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ABSTRACT
Physical event detection has long been the domain of static event
processors operating on numeric sensor data. This works well for
large scale strong-signal events such as hurricanes, and important
classes of events such as earthquakes. However, for a variety of
domains there is insufficient sensor coverage, e.g., landslides, wild-
fires, and flooding. Social networks have provided massive volume
of data from billions of users, but data from these generic social
sensors contain much more noise than physical sensors. One of the
most difficult challenges presented by social sensors is concept drift,
where the terms associated with a phenomenon evolve and change
over time, rendering static machine learning (ML) classifiers less
effective. To address this problem, we develop the ASSED (Adap-
tive Social Sensor Event Detection) framework with an ML-based
event processing engine and show how it can perform simple and
complex physical event detection on strong- and weak-signal with
low-latency, high scalability, and accurate coverage. Specifically,
ASSED is a framework to support continuous filter generation and
updates with machine learning using streaming data from high-
confidence sources (physical and annotated sensors) and social
networks. We build ASSED to support procedures for integrating
high-confidence sources into social sensor event detection to gen-
erate high-quality filters and to perform dynamic filter selection by
tracking its own performance. We demonstrate ASSED capabilities
through a landslide detection application that detects almost 350%
more landslides compared to static approaches. More importantly,
ASSED automates the handling of concept drift: four years after
initial data collection and classifier training, ASSED achieves event
detection accuracy of 0.988 (without expert manual intervention),
compared to 0.762 for static approaches.

CCS CONCEPTS
• Information systems → Social networks; Data management
systems; • Applied computing→ Event-driven architectures.

KEYWORDS
AI/ML for event processing, social sensors, event processing in big
and fast data, resilience

1 INTRODUCTION
Increasing volume of web and social media data combined with pro-
liferation of Internet connectivity has paved the way for social sen-
sors, which are composed of social media and web streams, to have
global coverage. These social sensors, including Twitter streams,
Facebook posts, blog posts, and other web-data generated by hu-
mans, provide access to massive amounts of raw data that can be

mined to obtain information for a variety of domains [13, 16, 19, 37],
including physical event detection. This entails building social
source event detection frameworks to support development of ap-
plications that ingest social sensor data and perform simple and
complex physical event detection. A key challenge in this area (com-
plex physical event detection) lies in the distinction between nu-
meric data âĂŞ a staple of complex event processing âĂŞ and social
sensor data; the latter is a primarily short text continuous stream
that is difficult to represent with human-readable numeric features.
Moreover, social network text data is live data characterized by
a language model that incorporates not only user demographics
and geography, but also time [18], causing terms and features as-
sociated with a physical events to change with time. For example,
text data about landslide events change in their data distribution
in October and November in the United States because landslide is
often used to refer to election results more than the actual disaster
landslide. We refer to the terms, features, and signals associated
with a physical event at any time as event characteristics.

We differentiate physical event detection on social sensors from
trend analysis: (i) we design our framework to accommodate strong-
and weak-signal events, while trend analysis is usable on only the
former and (ii) trend analysis assumes data is generated by a known
stochastic model; conversely, as we show in Section 3, social media
text data’s language model incorporates unknowable features.

Therefore, social sensor text data presents a significant challenge
for traditional ML classifiers and complex event processing systems,
which operate in an offline or stationary setting where event char-
acteristics do not change with time. Social source event detection
systems that do not incorporate adaptation to evolving text streams
face performance degradation over time; a representative example
is Google Flu Trends (GFT). GFT was originally created to com-
plement the CDCâĂŹs flu tracking efforts by identifying seasonal
trends in the flu season [38]. Failure to account for seasonal changes
in event characteristics led to increasing errors over the years, and
by 2013, GFT missed the trends by 140%. This error has been attrib-
uted to exclusion of new data from CDC, changes in the underlying
search data distribution itself, and cyclical data artifacts [22, 23, 38].
We address these pitfalls by building adaptive event detection ap-
plications that continuously generate high-quality event detection
filters and update existing filters.

Specifically, we have the following contributions:

(1) We present ASSED âĂŞ an Adaptive Social Sensor Event
Detection framework to perform physical event detection
with social sensors using an ML-based event processing
engine. Through ASSED, we show a practical framework for
live data processing, metadata extraction, and integration
with high-confidence sources. We also present continuous
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automated machine learning filter generation, update, and
retrieval procedures that work in concert to adapt to concept
drift in live data.

(2) We develop a Heterogenous Data Integration (HDI) pro-
cess within ASSED to combine high-confidence sources with
social-sensor data to automatically create labelled data for
the ML-based event processing engine. High-confidence
source are trustworthy, but have high latency and are scarce.
Conversely, social-media sources have low confidence and
are extremely noisy, but are abundant, and have global cov-
erage with very low latency. HDI integrates events from
high-confidence sources into social sensor event detection
to reduce noise, increase context and trustworthiness, and
continuously create training data for ML classifiers. HDI
allows ASSED to adapt to concept drift in live data and main-
tain high accuracy without manual intervention, making
ASSED highly scalable.

(3) We believe ASSED is a useful framework for creating various
physical event detector applications that would need social
media sources. We demonstrate ASSEDâĂŹs efficacy with an
experimental evaluation application for disaster detection,
specifically landslide detection, that outperforms static ap-
proaches. Our evaluation application, called LITMUS-ASSED,
detects more than 3 times as many disasters as static ap-
proaches while maintaining high detection accuracy over
several time windows.

We focus on landslide detection because they are a class of disas-
ter that do not have dedicated physical sensors or reputable trackers
(in contrast to tsunamis and earthquakes), even though they cause
significant monetary and human losses. Landslides are a weak-
signal disaster with a lot of noise in social media streams; the use
of the word landslide to reference disasters (as opposed to election
landslides or other usages) is dwarfed by posts about irrelevant
topics that also use the word landslide.

