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Abstract

Physical contact is critical for children’s physical and emotional growth and well-being. Previous 

studies of physical contact are limited to relatively short periods of direct observation and self-

report methods. These methods limit researchers’ understanding of the natural variation in 

physical contact across families, and its specific impacts on child development. In this study we 

develop a mobile sensing platform that can provide objective, unobtrusive, and continuous 

measurements of physical contact in naturalistic home interactions. Using commercially available 

motion detectors, our model reaches an accuracy of 0.870 (std: 0.059) for a second-by-second 

binary classification of holding. In addition, we detail five assessment scenarios applicable to the 

development of activity recognition models for social science research, where required accuracy 

may vary as a function of the intended use. Finally, we propose a grand vision for leveraging 

mobile sensors to access high-density markers of multiple determinants of early parent-child 

interactions, with implications for basic science and intervention.
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1 INTRODUCTION

Research on the functions and importance of physical contact lags vastly behind that of other 

sensory modalities. For example, there are nearly 13 times more publications on vision than 

touch [22]. While the importance of physical contact is evident across the lifespan, it appears 

to play a particularly important role during infancy, with benefits spanning a number of 

domains.

Touch enhances infant physiological functioning, with meaningful implications for physical 

health. A meta-analysis of 21 randomized control design studies involving over 3042 infants 

[9] indicated that increasing skin-to-skin physical contact between parents and their preterm 

infants reduces rates of infant mortality (risk ratio (RR): 0.67) and infection (RR: 0.5), and 

can shorten the duration of hospital stays (typical mean difference: 0.9 day). Other forms of 

touch, such as infant massage, also appear to have similar functions. For example, a review 

of nine studies of massage therapy indicated that preterm newborns who received 5–10 days 

of massage therapy showed a 21–48% gain in weight and 3–6 days shorter hospital stay 

relative to preterm neonates who received standard care [17]. Physical contact is thought to 

improve health outcomes via a variety of mechanisms. For example, touch can promote the 

development of the parasympathetic nervous system, including enhancing infant respiratory 

and thermoregulatory functioning [6].

Touch also appears to play an important role in establishing caregiver-infant bonding and 

attachment. In a randomized control study, mother-infant pairs receiving two hours of skin-

to-skin contact immediately following their infants’ birth showed enhanced patterns of 

reciprocity, maternal sensitivity, and infant self-regulation one year later relative to those 

separated for 2 hours after birth in a “standard care” condition [8].

While the benefits of massage and skin-to-skin contact in the earliest weeks of life are 

relatively well-established, clothed physical contact, experienced when a caregiver simply 

holds their child, also appears to have important developmental consequences. In particular, 

both skin-to-skin and clothed holding behaviors are thought to play a key role in the 

regulation of infants’ arousal and emotional state [16, 21]. Parents’ participation in such 

cycles of arousal and regulation during infants’ first year is critical for the development of 

infants’ independent ability to regulate their emotions, termed self-regulation, as well as the 

attachment relationship between children and their caregivers. Both self-regulation and 

attachment relationships emerge within the first year of life and together are a foundation for 

social-emotional functioning across the lifespan, with implications for the development of 

mental health disorders as well as numerous related behaviors across the lifespan[4, 41]. For 

example, attachment style classified at 12 months of age has been shown to predict high-

quality play and exploration behaviors in the first year, better problem-solving, sociability, 

and independence in toddlers, and more curiosity, flexible management of behavior, and ego 

control in the preschool years [13, 40].

Parent holding behaviors within the first year contribute directly and indirectly to the 

regulation of infants’ distress. Physical touch is known to function as a pain analgesic for 

infants [18]. Indirectly, the physical act of holding also allows caregivers to be more 
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attentive to their infants’ needs. For example, while being held, infants can indicate to their 

caregivers that they are hungry by rooting or clawing at them, thereby avoiding a full-blown 

distress episode [31]. A small number of experimental studies have shown that holding can 

promote infant regulation and increase attachment security. For example, a supplemental 

carrying intervention was found to reduce infant crying in the first 3 months of life by 43% 

[24]. In another intervention study [2], caregivers of young infants were randomly assigned 

to either an experimental holding condition or a control condition. Caregivers in the 

experimental condition received soft carriers which promoted physical contact while those in 

the control condition received infant seats. Mothers in the experimental condition were more 

responsive to their infants’ vocalizations at 3.5 months and their infants were more securely 

attached at 13 months, two key indicators of adaptive social-emotional development.

