10.1145/3159450.3162202

[22] Alexander Renkl and Robert K. Atkinson. 2010. Structuring the Transition From
Example Study to Problem Solving in Cognitive Skill Acquisition: A Cognitive
Load Perspective. Educational Psychologist 38, 1 (2010), 15–22. https://doi.org/
10.1207/S15326985EP3801

[23] Fritz Strack and Norbert Schwarz. 2007. Asking questions: Measurement in the
social sciences. In Psychology’s territories: Historical and contemporary perspectives
from different disciplines. 225–250.

[24] J Sweller, P Ayres, and S Kalyuga. 2011. Cognitive load theory. 89–98 pages.
https://doi.org/10.1007/978-1-4419-8126-4_7

[25] U.S. Department of Health & Human Services. 2013. System Usabil-
ity Scale (SUS). https://www.usability.gov/how-to-and-tools/methods/
system-usability-scale.html

[26] U.S. Department of Health & Human Services. 2017. Benefits of User-Centered
Design. https://www.usability.gov/what-and-why/benefits-of-ucd.html

[27] Stacey Watson and Heather Richter Lipford. 2019. Motivating students beyond
course requirements with a serious game. In SIGCSE 2019 - Proceedings of the
50th ACM Technical Symposium on Computer Science Education. 211–217. https:
//doi.org/10.1145/3287324.3287364

[28] Jun Zheng, Sohee Kang, and Brian Harrington. 2019. Immediate feedback col-
laborative code tracing. In Proceedings of the 24th Western Canadian Conference
on Computing Education, WCCCE 2019. 12–13. https://doi.org/10.1145/3314994.
3325087

[29] Rui Zhi, Thomas W. Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. 2019. Exploring the impact of worked examples in a novice pro-
gramming environment. In SIGCSE 2019 - Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 98–104. https://doi.org/10.1145/
3287324.3287385

Paper Session: Learning Tools  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1164

https://doi.org/10.3233/WOR-2010-1109
https://doi.org/10.3233/WOR-2010-1109
http://www.cs.drexel.edu/{~}salvucci/publications/Brown-ITS08b.pdf
http://www.cs.drexel.edu/{~}salvucci/publications/Brown-ITS08b.pdf
https://doi.org/10.1145/3287324.3287414
https://doi.org/10.1145/3017680.3017793
https://doi.org/10.1145/3017680.3017793
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/3287324.3287487
https://doi.org/10.1145/3287324.3287487
http://ovidsp.ovid.com/ovidweb.cgi?T=JS{&}PAGE=reference{&}D=psyc10{&}NEWS=N{&}AN=2013-10664-008
http://ovidsp.ovid.com/ovidweb.cgi?T=JS{&}PAGE=reference{&}D=psyc10{&}NEWS=N{&}AN=2013-10664-008
https://doi.org/10.1145/3159450.3159530
https://doi.org/10.1145/3159450.3159530
https://doi.org/10.1145/3287324.3287438
https://doi.org/10.1145/3287324.3287438
https://doi.org/10.1145/1070838.1070866
https://doi.org/10.1145/1070838.1070866
https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/1562877.1562930
https://www.zybooks.com/catalog/programming-in-java/
https://doi.org/10.1145/2632320.2632354
https://doi.org/10.1145/3159450.3162202
https://doi.org/10.1207/S15326985EP3801
https://doi.org/10.1207/S15326985EP3801
https://doi.org/10.1007/978-1-4419-8126-4_7
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/what-and-why/benefits-of-ucd.html
https://doi.org/10.1145/3287324.3287364
https://doi.org/10.1145/3287324.3287364
https://doi.org/10.1145/3314994.3325087
https://doi.org/10.1145/3314994.3325087
https://doi.org/10.1145/3287324.3287385
https://doi.org/10.1145/3287324.3287385

	Abstract
	1 Introduction
	2 Background
	3 User-Centered Design Process
	3.1 Focus Group Overview
	3.2 Think-Aloud Overview
	3.3 A/B Testing Overview

	4 Pilot Studies and Findings
	4.1 Laying the Groundwork
	4.2 Initial Prototype Design Choices
	4.3 Think-Aloud Study
	4.4 Focus Group Study
	4.5 High-Fidelity Prototype
	4.6 A/B Testing

	5 Discussion
	6 Conclusion and Future Work
	Acknowledgments
	References