We compare our application to LITMUS-original [26], which is
a static landslide detector. We show significant detection improve-
ments by identifying almost 350% more landslide events through
our application built on ASSED compared to static approaches. Ap-
plications built on ASSED are highly scalable to large numbers of
physical event types. ASSEDâĂŹs latency is dominated only by
sensor delays, which is the timestamp difference between physical
event occurrence and social media posts about the event. These
delays are out of scope as they reside with the data sources, not
with ASSED. To evaluate ASSED as a framework, we borrow ac-
curacy metrics from machine learning such as precision, recall,
and f-score. From 2014 through 2018, we show f-score of 0.988 in
LITMUS-ASSED compared to f-score of 0.762 in LITMUS-original.

LITMUS-ASSED is currently running at https://grait-dm.gatech.
edu/demo-multi-source-integration/ on landslide detection using
multiple sources (USGS Earthquakes, TRMM Rainfall, and social
media streams).

The rest of the paper is organized as follows: Section 2 covers
related work, Section 3 introduces social source event processing,
Section 4 introduces the ASSED dataflow, Section 5 covers ASSED’s
ML classifiers and concept drift resiliency, Section 6 evaluates the

landslide detection application, and Section 7 concludes with future
directions.

2 RELATEDWORK
2.1 Physical Event Detection
Earthquake detection using social streams was proposed in [30].
This approach treats each user as a sensor and uses statistical fil-
tering techniques to perform physical event detection. There have
also been attempts to develop physical event detectors for other
types of disasters, including flooding [20], flu [36, 38], infectious
diseases [17], and landslides [26, 27]. More recently, burst detection
for earthquake detection [28] has been used to take advantage of
the strong-signal nature of earthquakes. Strong-signal refers to size
of event in data source; earthquakes and hurricanes are examples of
strong signals as they usually have tens to hundreds of thousands of
tweets. Conversely, landslides in ASSED have at most 5-10 tweets
associated with them, making them weak-signal events.

Most approaches focus on specific large-scale disasters or health
crises, such as earthquakes, hurricanes [35], and influenza. We cre-
ate ASSED to be a general-purpose physical event detector that
can handle both large- and small-scale disasters, the latter having
very small social and physical sensor footprint with significantly
higher noise (weak-signal events). The existing approaches also as-
sume static data, and as GFT has shown [22, 23], such assumptions,
though they can create accurate event detection in the short-term,
degrade in the long term. Considering the volume of social-source
data, manual tuning and updating of event detection filters and
patterns can be prohibitively expensive.

2.2 Traditional Mining and Static Event
Processing

The ubiquity of streaming data has increased work on adapting
the static, offline setting to the dynamic setting characterized by
changing, or drifting, characteristics of events [2, 7, 15, 32, 33].
There remain many assumptions of the static mining model in
these adaptations, however [11]: (i) datasets are static/closed, (ii)
immediate feedback is available, and (iii) direction and type of
drift are known. CEP engines are unable to operate on detecting
evolving events in dynamic environments and face scalability and
performance issues in most approaches [1].

Static/closed dataset. Approaches described in [11] assume
streaming datasets are completely specified by feedback (which is
also assumed to be given in real-time). Social sensor short-text data
is difficult to characterize without labeled feedback, due in part
to lexical diffusion [8] and naturally evolving features of the data,
such as geography, demographics, or time [18].

Immediate feedback. Most real-world streaming datasets are
unstructured, schema-less web data. Real-time feedback is not pos-
sible, and delayed feedback is infeasible in web-scale applications.
A single application operating on Twitter streams must consider
over 500M tweets daily; manually labeling even 0.01% of this data
will require 20 workers each day to label tweets for 8 hours. Ap-
plications built on ASSED avoid relying on any human-generated
feedback by inferring physical event detection filters and patterns
from reputable sources such as physical sensors and news articles.

https://grait-dm.gatech.edu/demo-multi-source-integration/
https://grait-dm.gatech.edu/demo-multi-source-integration/
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Known drift. Most learning algorithms assume a single la-
beled dataset that is completely representative of all real-world
data [11, 24]. Drift adaptive algorithms assume enough human-
labeled data for each window is readily available, thereby assuming
each data window is in the static, offline setting. ASSED consid-
ers data as dynamic with unknown, unbounded drift and does not
require human-labeled training data for any window.

2.3 Drift Adaptive ML Classifiers
Current works in concept drift detection and adaptation use closed
and non-evolving or synthetic data with known drift [2, 4, 12, 15].
Windowing is a common technique in drift correction. [25] uses
a weighted k-Nearest Neighbor classifier is used to bin data into
long-term or short-term memories. [21] considers multiple, nested
windows to obtain feedback at different timescales.Adaptive Ran-
dom Forests use an ensemble of weak decision trees combined
with a drift detector to continuously prune and replace trees that
degrade due to drift. Experiments conducted using weighted vot-
ing outperform simple majority voting [14]. Knowledge Max-
imized Ensemble (KME) [29] combines several drift detectors
to identify cyclical, real, and gradual drift occurrences, updating
models if either drift is detected or enough training data is col-
lected for an update. Most strategies assume of availability of hu-
man feedback or expert-generated rules. We develop ASSED to
be expert-independent in performing event processing on social
sources. ASSED detects events and adapts to drift without manual
intervention.

3 CHALLENGES OF EVENT DETECTION
FROM SOCIAL SOURCES

We introduce adaptive social source event detection as a new ap-
proach for detecting strong- and weak-signal physical events using
social media streams. We distinguish social-sources from high-
confidence sources; the latter consist of both physical sensors and
reputable live data such as news articles. Strong-signal events in
social and high-confidence data are the primary focus in traditional
static event processing. We built ASSED to be a general purpose
physical event detector in social sources that can support strong-
and weak- signals, and adapt to concept drift in live social data.
This section elaborates on challenges in physical event detection
from social sources, such as natural language processing (NLP),
noise and concept drift, and detection of weak-signal events

NLP on Social Data. Social sensors consist of accounts and
users from social-sources that provide text data along with various
metadata. Metadata in social sensors consists of the multimedia
content of a post, timestamp, location, links to other posts, and
captions. NLP plays a key role in extracting usable information from
social media text, and LITMUS-original provides several procedures
for extracting location and analyzing text content for landslide
detection. However, NLP is best used on long-text data; the text
content of social-source posts is considered short-text data since
the text does not provide enough words for most learning classifiers
or NLP techniques [34]. Our framework improves and augments
the NLP procedures in LITMUS-original to improve coverage and
reduce loss of data.