While suggestive, research on the impacts of clothed physical contact is relatively limited, in 

large part due to the lack of a consistent way to assess the duration and timing of holding 

behaviors as they occur in natural settings. Indeed, research on the role of touch in infancy is 

typically conducted in hospital settings where research participants can be directly 

monitored [8, 28]. Alternatively, it relies on self-report diaries filled out by participating 

caregivers[24]. This means that we have little understanding of the natural variations in the 

amount of physical contact behaviors between families, and the broader impacts of those 

variations on child development. More broadly, similar issues plague research on many 

aspects of early interaction between caregivers and their children. While many aspects of 

daily activity are hypothesized to have consequences for children’s development, most 

studies can only capture approximations of these behaviors in the laboratory.

The widespread adoption and presence of mobile and wearable sensors, paired with the 

coming of age of powerful algorithms to automatically extract meaningful activities from 

raw sensor data, could provide unprecedented access to the daily contexts in which 

development happens. Sensor platforms could be used to simultaneously capture the activity 

of the child and the caregiver, in addition to a vast array of possible determinants of their 

actions: from their perceived environments and internal states, to ecological factors such as 

household chaos [11]. This is critical as it is widely believed that developmental outcomes 

are not determined by a single factor, such as genes or caregiving, but are rather the outcome 

of a complex dynamic ecosystem [41]. Captured repeatedly over months or years, high-

density data on these various determinants of development could provide a radical new 

opportunity to understand how and why differences between individuals develop -from 

school success to physical and mental health.

The ultimate goal of our research is to develop a sensors-to-analytics platform to capture 

high-density markers of parent-child activity “in the wild” i.e. as they go about their typical 

day-to-day activities. Such a platform will provide unprecedented access to objective, 

unobtrusive, high-density measurements of developmental determinants, pushing the limits 

of basic developmental psychology research. In particular, such novel datasets have the 

potential to lead to a better understanding of children’s individual trajectories of risk and 

resilience, with the potential for earlier diagnosis of potential issues and abnormalities as 

well as opportunities for timely intervention and improved care. Wearable and ubiquitous 

computing methods have the potential to play a key role in this endeavor, serving as enabling 
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technology that facilitates systematic and automated assessments of natural behavior on a 

large scale.

In this paper, we lay the foundations for our research agenda. Specifically, we pursue one 

aspect of the envisioned framework, namely, the automated assessment of holding behavior - 

a highly critical yet understudied component of early mother-infant interactions. The 

contributions of this paper are as follows:

• We present the first attempt, to our knowledge, to build a comprehensive system 

to automatically detect multiple dimensions of caregiver-infant interactions. Our 

system will provide unique access to early caregiving behaviors for 

developmental scientists while also advancing ubiquitous computing research via 

a novel multi-person use case.

• We developed a model to detect mother-infant holding behaviors using body-

worn accelerometers. We trained and evaluated our model with 26 mother-infant 

pairs, wearing our sensor for on average 45 minutes (std =11) during naturalistic 

interactions. Our model successfully distinguishes holding from non-holding 

activities with an accuracy of 0.870 (std: 0.059) at second-by-second resolution.

• We present and discuss the accuracy of our model within five specific assessment 

scenarios, including event-based accuracy and comparisons of absolute and 

relative activity summaries across participants. These additional assessment 

scenarios are of particular relevance to the developmental science community, 

and more generally to social-science approaches interested in understanding 

individual differences.

• In a sub-sample of participants, we assessed the accuracy of our infant-holding 

detection model with sensors placed on the wrist rather than chest. Our results 

indicate that chest-worn sensors are more accurate in all assessment scenarios. 

However, wrist-worn sensors perform adequately for some assessments and 

could be used for longer-term monitoring as they are more comfortable for 

participants. We discuss these usability trade-offs in the context of survey results 

detailing participant’s comfort in our discussion.

2 MOTIVATION AND BACKGROUND

Much of the research on the developmental impacts of touch and physical contact is limited 

to direct observations of families during hospital stays (common when infants are born 

premature and must remain under supervision). This means we know relatively little about 

the role of touch in healthy infants (i.e. those not born premature) as well as older infants 

(who are no longer in the hospital). Another common approach within holding research is to 

compare developmental outcomes of children of families randomly assigned to a “holding 

intervention” vs. a “usual care” control intervention. Families in the holding intervention are 

provided a baby carrier in order to encourage holding behaviors, whereas families in the 

control condition receive an infant seat [2]. While end-of-study survey measures have been 

used to validate that families assigned carriers report the use of carriers more than the 

control families, this method provides no actual indication of the amount of time infants in 
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either condition are carried. This limits both the interpretability of such research as well as 

its accuracy, as actual time spent holding is unknown.

