2010.15534v1 [cs.PF] 29 Oct 2020

arxXiv

Poster: Benchmarking Financial Data Feed Systems®

Manuel Coenen

Christoph Wagner™
vwd: Vereinigte Wirtschaftsdienste GmbH
Kaiserslautern, Germany
wrench@vwd.com

ABSTRACT

Data-driven solutions for the investment industry require event-
based backend systems to process high-volume financial data feeds
with low latency, high throughput, and guaranteed delivery modes.

At vwd we process an average of 18 billion incoming event
notifications from 500+ data sources for 30 million symbols per
day and peak rates of 1+ million notifications per second using
custom-built platforms that keep audit logs of every event.

We currently assess modern open source event-processing plat-
forms such as Kafka, NATS, Redis, Flink or Storm for the use in
our ticker plant to reduce the maintenance effort for cross-cutting
concerns and leverage hybrid deployment models. For comparabil-
ity and repeatability we benchmark candidates with a standardized
workload we derived from our real data feeds.

We have enhanced an existing light-weight open source bench-
marking tool in its processing, logging, and reporting capabilities
to cope with our workloads. The resulting tool wrench can simulate
workloads or replay snapshots in volume and dynamics like those
we process in our ticker plant. We provide the tool as open source.

As part of ongoing work we contribute details on (a) our work-
load and requirements for benchmarking candidate platforms for
financial feed processing; (b) the current state of the tool wrench.

CCS CONCEPTS

» General and reference — Performance; « Applied comput-
ing — Event-driven architectures; « Software and its engi-
neering — Publish-subscribe / event-based architectures.

KEYWORDS

Event-processing, stream-processing, publish/subscribe, financial
data, big data, benchmarking, event bus, workload, requirements

ACM Reference Format:

Manuel Coenen, Christoph Wagner, Alexander Echler, and Sebastian Frisch-
bier. 2019. Poster: Benchmarking Financial Data Feed Systems. In DEBS
’19: The 13th ACM International Conference on Distributed and Event-based
Systems (DEBS °19), June 24-28, 2019, Darmstadt, Germany. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3328905.3332506

“This is the author’s version of the accepted work posted here for your personal use.
Not for redistribution. Definitive Version of Record published in DEBS 19 (see below).
Both authors contributed in equal terms to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6794-3/19/06.

https://doi.org/10.1145/3328905.3332506

Alexander Echler

Sebastian Frischbier
vwd: Vereinigte Wirtschaftsdienste GmbH
Frankfurt a. M., Germany
wrench@vwd.com

1 INTRODUCTION

Event-processing platforms are the backbone of any data-driven so-
lution favoured by the investment industry. Participants of today’s
financial markets require accurate information about meaningful
events delivered to them in a timely manner based on their indi-
vidual quality of information (Qol) and quality of service (QoS)
requirements. Thus, event-processing platforms for financial data
feeds have to simultaneously excel in multiple functional and non-
functional aspects such as throughput, latency, order, completeness,
and availability. Furthermore, they have to keep audit-safe logs of
every processed notification for regulatory and compliance reasons.

As one of Europe’s leading providers of financial data and regu-
latory solutions, vwd operates extensive custom-built event-driven
platforms on dedicated infrastructure to process and enrich high-
volume streams of financial data at low latency. Our production
systems process an average of 18 billion incoming event notifica-
tions for 30 million symbols per day. The data received from our
500+ data sources is purged, enriched, and normalised within our
ticker plant and delivered to our internal and external subscribers
in a proprietary condensed binary format. While our closed source
publish/subscribe and complex event-processing (CEP) systems are
tailored to the characteristics of financial data streams and specific
use cases, their tight vertical integration hampers the use in hybrid
environments as these rely on horizontal scalability and isolation.

Modern open source event-processing systems like Kafka, NATS,
Redis, Flink or Storm in turn are designed to run on highly scal-
able platforms like Kubernetes. They have emerged from various
communities to cover a wide spectrum of use cases and data for-
mats, ranging from log processing in social media to sensor data
management in the Internet of Things (IoT). However, as multi-
purpose platforms they can deliberately balance versatility with
degradations in throughput, availability, completeness or latency.

As part of ongoing work we assess such open systems for the use
as event bus platforms in our ticker plant. For this we want to apply
a standardized benchmark to transparently gauge and compare
candidates in a repeatable manner. In this contribution we describe
the key requirements of our industry for an event bus (Sec. 3), the
workload we use for our tests (Sec. 4), and the current state of the
tool (wrench) we provide as open source (Sec. 5).

2 RELATED WORK

Designing and implementing representative benchmarks for event-
processing platforms remains an active area of research. Most work
focuses on identifying performance metrics of CEP systems while
few tools actually implement these metrics [1]; of these, micro-
benchmarks or domain-specific and scenario-based benchmarks
prevail that aim at fine-tuning parameters of a specific system [3].

https://doi.org/10.1145/3328905.3332506
https://doi.org/10.1145/3328905.3332506

DEBS 19, June 24-28, 2019, Darmstadt, Germany

The Pairs benchmark [2] is the most promising candidate as it
uses an investment strategy scenario. However, it focuses on the
correctness of the CEP engine’s reasoning and uses an oversimpli-
fied workload; its implementation is not fully available and those
components that are have been discontinued since 2013.