Noise and Concept Drift. ASSED uses social sources in con-
text of live data with concept drift. We use the language models
introduced in [8, 18] to represent social data; our language model
takes into account user demographics, post location, and timestamp:

wi = argmax
wi

P(wi |wi−1,usp , lsp , tsp ) (1)

where P(wi | ⋆) is the probability the next word in the sequence
is wi , usp is the user who created the post [5], lsp is the location
of the social post, and tsp is the timestamp of the social post. The
reliance on user characteristics and location of user adds noise to
social media data [6]. The reliance on time as a factor in text content
is a characteristic of drift âĂŞ as time changes, the distribution of
text also changes. ASSED deals with noise and drift by continuously
tuning machine learning (ML) filters. ASSED performs this tuning
by integrating high-confidence but scarce reputable data with low-
confidence but abundant social data.

Figure 1: From time t1 to t2, the characteristics of event El
change. In t1, El is characterized by signals S1,S2, and S3. How-
ever, in t2, El is characterized by signal S1 and S3 only.

Weak-signal Physical Event Detection. ASSED is de-
signed to support strong- and weak-signal events. We describe our
model for physical events using our case study landslide detection
application.

Given the set of all events E, we denote our desired physical
event as Elandslide ∈ E. Each social post Pi comprises of reporting
on several events Ea ∈ E. Each post is also independently composed
of several signals Si . A signal Si is analogous to a feature or column
of data in machine learning. We thus define an event as a sum of
signals:

Ea =
∑
k

aiSi

where each ai is the strength of signal Si in event Ea . The evolv-
ing nature of short-text streaming data entails dynamic (or drifting)
ai over time, changing which signals are present in a specific event
in any data window (Figure 1).

Strong-signal events have separable coefficients ai that can be
clustered using unsupervised methods; trend analysis is a common
technique for identifying large signal events. Since weak-signal
events have small-valued coefficients with lower frequency com-
pared to large signal events, trend analysis is not feasible. Human-
generated rules are also impractical due to scalability issues [1].
ASSED is designed to support weak-signal event detection in addi-
tion to strong-signal events. Our framework uses machine learning
combined with automatically generated training data to create
filters for weak-signal events. ASSED avoids the requirement of
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Figure 2: The ASSED dataflow combines live data from social sensors and high-confidence data from reputable sensor. An
in-memory Redis-store is used to stage intermediate operations to pipeline physical event detection. ASSED combined high-
confidence event processing (blue, upper) and social-source event processing (green, lower). ASSED remains adaptive by inte-
grating high-confidence sensors with social sensors to continuously generate high-quality physical event detection filters.

human labelers by integrating high-confidence sources into the
social-source dataflow to automatically generate ML training data
for each data window.

4 THE ASSED DATAFLOW
The ASSED dataflow is shown in Figure 2. ASSED performs physical
event detection by integrating two sub-dataflows:high-confidence
dataflow (blue, upper in Figure 2) and social-source dataflow
(green, lower in Figure 2). The latency between a physical even-
tâĂŹs occurrence and social sensor post about the event is signifi-
cantly lower than latency with high-confidence sensor. This occurs
because high-confidence sensors perform human annotations and
confirm physical events, which are time-consuming. Social-source
data is also abundant and has global coverage. However, it lacks
the reputability of high-confidence sources. ASSED performs event
detection by training machine learning filters to classify dense,
fast social-source data as either relevant or irrelevant to landslides,
with learning filters automatically updated using sparse, slow high-
confidence data. Traditional approaches perform this under a static
data assumption. ASSEDâĂŹs novelty is in performing continuous
updates by tuning its machine learning filters without any manual
intervention to adapt to drift in social-source data. It accomplishes
this by first, using the Heterogeneous Data Integration process to
automatically match some social-source posts to high-confidence
data for training and second, continuously updating machine learn-
ing filters using this data (covered in Section 5).

ASSED stores intermediate data for each process through a pub-
lish/subscribe interface. Our implementation uses a REDIS database
(R_Store). Each process exports its outputs to R_Store. Decoupling
intermediate processes from each other in the dataflow improves
ASSEDâĂŹs flexibility because each process can be developed, up-
dated, and managed independently. A process exports each piece
of data as a key-value pair to R_Store; the key is formatted using an
export-key template. Each process registers its export-key with
ASSED. Exported pairs are marked as unprocessed by ASSED.
Processes also register an import-key template if they are obtain-
ing unprocessed data from other processes. Processes that import
a key-value pair inform ASSED after they have completed their

task. Multiple processes can register the same import-key tem-
plate. ASSED marks the corresponding key-value pair in R_Store as
processed once all processeswithmatching import-key templates
have completed their tasks on the pair. Decoupling also preserves
intermediate data during process crashes; in the case of process
failure, intermediate data in R_Store remains in an unprocessed
state until ASSED restarts the failed process. Processed key-value
pairs are scheduled for deletion by ASSED.