Self reports are the gold-standard method for assessing holding in home environments. 

However, self-report diaries are burdensome on families, meaning they are conducted only 

for short periods of time and they are prone to errors and biases. Additionally, they provide 

highly imprecise data on the timing of physical contact. This is critical as a key hypothesis 

of attachment theory is that soothing contact temporally contingent to infant distress serves 

to regulate (i.e. reduce) infant arousal [41], providing key input for developing stress and 

arousal systems [10] as well as infants’ expected patterns of distress and regulation.

Wearable sensors have the potential to greatly enhance the status quo for assessment of 

physical contact. We hypothesize that it will be possible to leverage body-worn inertial 

sensors to automatically and objectively capture parent-child holding behaviors with great 

precision. Activity recognition can be considered one of the pillars of wearable and 

ubiquitous computing, and a large number of systems and methods have been developed that 

successfully demonstrated the feasibility of activity recognition with wearable motion 

sensors specifically in health applications (e.g., [3, 19, 23, 29, 37, 38]).

Despite the great popularity of wearable sensors and their wide usage in many applications, 

within the ubiquitous computing community, research involving infants is not common. 

Exceptions are mainly focused on medical applications. For example, Hayes et al. [20], 

developed motion sensing systems to support premature babies in the transition from 

hospital to home. Additionally, Fan et al. [14] developed a Markov model based technique 

for recognizing gestures of Cramped Synchronized General Movements which were highly 

correlated with an eventual diagnosis of Cerebral Palsy. [35] described a child activity 

recognition approach using accelerometer and barometer to prevent child accidents such as 

unintentional injuries.

Additionally, there is a consumer market for wearable devices that can detect infant activity 

and report it to parents (as critically reviewed by [43]). These devices typically assess infant 

physical motion and vitals, including blood oxygenation, temperature and breathing rate. 

However, these applications only begin to scratch the surface of the potential and useful 

tools that could be developed. Thus, more research into reliable methods to objectively 

access parent-child interactions is warranted.

2.1 Research Design and Sensor selection

Our overall aim is to develop a platform to collect objective high-density markers of mother-

infant interaction. In particular, this platform should have the following functionalities. First, 

we wish to be able to detect markers related to caregiving activities (such as physical 

contact, feeding, sleeping); the social-emotional quality of caregiver-child interactions (such 

as presence of warm vs. harsh tones, or high vs. low synchrony between caregiver and 

infant); and parent and child affect, including distress signals (such as fussing and crying) 

and parental stress. Second, this platform should be able to collect such data for caregiver-

child activity for at least a full week or longer in their natural environment. While such 
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extended recordings are still relatively rare, one week of data could likely provide sufficient 

variability in natural activity without being too burdensome for our families.

The current paper is focused on the development of a model to automatically detect holding 

behaviors via mother and infant motion signals. However, the additional requirements of our 

system affect the design considerations and sensor selection of the current research and, as 

such, we provide additional context on our overall platform.

Our current sensor platform includes high-quality heart rate and motion sensors worn by 

mother and child, as well as a continuous audio recording device, worn by infants [30]. 

These devices were selected to provide access to various aspects of parent and child activity. 

In particular, body-worn motion sensors can ostensibly be used to detect infant behavior and 

and caregiving activities (detailed in later paragraphs). Additionally, we envision using audio 

recordings to automatically detect qualitative and affective aspects of the parent and child 

interactions [27, 42]. High-quality heart rate data provides an opportunity to examine 

physiological measures related to social-emotional well-being and parent-child regulation, 

including vagal tone and parent-child heart rate synchrony [15]. Additionally, heart rate data 

can improve the quality of collected sleep data, another key behavior in our study. Given 

these varied goals, there were a number of competing considerations in choosing the form 

factor for the motion sensor used in the current study. While a wrist-worn sensor would 

provide a more comfortable experience for long-term wear, the need for high-quality heart 

rate data, as stated above, necessitates a chest-worn sensor. Ultimately, we selected a single 

chest-worn sensor, collecting both motion and high-quality heart rate signals, as our primary 

data collection device. However, we also recruited a small sample of participants to wear 

wrist-worn motion sensors to assess the feasibility of this alternative placement.

In our ongoing data collection, families with infants aged six weeks to nine months 

participate in two sessions, a 90-minute “Introductory” session (henceforth referred to as the 

Intro session) and a 72-hour “Home Recording” session, in which they use our sensor 

platform to collect 72 hours of data over the course of a week. In the current paper, we focus 

exclusively on data collected in the Intro session, which is detailed in Section 3.1 below. 