3 INVESTMENT INDUSTRY REQUIREMENTS

Event bus solutions to serve in our ticker plant have to satisfy the
following mandatory (M) or optional (O) requirements regarding
QoS and Qol, workload processing, and architecture:

(1) QoS and Qol: guaranteed end-to-end processing latency of
less than 20 ms with exactly-once and order-preserving delivery
mode (M); prioritisation (O), i.e., delayed delivery of low-prio noti-
fications allowed to guarantee timely processing of high-prio ones.
(2) Workload processing: ability to deal with peak rates between
700,000 to 1.1 million notifications/sec while the notification size
varies between 80 bytes (tick) and 31kb (news) (M); provide data
compression for efficiency (O). (3) Architecture: horizontally scaling
distributed system with fail-over and auto-recovery capabilities; log-
ging of all processed notifications with timestamps (send/received)
and provenance without performance degradations (M).

Suitable benchmarking tools to assess candidates accordingly
must meet at least the following requirements:

(A) Processing: scalability of publishers/subscribers to generate
and process described workloads or replay real data snapshots;
support custom binary and textual formats; generate/replay work-
loads varying over time using defined rate distribution patterns. (B)
Reporting and analytics: complete log of latencies for reporting and
export to open formats, e.g., comma separated value (CSV).

4 A REPRESENTATIVE WORKLOAD

We define a baseline workload using a generalized input rate pro-
file and data of a 60 seconds snapshot we took from one of our
normalized internal feeds during a representative trading day. The
snapshot contains 18,023,662 notifications of 8 event types (no news)
with 6 to 129 attributes each (median: 16) about 2.89 million sym-
bols totalling 2.3 GB. Fig. 1 shows the size of notifications, omitting
< 50 notifications larger than 900 bytes. Fig. 2 shows the input rate
profile generalized from a typical 24h input rate distribution. For
benchmarking we scale rates and volume with varying parameters
to simulate different scenarios, e.g., Brexit.

5 TOOL SUPPORT: ENHANCING BENCH

After reviewing available tooling we decided to enhance the existing
light-weight open source benchmarking tool bench [4]. Built in Go
with native support for NATS (streaming), Kafka, Cassandra, and
Redis to tune their setup, its unmodified version is too limited
regarding processing and reporting for our purpose. We provide
the enhanced tool wrench on GitHub [5] (work in progress).
Processing capabilities: so far we split publishers and consumers
into separate implementations for increased horizontal scalability
and improved bench’s throttling algorithm so that our high-volume
workloads can be simulated. We improved the expressiveness of
workload definitions so that more complex rate distributions can
be modelled and simulated with random values or by replaying
existing snapshots from custom data formats: input rate profiles

Coenen and Wagner et al.

3216:234

2500000
|

1500000
|

13022

JM | L |l

T T T
0 200 400 600 800

Notification size (bytes)

Number of notifications

0 500000

Figure 1: Workload: notification size distribution

80 1
70
60 4
50
40 +
309

20

Notifications/sec (x 1000)

104

Notica

ond (x 1000)
0~ avsasasusnsm
T T 1

60 6570 30 30 1515 6 3

Time / duration

Figure 2: Workload: scalable input rate profile

for publishers can be provided in CSV format by defining durations
in seconds with a corresponding load (e.g., Fig. 2); the dimensions
can be scaled by a parameter. More complex subscription schemes
and simulating churn are features currently being worked on.

Analytical capabilities: raw latency information is now stored
in a binary format, allowing wrench to capture information about
larger datasets without performance degradations. A converter tool
to a CSV format for post-processing is provided accordingly.

REFERENCES

[1] Andre L.S. Gradvohl. 2016. Investigating Metrics to Build a Benchmark Tool for
Complex Event Processing Systems. In IEEE 4th International Conference on Future
Internet of Things and Cloud Workshops (FiCloudW ’16). IEEE, 143-147.

[2] Marcelo R.N. Mendes, Pedro Bizarro, and Paulo Marques. 2013. Towards a Standard
Event Processing Benchmark. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering (ICPE °13). ACM, 307-310.

[3] Anshu Shukla and Yogesh Simmhan. 2017. Benchmarking Distributed Stream
Processing Platforms for IoT Applications. In Performance Evaluation and Bench-
marking. Traditional - Big Data - Internet of Things (TPCTC ’16). Springer, 90-106.

[4] Tyler Treat. 2017. bench - A generic latency benchmarking library. https://github.
com/tylertreat/bench. [Online; accessed 2019-04-17].

[5] vwdsrc. 2019. wrench - Workload-optimized & Reengineered bench. https://
github.com/vwdsrc/wrench. [Online; accessed 2019-04-17].

https://github.com/tylertreat/bench
https://github.com/tylertreat/bench
https://github.com/vwdsrc/wrench
https://github.com/vwdsrc/wrench

	Abstract
	1 Introduction
	2 Related Work
	3 Investment Industry Requirements
	4 A Representative Workload
	5 Tool Support: Enhancing bench
	References