4.1 ASSED Case Study - Landslide Detection
We develop a real-time critical physical event detection application
for landslide detection on ASSED called LITMUS-ASSED. LITMUS-
ASSED is an improvement on LITMUS-original [26, 27], which
downloads streaming short-text (e.g. social media posts) to perform
landslide detection using static classifiers operating under a closed
dataset assumption. Landslide detection using social sensors is
challenging: it is an open-ended live data with noise and the signal
drift in social sensor data is unpredictable compared to synthetic
and numerical data. Furthermore, keyword filters on streaming data
are not enough for detection as landslide has multiple meanings
and can refer to a variety of topics, such as the disaster, elections,
or the song "Landslide" by Fleetwood Mac. Moreover, landslides are
a weak-signal event as the fraction of relevant signals for detection
is significantly smaller than the fraction of irrelevant signals.

However, performing landslide detection on social sensors is nec-
essary: due to lack of coverage, lack of access, or absence of sensors,
physical sensors are not enough to deliver dense, fast, global phys-
ical event detection. Landslides themselves cause several billions
of dollars of damage, and fast event detection can be instrumental
in limiting losses of life, reducing economic impact, and slowing
damage progress.

The rest of this section covers data Streamers, High-Confidence
Event Identification, and Metadata Extraction. We cover Heteroge-
nous Data Integration and ML Classifiers in Section 5.

4.2 Social-source Streamers
ASSEDâĂŹs architecture supports scalable streamers for high-
confidence and social-source dataflows. Each streamer in an ASSED
application must be deployed as either a high-confidence streamer
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or social-source streamer script. Streamers write data to the R_Store
using their registered export-key template (key details provided in
Table 1).

ss : en : landslides : Twitter : {tweet_url} : 7656 : 1550244443

is an example of a streamer export-key for the R_Store in the
social-source dataflow. We have omitted the exact URL for privacy.

Table 1: Export-key attribute descriptions for social-source
andhigh-confidence source streamers in our landslide detec-
tion application. For some attributes, both types of stream-
ers store same value.

key attributes Social-source description
High-confidence description

streamer ‘social-source’ or ‘ss’
‘reputable-source’ or ‘rs’

lang Langs supported by ASSED (‘en’)
‘num’ for physical sensors

key Physical event (‘landslides’)
src Social network (‘Twitter’)

High-confidence Source (‘NOAA’)
url URL of social post

‘NULL’ if it is a physical sensor
id Auto-incrementing numeric ID
timestamp Timestamp of commit to R_Store

ASSED provides streaming templates for several social sensors
including Twitter and Facebook, with an extensible framework for
integrating additional streaming sources. These streamers operate
in a high-volume setting, processing several thousands of tweets
per second. We define each social post as a tuple

Pi = (pi , li , ti , hli ,ui )s (2)
where pi is the post content as a Unicode string, li is an array

of named locations within the post, ti is timestamp of post, hli is
an array of hyperlink content within the post, and ui is the user-id
or screen name. This tuple is published to the R_Store under its
corresponding key defined earlier. li is often null-valued as most
social sensor posts do not provide geolocation information. ASSED
uses the Metadata Extraction process to populate any null-values
in the Pi tuple. Any trivial metadata extraction, such as extracting
user name from a tweet object or Facebook JSON object, can be
performed within the streamer.

4.2.1 LITMUS-ASSED Implementation. LITMUS-ASSEDuses ASSED’s
social streamers with common disaster keywords to download data
from social sources. LITMUS-ASSED uses Twitter and Facebook
sources.

(1) Twitter: a keyword streamer is used to download tweets con-
tinuously from Twitter. Keywords include the words ‘land-
slide’, ‘mudslide’, and ‘rockslide’ as well as their lemmas.

(2) Facebook: an off-the-shelf keyword streamer is used to
download public Facebook posts. Existing web crawlers (e.g.
Google Search API) are leveraged to improve retrieval effi-
ciency.

pi is the short-text content (tweet or Facebook post). li is usu-
ally null as less than 0.5% of tweets and posts provide geotagged
locations. ti is post timestamp. hli is list of hyperlinks is provided
in downloaded object. ui is user name of originating post.

4.3 High-confidence Streamers
High-confidence sensors are dedicated physical, social, and web sen-
sors providing annotated physical event information; such sensor
data is highly structured and contains detailed event information,
including geographical coordinates and event time. However, their
publishing latency makes them unsuitable for fast physical event
detection âĂŞ most high-confidence sensors report on events after
multi-person confirmation and have significant delays in providing
this information to the public. Additionally, such sensors do not
have global or granular coverage, in contrast to social sensors. A
high-confidence streamer in ASSED transforms raw data from each
source into the same tuple structure as social-source streamers in
Equation 2.

4.3.1 LITMUS-ASSED Implementation. LITMUS-ASSED uses a va-
riety of physical sensors and high-confidence sources for the high-
confidence dataflow. Each stream element is exported to R_Store,
with stream objects following the tuple structure described in Equa-
tion 2. The export-key’s source attributes are human-readable short-
enings of the source (‘usgs’, ‘noaa’, or ‘news’).

(1) USGS rainfall/earthquake reporting (physical sensor)::
LITMUS-original relied on USGS landslide reports [26]. Since
USGS no longer provides up-to-date landslide reports for
such disasters, LITMUS-ASSED streams daily rainfall and
earthquake data from USGS. pi contains numeric sensor
values. li and ti are location and timestamp provided by
sensors, respectively. hli and ui are not applicable.

(2) NOAA landslide predictions (high-confidence source):
TheNational Oceanic andAtmospheric Administration (NOAA)
provide landslide predictions in select locations. LITMUS-
ASSED streams the predictions along with prediction prob-
ability to augment high-confidence physical event detec-
tion. pi contains landslide prediction probability provided by
sources. li and ti are location and timestamp, respectively.
hli and ui are not applicable.

(3) News articles (high-confidence source): Since physical
sensors do not have global coverage, LITMUS-ASSED also
streams news articles downloaded from various online RSS
feeds and aggregators (Google News and Bing News APIs).
pi contains article summary provided by RSS feeds and ag-
gregators and article title. li is article location is available
in metadata, or null otherwise. ti article publish time. hli is
article link provided by RSS feed or aggregator. ui is article
source (BBC, Marietta Daily Journal, etc).