Intro sessions are videotaped, thus providing us a highly reliable source of ground truth data 

to develop and assess our holding detection models. We describe the detailed protocol for 

the Intro Session in Section 3, as well as the accuracy of our models and their implications 

for future studies in Section 4 and 5.

2.2 Assessment Scenarios

The literature suggests that both the duration and the timing of holding behaviors can impact 

infant outcomes [1, 2]. In light of this body of knowledge we defined five relevant 

assessment scenarios (listed in Table 1). In the simplest case, knowing the accurate onset and 

offset of individual holding events at second-by-second level (Assessment Scenario 1) can 

be valuable for we can infer exact interaction patterns. Some hypotheses are more specific 

with reference to timing: attachment theory suggests that knowing whether the parent is 

contingently holding following a stimulus, such as crying, can determine its outcome. Thus, 

knowing the timing of holding events would be valuable (Assessment Scenario 2). More 

broadly, we also want to know whether or not the parent picks up the infant contingent to the 
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onset of distress episode (Assessment Scenario 3). In addition, knowing how much a parent 

is holding relative to other families (Assessment Scenario 4 & 5) would be valuable for 

predicting outcomes such as attachment security or maternal mental health systems. As 

reported above, more daily carrying can effectively reduce infant crying and fussing [24]. 

Each of these scenarios suggest a different way to conduct automated activity recognition. 

Developmental scientists may use an automated assessment method to study any of these 

scenarios (summarized in Table 1). Furthermore, differences among the evaluation scenarios 

can be considered through an automated assessment system. For example, while an 

algorithm may be able to perform well on average for Assessment Scenario 1, it may not 

have individual differences for Assessment Scenario 4 & 5. So it is important to evaluate and 

iterate on the models to get to adequate performance for each one of these scenarios. We will 

explore this in Section 4.1. These different scenarios are of value to developmental scientists 

as well as more broadly to social scientists interested in leveraging activity recognition 

within studies of daily activity.

3 METHOD

3.1 Data Collection

3.1.1 Protocol.—The current study uses data collected within an Intro session lasting 

approximately 90 minutes. Following an introduction to the study goals and the collection of 

informed consent, parents and their infants participated in developmental assessments and 

naturalistic activities while wearing our sensor suite (detailed in Section 3.1.3), and each 

session was recorded on video. At the start of every video recording, research personnel 

completed a sequence of movements with distinct motion and visual pattern to synchronize 

the video and sensor data [36].

The Intro session tasks included two commonly-used developmental assessments: a 5-

minute standardized “free-play” task, in which caregivers were asked to play with their 

infants as they normally would, while seated on the floor, and a 5-to-7-minute “reactivity 

assessment” [26] in which infants are presented with a number of novel or “intense” stimuli 

(including diluted lemon juice and noisy toys) in a controlled manner to assess individual 

differences in their reactions. Additionally, in a final activity named “around-the-house” 

task, caregivers were asked to mimic typical care-giving routines in various locations around 

their own homes (10–20 minutes). For example, we asked mothers to show us how they 

typically played with, changed, and fed their infants, in the locations they would commonly 

do so. This task was developed specifically to provide a variety of natural physical contact 

and proximity behaviors, including numerous unprompted opportunities for parents to pick 

up, carry and hold their infants as they moved them around in their homes. Video recorded 

data from the entire Intro session was included as training data in our holding recognition 

model.

3.1.2 Participants.—33 healthy mother-infant pairs were recruited to participate in our 

study. The average age of the infants was 5.33 months (std: 2.54, range: 1.23–10.8), and the 

sample included 13 females and 20 males. Maternal age was collected from all but two 

participants in our sample, and the average age of the mothers was 30.71 (n:31, std: 3.94, 
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range: 23–39). 19 mothers identified as White, 5 as Hispanic, 2 as African-American, 1 as 

Asian, and 6 as Multiracial.

3.1.3 Sensors.—As detailed in Section 2, chest-worn sensors were used for our main 

data collection efforts, due to requirements for high-quality heart rate data in a larger 

ongoing study (N=26). Additionally, to assess the feasibility and trade-offs with a likely 

more comfortable option for long-term wear, a smaller sample of participants (N =12) wore 

wrist-worn sensors during the Intro session. Note that 5 of the 33 participants collected both 

chest and wrist-worn data during their session.

