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ABSTRACT
Many application domains involve monitoring the temporal evolu-
tion of large-scale graph data structures. Unfortunately, this task
is not well supported by modern programming paradigms and
frameworks for large-scale data processing. This paper presents on-
going work on the implementation of FlowGraph, a framework to
recognize temporal patterns over properties of large-scale graphs.
FlowGraph combines the programming paradigm of traditional
graph computation frameworks with the temporal pattern detec-
tion capabilities of Complex Event Recognition (CER) systems. In
a nutshell, FlowGraph distributes the graph data structure across
multiple nodes that also contribute to the computation and store
partial results for pattern detection. It exploits temporal properties
to defer as much as possible expensive computations, to sustain a
high rate of changes.
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1 MOTIVATION
Many application scenarios involve large-scale graph-based data
structures that continuously evolve over time. For example, in social
networks new posts can refer to existing ones and mention users,
which in turn are connected by a “follower” relation that changes
over time. Common problems in these scenarios entail capturing
the temporal evolution of properties that depend on the structure of
the graph. For instance, understanding the evolution of the relations
between users in social networks can help customize the interface
and improve the user experience.

The above problems are challenging. On the one hand, they de-
mand the capability to perform computations on large-scale graphs:
such computations are often iterative in nature and expensive, as
exemplified by well known algorithms for path discovery, cluster
detection, ranking, etc. On the other hand, they require analyzing
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the evolution of the graph and its properties, keeping up with a
possibly high rate of changes.

Unfortunately, existing frameworks for large-scale data process-
ing do not meet these requirements. Graph processing systems [8]
enable scalable distributed graph computations through a program-
ming paradigm known as think like a vertex (TLAV) [10], introduced
in 2010 with the Pregel system [9]. TLAV exploits a bulk synchro-
nous parallel programming model [6], where the computation is
split into supersteps (epochs): at each superstep, a vertex can per-
form some computation that changes its internal state and/or send
messages to other vertices. This paradigm simplifies the distribution
of state and computation over multiple processing nodes, but only
refers to static graphs that do not change over time. Stream process-
ing systems analyze dynamic data as it becomes available, to derive
relevant information and enable timely reactions [4]. Modern big
data processing platforms such as Apache Spark Streaming [12] and
Apache Flink [2] offer steam processing capabilities by implement-
ing functional operators that transform input streams into output
streams. A stream processing job is represented as a workflow of
such operators, which are then deployed over multiple processing
nodes. However, operators are designed to only store the limited
state that is strictly needed to compute the desired results and of-
fer limited or no support for updating large-scale data stores, as
required in dynamic graph processing.

Despite some initial investigation in the area [5, 7, 11], the prob-
lem of defining a programming abstraction and processing frame-
work to analyze the evolution of large-scale graphs remains open.
In this paper, we tackle this problem by introducing a novel pro-
gramming paradigm that integrates the traditional TLAV graph
processing model with the temporal pattern detection capabilities
of stream processing systems, and in particular of Complex Event
Recognition (CER) systems [1]. We show how the paradigm is being
implemented in FlowGraph, a distributed processing framework
to detect temporal patterns in large-scale graphs. FlowGraph dis-
tributes the graph structure across multiple nodes that contribute
to the computation and store partial results for pattern detection.
It exploits temporal properties within patterns to defer as much as
possible the execution of expensive computations, to sustain a high
rate of changes.

2 THE FLOWGRAPH FRAMEWORK
This section overviews the FlowGraph framework we propose to
detect temporal patterns on large-scale graphs. We first present the
data and programming model (Section 2.1) and then the system
implementation (Section 2.2).

2.1 Programming model
The FlowGraph data model assumes a graph G(V ,E) where V is
a set of vertices and E is a set of edges. Both vertices and edges
can have associated properties. For instance, in a social network,
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vertices can be users and edges their “follow” relations. Vertices
can contain user data as properties. The structure of the graph—as
well as the values of properties in vertices and edges—can change
over time. We assume that the notifications of changes are received
as streams from some external source.

The FlowGraph programming model integrates graph compu-
tations with temporal pattern recognition. Computations return
relevant information from the state of the graph at a given point
in time. These results are conceptually stored inside a key-value
store partitioned across the vertices of the graph. Temporal patterns
correlate the results of computations at multiple points in time to
capture trends of interest in the application domain. Computations
are internally encoded as TLAV programs (the established paradigm
for large-scale graph computations).We assume a predefined library
of computations is available, which can be called by name using the
execute() operator, but developers can install new computations
if needed. We use select() operators to identify sub-graphs based
on the results of a computation. We can then run aggregations on
the properties of the selected sub-graphs.

For instance, the following code snippet assumes that a k-means
computation computes the k-means clustering algorithms, and
stores within each vertex v an entry (cluster, c) where c is an
identifier of the clusterv belongs to. The code snippet first computes
k-means with k=10. Then, it selects each and every cluster, that
is, any sub-graph such that all the vertices have the same value
(parameter $x) for the cluster property. Finally, it computes the
average value of the age attribute within each cluster. The pattern
is recognized when the average value for any cluster is greater than
50.
graph.execute("k-means",10).select("cluster", $x)

.avg("age") > 50

Patterns can involve temporal predicates. For instance, the fol-
lowing snippet shows a sequence that is satisfied when, within 10
seconds, the size of the largest cluster increases by more then 5.
graph.execute("k-means",10).select("cluster", $x)

.size().max() = $max1
-> (10 sec)
graph.execute("k-means",10).select("cluster", $x)

.size().max() > $max1 + 5

While they are far from being a complete overview of the pro-
gramming model, the above snippets well exemplify its core con-
cepts: computations that store their results inside vertices, para-
metric selection, aggregations, temporal operators, and parameter
correlations. We are currently finalizing a formal specification of
the pattern definition language, which is based on temporal logic
and inspired by our previous work on CER [3].

2.2 System implementation
We are currently implementing the programming model above in
the prototype FlowGraph framework. FlowGraph is developed in
Java on top of the Akka actor system1. Similar to modern data pro-
cessing platforms, the FlowGraph architecture comprises a master
node that coordinates many worker nodes. Clients can connect
to the master node and submit the patterns of interest together
with the code of user-defined computations, if any. Workers store
1https://doc.akka.io/docs/akka/current/general/actor-systems.html

the state of the graph in main memory for improved performance.
Specifically, graph vertices are partitioned across worker nodes,
together with their outgoing edges. Workers execute computations
using the TLAV paradigm, with the master acting as a synchroniza-
tion point between epochs, and save the results of the computation
locally, into a temporal key-value store.

Two key insights enable FlowGraph to optimize storage and pro-
cessing, with the final goal of maximizing throughput and reducing
latency as much as possible. First, old values are deleted from the
local key-value stores as soon as they cannot influence the detec-
tion of any pattern anymore. Their time of validity is determined
by statically analyzing the patterns when they are deployed into
the system. Second, patterns are rewritten to defer expensive com-
putations as much as possible. For instance, if a pattern involves
checking if a node belongs to a given cluster and later in time it
holds a specific value v for a given property p, the cluster computa-
tion is started retroactively only when a node is found with value v
for property p. Pattern rewriting is based on a cost model currently
under development.

3 CONCLUSIONS
This paper introduces FlowGraph, a framework for temporal pat-
tern recognition on graph data. FlowGraph integrates large-scale
graph computations with time-based analysis. By distributing the
processing effort and deferring expensive computations as much
as possible, FlowGraph has the ambitious goal to detect relevant
patterns with low delay in the presence of frequent changes.
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