4.4 High-Confidence Event Identification
The high-confidence dataflow identifies ground-truth physical events
from high-confidence streamer downloads. Since high-confidence
sources provide annotations, extracting event information relies



Abhijit Suprem and Calton Pu

Figure 3: After data download, high-confidence dataflowper-
forms event identification using physical sensors. Social-
source dataflow continues with metadata extraction. Since
social sensors have low-context datawithmissing attributes,
metadata extraction attempts to fill the missing gaps. For
both processes, information is retrieved from R_Store us-
ing their respective import-key templates (which match
streamer export-key templates).

on using these annotations. Event metadata is shared with Social-
source Metadata Extractors to augment their NLP procedures (Sec-
tion 4.5). Figure 3 describes this sharing process between Event
Identification and Metadata Extraction through the Metadata Store.

For physical sensors, it is trivial to insert the physical event
provided by the sensors into ASSEDâĂŹs physical event relational
database (PE_RDB). We adapt several implementation details from
LITMUS-original. One of our contributions in this process is support
for alternative high-confidence sensors such as news articles and
reports. News articles provide topic tags that can be mined for
an applicationâĂŹs event, and event reports (e.g. earthquake or
large landslide report by USGS) provide detailed information about
events, including locations, timestamps, event range, and event
impact. Physical events in high-confidence dataflow are inserted to
the PE_RDB with fields described in Table 2. ASSED also provides
a Metadata Store (M_Store) where physical event attributes can
be shared with the social-source dataflow to augment Metadata
extraction.

4.4.1 LITMUS-ASSED Implementation. We devise several event
rules for physical event detection in the high-confidence dataflow
in LITMUS-ASSED. We use each source and its data Ds → [Drain ,
DNOAA, Dnews , Dquake ,· · · ]. DNOAA provides landslide predic-
tions in select locations.

Event Rule 1. If DNOAA .prediction > 70%∧ (Drain shows rain
within 3 days of DNOAA .time) ∨ (Dquake .maд > 3
within a day ∧Drain shows some rain within 3 days)

Event Rule 2. If Dquake .maд > 6 ∧ Drain shows rain within 3
days ∧ DNOAA .prediction > 30%

Event Rule 3. If Dquake .maд > 7 ∧ Drain shows rain within 3
days

Event Rule 4. If Dnews has articles tagged with landslide or mud-
slide by reporting agency in any location

Table 2: PE_RDB schema for physical events detected in
high-confidence sources (physical sensors and reputable
sources)

Field Description
location Latitude and Longitude. If named lo-

cation is provided, we perform coordi-
nates lookup using off-the-shelf maps
APIs

event_time Event occurrence time as reported as
reported by originating sensor

sensor_source Tuple of physical sensor source name
and URL (obtained from import-key at-
tributes)

event_obj Serialized high-confidence streamer ob-
ject

For each event rule, if posts within 50km of a location trigger all
conditions, we store a physical event within PE_RDB. All detected
physical eventsâĂŹ locations are sent to M_Store. High-confidence
posts that only partially matched event rules also have locations
sent toM_Store, but are not stored in PE_RDB.M_Store exports have
an expiration of 1 week.

4.5 Social-source Metadata Extraction
Event detection applications have a variety of metadata require-
ments; ASSED provides extensibility in adding application-specific
metadata extractors. We assume the following metadata scenarios:
1. Applications requiring a single metadata extractor that operates

on data from a social-source streamer
2. Application requiring multiple metadata extractors operating

sequentially.
3. Applications requiring multiple metadata extractors, some of

which operate on data from a social-source streamer; other ex-
tractors operate sequentially on prior extractors

Metadata extractors register their import-key and export-key
template with ASSED. Scenarios 1 and 2 are handled by the de-
coupled dataflow, where each extractor will publish to the next
process. To accommodate Scenario 3, ASSED marks a key-value
pair kvi as processed only if all processes with an import-key tem-
plate matching kviâĂŹs key also mark it as processed. Once all
importers have accessed a key-value pair and performed their oper-
ations, it can be processed and deleted by ASSED. An example of a
metadata export-key template is shown below, where ext_name is
the name of the metadata extractor (e.g. Twitter_location_extractor,
or hyperlink_extractor).

ext_name : lanд : key : source : url : post_id : timestamp

Augmentation with M_Store. Social-source data has low-
context and reputability, which hinders NLP metadata extractors.
ASSED augments natural language extractors such as NER (Named
Entity Recognition) with information shared by the high-confidence
dataflow. We provide an example with location extraction. Since
social posts have few words, location extraction is not accurate on
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the short-text and often misses locations provided in a postâĂŹs
text content. Any location identified by a location extractor can be
published to M_Store with an expiration timer (set by the extractor
and is application-specific), after which it is deleted by ASSED.
Other metadata extractors now have access to the location string
in M_Store before its expiration to augment location extraction
with e.g., substring match. Event locations identified in the high-
confidence dataflow can also be used by social-source metadata
extractors when available.

4.5.1 LITMUS-ASSED Implementation. Posts imported from R_Store
with null li are processed with a location extractor. Off-the-shelf
NER [9] (Named Entity Recognition) is applied to social-source
post content to identify locations. Since NER does not perform well
on social posts, LITMUS-ASSED uses location strings fromM_Store
to perform substring match. Locations identified from NER are
sent to M_Store with expiration of 2 days. Locations identified with
substring match have expiration updated with additional 2 days
if expiration is less than 2 days. We used 2 days as we observed
most disasters detecteded in social-source dataflow had majority of
posts within 2 days of first social sensor report. Using M_Store to
augment NER increases social-source postsâĂŹ location extraction
(Figure 4) and reduces discarding of potential useful data.

Figure 4: Lack of metadata for social-source posts leads to
post deletion by ASSED. Augmenting metadata extraction
withM_Store increases social-source data in LITMUS-ASSED
in eachmonthly datawindow and reduced deletion of poten-
tially relevant posts.