We used the Movisens EcgMove 3 (Movisens) [34] to collect chest-worn sensor data. This 

sensor collects electrocardiogram (ECG; up to 1024Hz), 3-axis acceleration (64 Hz), and 

barometric pressure (1 Hz) data. It can collect continuous data for 3 days without charging 

and store up to 2 weeks of data. Our holding recognition model relies on the acceleration 

data alone. The sensor was attached to both caregivers and infants using either a chest belt or 

adhesive electrodes. Figure 1a shows an infant wearing a Movisens on the chest.

We used the MetaMotionR (MMR) [32] to collect wrist-worn sensor data. The MMR is a 9-

axis IMU and environmental sensor, but for purposes of comparison, only 3-axis 

accelerometer data was used in the current study. It collects movement data at 25 Hz. 

Caregivers wore the MMR sensor on their dominant wrist; infants wore the MMR attached 

to their ankle, as shown in Figure 1b.

3.1.4 Annotation.—Trained coders annotated various states of physical contact (e.g. 

bouncing, carrying) occurring throughout the entire duration of the Intro session. Proximity 

states were collapsed into a binary category of holding and not holding (Mean: 45 minutes, 

SD: 11 minutes, kappa = 0.844). Holding activity includes both holding and carrying where 

a mother is physically supporting her infant while not holding mainly relates to those 

activities where a mother is away from her infant. The detailed definition for holding and not 

holding can be found in Table 2. In this way, we obtained fine-grained distinctions of ground 

truth at second-by-second resolution. We estimated that during a session, mothers held their 

infants on average 41.4% of the time (std: 0.130, range: 0.163 – 0.744), which was about 

18.6 minutes for an average 45-minute session.

3.2 Development of Holding Detection Algorithm

Our multi-stage algorithm has been designed for automatic holding detection and contains 

four main steps: i) preprocessing and windowing (to extract small, consecutive portions of 

sensor data for processing); ii) feature extraction; iii) machine learning based classification; 

and iv) post-processing of prediction results through smoothing. We applied the algorithm to 

3-axis acceleration data streams recorded using the sensing system mentioned in Section 

3.1.3 (separately for chest-worn and wrist-worn setting). Model validation and evaluation is 

based on a leave-one-participant-out protocol.

Preprocessing calculates the magnitude of raw acceleration data for both mother and infant, 

and then smoothes the resulting sensor data stream using a standard Savitzky-Golay filter. 

Sliding window based analysis employs a 7-second analysis window that is shifted in 
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increments of 1 second. For each window we compute five features: i) correlation of 

acceleration between mother and infant; ii) squared correlation; iii) variance of mother’s 

acceleration; iv) variance of baby’s acceleration; and v) the difference between variances. 

The correlation features were chosen to capture synchrony between caregiver and infant 

when holding or carrying, because in those cases their data streams are expected to be 

similar, which is in contrast to when both are moving independently. We expected to see 

high-correlation patterns during holding and little to none correlation during not holding. 

Variance features were chosen to characterize the individual variations in movements. Small 

differences suggest similar movement distributions, whereas larger differences suggest very 

different movement patterns. The machine learning based classification, which is derived 

from supervised training, then assigns activity labels to each window, and final predictions 

are determined through majority vote on predictions for overlapping windows.

We explored four machine learning models: i) AdaBoost; ii) Logistic Regression; iii) 
Random Forest; and iv) Support Vector Machines (SVM). Random Forest provided the 

highest and the most stable accuracy across all sessions and therefore we limit the 

presentation of the results in Section 4. to that classifier.

A final post-processing step involved smoothing the stream of predictions to remove 

implausible outliers in the predictions that would suggest unrealistically short holding (or 

not-holding) episodes. In our model, non-holding episodes that were shorter than or equal to 

30 seconds, and holding episodes that were shorter than 10 seconds were eliminated by the 

smoothing procedure through reassignment to the particular other class.

4 RESULTS

As motivated in Section 2, we introduced 5 assessment scenarios (Table 1) which are 

necessary to consider in social science studies. We will show the results derived from our 

model and chest-worn Movisens sensor one-by-one here and discuss its implications in 

Section 5. In addition, we present the results for all 5 scenarios using data collected by wrist-

worn sensors and compare it to chest-worn sensors.

4.1 Assessment Scenario 1: High Temporal Precisions

Assessment Scenario 1 represents conventional accuracy metrics used in activity 

recognition. It classified holding vs. not holding activities at a second-by-second level. This 

level of granularity (knowing what the participant is doing every second) is important to 

infer exact interaction patterns.

Model performance for classifying holding and not holding second reached 87% of accuracy 

and 83.1% of F1 score as in Table 3. Precision and recall were both higher than 80%, 

meaning our model is of practical relevance for correctly distinguishing holding from not 

holding episodes.

4.2 Assessment Scenario 2: Event-based accuracy

Our second scenario assesses model performance for identifying events, that is, periods of 

continuous holding between periods of not-holding. To assess event-related accuracy, we 
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first assessed event recall, that is, how often the model accurately detected any frames of 

holding during a holding event identified in the ground truth data. Additionally, we set 

different thresholds to specify varying proportions of overlap between detected and ground 

truth holding events, which could theoretically range from 0% (no detected holding for a 

given ground truth holding event) to 100% (complete overlap between a detected holding 

event and the corresponding ground truth event). We present mean recall and mean precision 

(summarized in Figure 2) across overlap thresholds from 0%−80%. Our results indicate that 

we can obtain recall and precision larger than 75%, with a threshold of 60% of overlap 

matching between ground truth and predicted events. In particular, at the 60% threshold, the 

mean recall was 0.828 and mean precision 0.774. However, this threshold also results in a 

number of false positives. Where on average the model detected 9.308 (Std: 3.739) events, 

2.077 (Std: 1.639) were false positives.

Visual inspections suggested that these false positives were more likely to occur when 

ground truth events were very short. Considering only those events that were 15 seconds or 

greater, the number of false positives was reduced. In particular, an average number of 1.615 

(Std: 1.003) false positives was generated for an average session with 6.962 (Std: 1.951) 

holding events.

These results indicate that while our model does not accurately capture the entire duration of 

every holding event, it can be used to calculate the frequency of holding events, especially 

those longer than 15 seconds. Measures of holding frequency have previously been used to 

assess variation in physical contact in the developmental literature [39].

4.3 Assessment Scenario 3: Contingency Analysis

The timing of caregiving behaviors is of special interest to developmental psychologists. In 

particular, caregiving behaviors which are contingent upon children’s activities have been 

shown to promote learning and development across a number of domains, from language 

learning to attachment and social-emotional outcomes [5, 7, 25]. Parental holding contingent 

upon infant distress is one input considered to be important for development of attachment 

behaviors [24]. Thus in our third scenario we assessed the accuracy of our model to detect 

the presence or absence of any holding activity within specific windows of time. In future 

research efforts these windows could be determined via the onset of periods of infant 

distress.

We considered windows of 5 seconds (one second stride) and 2 minutes (one minute stride) 

in length. If the model predicted any holding events within the window, the whole window 

was labeled as “holding”, otherwise it was labeled as “not holding”. We chose two different 

window lengths in consideration of two cases common in home scenarios. First, mother can 

be feet or rooms away from the baby or she may be busy with another child, which makes 

window length of 2 minutes an appropriate metric, whereas window length of 5 seconds is 

for cases when a caregiver is next to the infant, typical during interactions such as home 

play.

Our results are reported in the form of confusion matrices in Table 4, Considering 5-second 

windows (13,312 windows total) summed across all 26 sessions, the precision for holding 
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activities reached 0.850 while the recall was 0.873 (Accuracy: 0.881, F1-score: 0.861). 

Considering 2-minute windows (1,097 windows total) summed across all 26 sessions, the 

precision for holding activities reached 0.843 while the recall was 0.943 (Accuracy: 0.847, 

F1-score: 0.891).

Results considering each participant separately (using a window size of 2 minutes) are 

reported in Table 5. The high values in all 4 measures across all sessions mean that our 

model can identify contingencies with high confidence.

4.4 Assessment Scenario 4 & 5: Absolute and relative activity summaries

Our final assessment scenarios characterize relative differences in summed activity between 

individuals (or in our case, families). A key goal within developmental science is to 

understand how differences in the quantity or quality of behaviors between individuals or 

families predict children’s future developmental outcomes. This requires confidence in the 

model’s predictions for each pair of participants rather than average model performance 

across the entire sample. We note that it is common for model performance to vary across 

participants: in our assessment of second-by-second accuracies, the standard deviation of our 

model’s recall was larger than 10% (see Section 4.1), which is not uncommon in published 

activity recognition models. For this reason we developed two additional scenarios to 

directly test the model performance to preserve absolute and relative differences in activity 

summaries between participants.

For the fourth assessment scenario, we compared ground truth and predicted holding 

duration during each session using Pearson’s correlation. Due to slightly varying session 

lengths we calculated relative holding durations after normalizing session length to 45 

minutes. The R2 of the correlation was strong (correlation =0.915, R2 = 0.815; Figure 3 Left 

Plot), indicating that our model is accurate in predicting the amount of holding across our 

participants.