Post location(s) are converted to geographical coordinates and
mapped to 2.5-min cell grids on the planet [26]. For each location
L1,L2, · · · ,Lk ∈ li for a post, LITMUS-ASSED obtains coordinates
using online map APIs. Coordinates are mapped to 2.5-min cell
grids on the planet using approach in [26]. Since a post can have
multiple locations, we group locations by cell grid. Cells with the
maximum number of coordinates are accepted as post location.

5 ML-BASED EVENT DETECTION
ASSED performs ML-based event detection on social-source data.
Traditionally, ML-based event detection is performed under static

data assumption. Since ASSED is designed for social-source data,
the static data assumption is not valid (we provide evidence for drift
in our application in Figure 7). ASSED continuously updates filters
and stores prior and current filters in a filter database (F_Store).
ASSED’s filter update is performed without human or expert input,
allowing high level of scalability considering the large volume of
social sensor data.

Since ASSED is designed to be an adaptive event detection frame-
work that is resilient to concept drift, we introduce a Heterogenous
Data Integration (HDI) process in ASSED to confer this adaptivity to
ML classifiers. Heterogenous Data Integration matches events from
high-confidence dataflow into social-source dataflow with joins
to improve social sensor event detection and perform continuous
filter updates on event detection classifiers. We call this step het-
erogenous because ASSED is matching social sensor data (short-text,
hashtags) to high-confidence sensor data (reports, physical sensors,
news articles, etc). In contrast to static event processors, ASSED
continuously improves and updates its event detection filters to
adapt to drifting event characteristics in social sensor data. While
this can be accomplished manually with experts, it is not practical
for social-source event processing due to the massive volume of
data (as mentioned, labeling 0.01% of Twitter data will require 20
experts each day to label tweets for 8 hours).

5.1 Heterogenous Data Integration (HDI)
We perform HDI for two reasons: (i) data integration allows ASSED
to improve social-source event detection by using metadata from
high-confidence sources to expand metadata filters after extraction;
and (ii) social posts that match high-confidence physical events
can be used to continuously update and tune social sensor event
detectors to prevent deterioration like GFT. Joins are performed
on event attributes using (a) string schema matching, (b) string
similarity join, and (c) natural joins between key-value pairs in
R_Store and physical events in PE_RDB detected in high-confidence
dataflow.
(a) SchemaMatching: Since application developers are given con-

trol of key-template specifications for M_Store, they can also
specify schema mappings to ASSED for data integration. It is
then trivial to perform string similarity or natural joins on the
R_Store and PE_RDB values.

(b) String Similarity Join: ASSED performs string similarity join
using off-the-shelf similarity functions such as Jaccard and
Levenshtein matching with a join predicate:

strinд_sim(key_attr , rsep_f ield_val) > threshold

(c) Natural Joins: With access to schemas, natural joins are per-
formed with a SQL query on PE_RDB.
Joining on all physical events is impractical. A solution is variable

data windows for the join range that can be user- or data- specified:

User-specified windows. Application developers can pre-
define a time range t0 to select events from PE_RDB. Domain-
experts can contribute their knowledge towards specification of
these windows for each event. During integration at ti , ASSED then
selects all physical events within [ti − t0, ti ] for joins.
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Data-specifiedwindows. When newphysical events are avail-
able in PE_RDB, ASSED can use the join predicate on social-source
posts with fuzzy detection. For each physical event, ASSED finds all
social-source events that have the same metadata (location, times-
tamp). Social-source posts within a threshold distance of PE_RDB
events and within a threshold time of PE_RDB events are selected
for joins.

Only a fraction of social-source posts are matched to events
detected in high-confidence dataflow (we show an example with
our landslide detection application in Figure 5). High-confidence-
sources have large publish latency as they need humans to perform
confirmation; as such it is not uncommon for high-confidence-
sources to report an event several days after event occurrence.
In contrast, social-sources report an event within a few hours at
most in remote areas, and within minutes in urban regions. High-
confidence-sources also do not have global coverage compared to
social sensors, which are spread around the world.

5.2 LITMUS-ASSED Implementation
LITMUS-ASSED uses user-specified ±3 days as the time filter for
joins. Once an event is detected in the high-confidence dataflow,
it is sent to PE_RDB and to the HDI process. HDI then retrieves
all social-source posts from R_Store within 3 days prior (i.e. −3
days) to the physical event using its import-key. HDI then keeps
the physical event in memory for 3 additional days (i.e. +3 days)
to match future social-source posts in R_Store. ASSEDâĂŹs string
similarity and schema matching joins are performed on the physi-
cal events and social-source posts collect by HDI. Fuzzy matching
on location and timestamp is used to reduce join time. Location
matching is achieved with the 2.5-min cell grid superposition using
strong supervision; intuitively, social posts that have landslide key-
words and are made within the similar time at similar places as a
landslide identified through a news source are very likely relevant
to a landslide. This is in contrast to weak-supervision [40] as our
supervisory labeling is domain-specific. Social-source posts that
can be mapped to physical events from high-confidence dataflow
by ASSED are labeled as training data (described in Section 5.3).
Posts that could not be labeled are used as prediction data for event
processing with ML. Only a fraction (< 5%) of social-source posts
can be labeled in HDI process (Figure 5, y-axis is log-scale).

Figure 5: Labeled and unlabeled social-source dataflowposts
(y-axis is log-scale). On average, less than 5% of each win-
dowâĂŹs samples can be labeled.

5.3 ML-based Event Detection
ASSED uses machine learning classifiers to perform event detec-
tion. Filter generation and updates (training) are performed with
the subset of social-source posts from HDI that were mapped to
physical events (< 5% of social posts). Event detection (prediction)
is performed on the remaining social-source posts that could not
be mapped and are unlabeled. The process is described in Figure 6.

5.4 Filter generation
ASSED generates filters according to an application’s update sched-
ule. We first describe the filter generation/update procedure.

A data window is the set of social-source posts between the
previous filter update and current time. At the end of a data window,
all social posts that were mapped to physical events during HDI
are labeled as relevant for the ML classifier. Rejected posts from
social-source streamers are used as irrelevant samples. During
initial configuration of an ASSED application, domain experts can
alsomanually label some samples (this is a one-time cost, in contrast
to common machine learning update approaches where manual
labeling is required in all data windows). The labeled samples are
used to train new ML classifier filters. If filters already exist, they
are updated with the new data. Both new and updated filters are
saved to F_Store as key-value pairs, with the filters as values and
training data characteristics as the key. Currently ASSED stores
the entire training data along with training timestamp as the key.
Filters are retrieved using either timestamp lookup (if searching for
most recent window) or nearest neighbor search (if searching for
most similar training data).

5.5 Filter update schedule
ASSED supports three types of filter update schedules:User-specified,
Detector-specified, and Hybrid, described below. These schedules al-
low for continuous filter generation and updates to adapt to concept
drift.

User-specified. Application developers or domain experts de-
termine a predefined update schedule (monthly, weekly, etc). When
an update is triggered, ASSED follows procedures in Section 5.4.

Detector-specified. Some machine learning classifiers pro-
vide confidence values with their predictions. In the case of SVMs,
distance from hyperplane (WT x + b) constitutes a measure classifi-
cation strength. For linear classifiers (including SVMs), increased
density of samples closer to decision boundary over time indicate
signal drift [31]. Neural networks with softmax output layer pro-
vide class probabilities. Burst detection on increasing fraction of
lower probability labels also indicate drift [2]. If drift time exceeds
a threshold, the event detector request filter generation and update.

Hybrid. The Hybrid schedule combines User- and Detector-
specified approaches. Users specify a schedule using domain knowl-
edge. LITMUS-ASSED uses a monthly schedule. ASSED also track’s
each filter’s classifications; when drift is detected with margin den-
sity [31], a new filter is created using labeled data from the current
data window. The existing filter is copied. The copy of the filter
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Figure 6: Event detection with ML and filter generation/updates in ASSED. Filter generation and updates are scheduled either
by humans or based on drift-detection mechanisms as covered in Section 5.4 and 5.5. Each filter is stored with its training
data. During event detection, new data is matched to its corresponding filter (i.e. current filter for User-specified windows, or
closest training data using clustering for Detector-specified or Hybrid windows). The data is classified and relevant samples
are sent to the Physical Events database.

is updated with labeled data from the current window. This al-
lows ASSED to keep incremental knowledge as filters in staggered
windows.

5.6 Classifier Selection and Weighting
ASSEDâĂŹs machine learning event detectors use multiple classi-
fiers with voted majority to perform predictions, as an ensemble of
classifiers is known to perform better than a lone classifier. ASSED
allows a variety of weighting schemes for classifier ensembles:

Unweighted average. Class labels predicted by each classi-
fier in the ensemble (0 for irrelevant and 1 for relevant physical
event) are summed and averaged. Score ≥ 0.5 indicates majority of
classifiers consider the input post as relevant to the physical event.

Weighted average. Classifiers can be weighted by domain
experts based on which algorithm they implement. Weak classi-
fiers (random forests) would be given lower weights than better
classifiers (SVMs). Deep learners using convolutional networks or

neural networks would get larger weights than statistical or linear
classifiers (such as Logistic Regression).

Model-weighted. ASSED can determine classifier weights
using their prior performance using Eq. 3. For a given dataset with
n classifiers, Ci is classifier i ,wCi is the weight of classifier i , and
fCi is the validation accuracy (using f-score) of Ci on its testing
data. Each classifier’s weight is proportional to its performance.

wC t
i
=

fCi∑n
a fCa

(3)

We support the common machine learning frameworks sklearn,
keras, and tensorflow, and are planning to integrate additional frame-
works into ASSED.

5.7 ML Classifiers in LITMUS-ASSED
LITMUS-ASSEDâĂŹs data is in the form of social posts, with short
text. The text must be processed into a numeric format for classifiers
in social-source dataflow. ASSED includes support for word2vec,
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GloVe, and Explicit Semantic Analysis (ESA) [10] encodings. We
examined the performance of word2vec and ESA in LITMUS-ASSED
in a separate machine learning experiment to identify encodings
that are more resilient to signal drift. We found w2v performed the
best, and use it for LITMUS-ASSED. LITMUS-original uses ESA,
which we found to be least resilient.

5.7.1 Signal Drift. We first demonstrate the need for ASSEDâĂŹs
adaptive event detection with evidence of signal drift in our so-
cial sensor data. Each HDI-labeled social-source postâĂŹs text is
converted to a high-dimensional, numeric representation using
word2vec [14]. The post vector’s dimensionality reduced with Prin-
cipal Component Analysis; we train a PCA-reducer in sklearn on
the 2014 data to identify most important composite features in 2
dimensions (for visualization). The reducer is used to transform all
data windows (2014, July-2018, August-2018, etc) and reduce them
from 300-dimensions (the default for word2vec) to 2-dimensions.
Changes in data window centroids indicate drift in Figure 7. The
axes correspond to raw principal component values. Our real-world
live data will continue to evolve over time.

Figure 7: Signal drift changes event characteristics. We mea-
sure drift with changes in social posts labeled as relevant to
landslides in LITMUS-ASSED. Axes are raw principal com-
ponent scores normalized to [−1, 1].

We also show performance decay of static classifiers during
evaluation (N_RES in Figure 8).

5.7.2 Event detection approaches. ASSEDâĂŹs ML-based event de-
tection approach integrates physical events into social-source event
detection using HDI. We evaluate this integration by comparing
physical event detection accuracy on social-source posts to tradi-
tionally static event processing, which perform event detection
without HDI integration. We call the HDI-augmented approach
RES-HDI, or Resilient-HDI, because it is concept drift resilient.