For the fifth assessment scenario, we assessed whether our model could preserve the rank of 

the amount of holding, which in some cases may be preferable to absolute differences 

between individuals. Holding time was again normalized to adjust for differences in 

recording durations between participants and compared between ground truth and 

predictions. The right plot of Figure 3 shows the rank of holding time in both ground truth 

and predictions and all data points are close to the line of expected output. Thus, our model 

preserved most of the order and can be used to assess the individual difference in the amount 

of holding. The Spearman’s rank correlation reaches 0.876 and R2 is 0.771.

4.5 Comparison between chest-worn and wrist worn sensor

In our final analyses we compare the accuracy of models developed using data from wrist-

worn sensors with our original model developed using data from chest-worn sensors. As 

stated above, this comparison has implications for participant usability as wrist-worn sensors 

are known to be more comfortable for long-term use. To develop the model from the wrist-

worn data we used the same methods described in Section 3.2 using 12 total sessions.
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Overall model accuracy for the 12 wrist-worn sessions was 0.738 (std: 0.076, F1: 0.690, 

Precision: 0.744, Recall:0.679) for Scenario 1, with similar accuracies for the other 4 

scenarios. Additionally, five participants wore wrist and chest-worn sensors systems 

simultaneously, allowing us to directly compare their results for each of the five assessment 

scenarios. These are summarized in Table 6.

The data in Table 6 indicates that wrist-worn sensors show worse classification of holding 

than chest-worn sensors. Interestingly, these discrepancies in classification accuracy are not 

consistent throughout all five scenarios. While results in scenarios 2 and 5 appear 

inadequate, wrist-worn sensing is appears adequate for use cases according to scenarios 3 

and 4.

5 DISCUSSION

5.1 Implications

Our results indicate that high precision and recall were achieved for all assessment 

scenarios, meaning that our model can automatically detect holding activities accurately and 

consistently within and across all participants in our study.

The strong performance of our model means that it can be used to precisely and objectively 

quantify holding behaviors in naturalistic settings, useful for both basic science of child 

development as well as development of interventions. For example, data on absolute or 

relative amounts of holding across a day could be used to predict relevant child and 

caregiver outcomes ranging from stress system neurobiology and attachment security to 

maternal mental health symptoms. The temporal precision of the model paired with its 

accuracy across participants means it could be used to collect data speaking to specific 

hypotheses regarding the role of the timing of physically soothing responses to infant 

distress. Research indicates that holding can be an important mechanism to reduce infant 

crying and promote attachment behaviors fundamental to lifelong outcomes in social and 

emotional domains.

Our model could be incorporated into interventions designed to increase caregiver holding 

behaviors. Providing families with objective feedback about their holding behaviors could 

function to increase holding frequencies and durations, with benefits for both caregivers and 

infants. The LENA system [30] is a similar intervention model that has had much success in 

the developmental science community. LENA is a wearable audio recorder which 

automatically detects patterns of contingent speech between parents and their children. This 

system has been used by thousands of parents to provide objective feedback used to increase 

speaking to children and ultimately vocabulary and school success.

Finally, our assessment scenarios could be usefully applied to many different activity 

recognition problems. In particular, we highlight the need to directly measure the 

consistency of model performance across different scenarios. In particular, models with 

acceptably high average accuracy may obscure or mislead researchers interested in using 

activity recognition to identify individual differences across participants [11]. Assessment 
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and reporting of accuracy across participants or sessions can lead to more consistent models 

or at the very least more informed use of these models.

5.2 Assessment of Sensor Usability

One potential concern with our sensing platform is that it may be physically uncomfortable 

for our participants. Attaching a sensor to the chest of an infant may limit their natural 

movements or restrict interactions with the caregiver. Additionally it may simply be 

uncomfortable to wear for extended periods of time. To assess these potential concerns, we 

conducted an exit survey among a subset of our participants (N = 18) to evaluate their 

experiences with our current sensing platform. The survey was conducted following the 

home recording session, in which participants were instructed to wear our complete sensor 

platform for 72 hours over the course of a single week.

On a scale of 1 to 5, we asked caregivers to indicate how comfortable they were with the 

sensor attached to the chest, where 1 represents “very uncomfortable” and 5 “very 

comfortable”. We achieved an average score of 3.67, which is reassuring for the developed 

approach. In particular, 10 caregivers said that the chest-worn sensor was comfortable/very 
comfortable while only one participant said the sensor was uncomfortable. In addition, using 

the same scale, 17 (out of 18) mothers provided ratings of the perceived comfort of their 

infants. Overall, mothers perceived the infant to be comfortable with the chest-worn sensors, 

with an average rating of 4.12. Only one mother reported that she perceived her infant was 

uncomfortable with the sensors while 13 mothers reported that their infants were either 

comfortable or very comfortable.