The RES-HDI ensemble classifiers areweighted usingASSEDâĂŹs
model-weighted scheme in Equation 3.

Figure 8: Both RES-HDI (deep) and RES-HDI (statistical)
significantly outperform N_RES counterparts. We show pre-
cision (top left) and recall (top right); RES-HDI has lower
false positives (higher precision) and lower false negatives
(higher recall) than N_RES. The f-score (bottom) indicates
RES-HDI has far lower variance in performance than N_RES.

Each approach is separated into deep and statistical versions
based on classifier composition (deep learners for the former and sta-
tistical learners for the latter) as N_RES/RES (deep) or N_RES/RES
(statistical), respectively. Each approach is built as an ensemble
of multiple machine learning classifiers.

5.7.3 LITMUS-ASSED accuracy evaluation. We show performance
of each approach over several data windows in Figure 8. RES-HDI
under both statistical and deep learners maintains high accuracy
during the drift visualized in Figure 7. N_RES approaches have
higher variance in performance and have deteriorating accuracy.
HDI confers resiliency to ASSEDâĂŹs filters, and it has a significant
impact on event detection. By December 2018, RES-HDI with deep
learning classifiers has f-score of 0.988 while the static approaches
have f-scores 0.762 and 0.7493 for statistical and deep learning,
respectively. RES-HDI has a variance of 0.0015 versus N_RESâĂŹs
variance of 0.021, which is an order of magnitude greater.

6 LANDSLIDE EVENT DETECTIONWITH
LITMUS-ASSED

Weevaluate physical landslide event detectionwith LITMUS-ASSED
and compare to the LITMUS-original application from [26, 27] in
Figure 9 and 10.

Figure 10 shows normalized additional events detected by LITMUS-
ASSED and LITMUS-original. In each datawindow, LITMUS-ASSED
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Figure 9: Additional total unique cells under ASSED com-
pared to LITMUS-original. Multiple events can be mapped
to a single cell. All events detected by LITMUS-original are
also detected by LITMUS-ASSED.

Figure 10: We compare the fraction of events detected
only in LITMUS-ASSED and fraction of events detected by
both approaches. LITMUS-ASSED detects several additional
events that LITMUS-original fails to identify. LITMUS-
ASSED also corrects false-positives made by LITMUS-
original (Corrected Events).

detects significantly more events than the static LITMUS-original
application (N_RES). Additionally, under our RES-HDI approach,
increasing percentages of true physical-event detections are per-
formed by the LITMUS-ASSED application, compared to LITMUS-
original. By December 2018, LITMUS-ASSED detects 370 additional
events, while LITMUS-original only detects 149 events (these 149
events are also detected in LITMUS-ASSED), bringing the total
in LITMUS-ASSED to 519 events. This is an increase of 348.3% in
LITMUS-ASSED compared to LITMUS-original. LITMUS-ASSED
is also able to correct wrong detections made by LITMUS-original,
decreasing false positives and increasing precision. Details for each
window are provided in Table 3 (LITMUS-ASSED’s accuracy has al-
ready been compared to LITMUS-original in Figures 8 with labeled
data; this table only covers true physical events).

Table 3: False pos. are false-positive landslide detections
in LITMUS-original that LITMUS-ASSED correctly identi-
fies as irrelevant. False neg. are events LITMUS-original
does not detect, but are correctly detected as landslides in
LITMUS-ASSED.

∑
LITMUS-ASSED is the total events detected

by LITMUS-ASSED (sum of Both apps. and False neg.)

Jul Aug Sept Oct Nov Dec
Both apps. 480 644 365 501 508 149
False pos. 44 75 20 40 27 5
False neg. 398 681 513 646 772 370∑

LITMUS-ASSED 878 1325 878 1147 1280 519
Pct Increase 183% 206% 241% 229% 252% 348%

7 CONCLUSIONS
We proposed ASSED, an adaptive social sensor event detection
framework designed for physical event detection on social media
streams. ASSED can handle heterogenous data sources such as nu-
meric sensors, reputable sources, and social media data. ASSEDâĂŹs
dataflow is designed for fast prototyping and deployment, with fault-
tolerant decoupled process-to-process communication. ASSEDâĂŹs
dataflow allows applications to handle variable data ingest frequen-
cies, and bursty streams. Through ASSED, we presented the follow-
ing:

(1) ASSED includes an ML-based event processing engine that
continuously adapts to changes in live data. We examined
ASSED’s filter generation, update, and prediction methods.
ASSED’s ML-based event detector is able to identify physical
events from social media streams and augment low-coverage
high-confidence sources with high-coverage global social
sensors.

(2) ASSED’s Heterogenous Data Integration (HDI) process in-
tegrates high-confidence sources with social streams. HDI
forms a core component of ASSED’s adaptivity. We demon-
strate HDI’s efficacy through improvements in physical event
detection in ASSED compared to static approaches.

(3) We believe the ASSED framework can be useful for a variety
of social-sensor based physical event detection. We demon-
strated a landslide detection application LITMUS-ASSED
built on ASSED that improves upon static approaches such
as LITMUS-original. LITMUS-ASSED adapts to changing
event characteristics in social sources and detects almost
350%more landslide events than LITMUS-original. Moreover,
LITMUS-ASSED maintains high-fidelity event detection ac-
curacy, with f-score of 0.988 by December 2018, compared to
f-score of 0.762 for static approaches (LITMUS-original).

ASSED has a few avenues for future work. Currently, ASSED
will store the entire training data for a filter in F_Store for future re-
trieval. Using k-NN on large datasets is computationally expensive,
increasing delays in event detection in the Hybrid filter selection
approach in the Event Detection process. We can consider approxi-
mate nearest neighbor searches with locality sensitive hashing [3]
as ways to improve retrieval speed.
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