Overall, our survey results indicate that a chest-worn sensor was sufficiently comfortable for 

our participants and thus does not represent a reason for concern at this time.

5.3 Limitations and Future Work

Relative to wrist-worn sensors, chest-worn sensors provided higher accuracy across all 

assessment scenarios. While our participants of our exit survey indicated that chest-worn 

sensors were sufficiently comfortable, (Section 5.2) 14 of 18 respondents indicated that they 

would prefer to use wrist-worn sensors over chest-worn sensors if provided the option. Thus, 

there is an apparent trade-off between sensor positioning (and therefore accuracy of holding 

detection) and participant comfort. As a consequence, in future work we will continue to 

optimize our sensing platform. We note that prototypes of miniaturized inertial measurement 

units have recently become available. These prototypes resemble a band-aid like form factor 

and are thus substantially smaller than the devices used for the study presented in this paper 

[33]. This prospective form factor could provide a more comfortable user experience while 

maintaining the higher accuracy of chest-worn sensing, effectively eliminating any 

remaining concerns.

While our model showed reliable performance in detecting the presence or absence of 

holding behavior, we recognize that different types of physical contact may have different 

implications for children’s immediate and long term outcomes. For example, in studies of 

infant massage, babies who received moderate pressure had better gastric motility and vagal 

tone than those who received light pressure [12]. It is likely that other types of touch, such as 
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bouncing or carrying versus a more procedural contact (e.g., fastening or adjusting clothing) 

also have differing implications for attachment and stress system development across the 

first year. We are not aware of any research differentiating these in the developmental 

science literature, likely because it has been impossible to accurately characterize or report 

upon such variations in touch in natural daily activity. While beyond the scope of this paper, 

more precise characterization of holding activities may be possible with future research 

efforts. In particular, in our current dataset we have annotated a total of eight distinct types 

of physical contact, including: holding, carrying, bouncing, picking up, putting down, 

hovering, touching and nearby. We will work to incorporate these into our framework in 

order to provide more fine-grained analysis of physical contact behaviors in the future.

5.4 Conclusions

In the current paper, we described our use of wearable sensors to build an overarching 

system to capture multiple aspects of caregiver-infant interaction. We presented a model that 

combines chest-worn accelerometer data from caregiver and infant to detect holding 

behavior. Our model allows objective assessments of the amount and duration of holding in 

naturalistic home settings, with implications for basic science and intervention. Our results 

show that our model achieves high average precision and recall at second-by-second 

resolution. In addition, we proposed and discussed accuracy metrics for four other potential 

assessment scenarios, namely, event-based accuracy, contingency analysis, absolute and 

relative activity summaries. A subset of our 26 total participants wore both wrist- and chest-

worn sensors, allowing us to compare accuracy between these two form factors. Our results 

indicate that chest-worn sensors are more accurate while still reasonably comfortable, even 

in deployments lasting up to a week. However, wrist-worn sensors may be preferable for 

longer-term applications when only summary measures of holding time are desired.
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CCS Concepts:

Human-centered computing → Ubiquitous and mobile computing design and evaluation 

methods; Empirical studies in ubiquitous and mobile computing.
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Fig. 1. 
Images of sensors as worn by participants in our study. Chest-worn sensors were attached 

with a chest belt or adhesive electrodes as in Figure 1a. Wrist-worn sensors were attached to 

mothers’ dominant wrist or infants’ ankle with tight-fitting fabric cuffs (shown in pink), as 

indicated in 1b.
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Fig. 2. 
Mean recall and precision values of all 26 sessions for assessment scenario 2. When all 

events are considered, the model can capture at most 88% of the holding events and the 

number was increased to 95% as short holding events without a strong pattern are missed. 

The mean precision didn’t change much for different overlap thresholds overall.
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Fig. 3. 
These plots shows the correlations between ground truth and predictions. In particular, the 

left plot corresponds to Scenario 4 and right plot Scenario 5. Each individual point 

represents one session. For the left plot, x-axis represents the holding time normalized to a 

45-minute session in ground truth for each individual session and y-axis represents the 

predicted holding time. For the right plot, x-axis represents the rank for the amount of 

holding time in ground truth and y-axis represents the predicted rank. In the ideal situation, 

we should obtain a diagonal line where the predicted rank is the same as the ground truth 

rank.
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Table 1.

Descriptions And Examples of Assessment Scenarios for Activity Recognition

Assessment Scenario Description Example

1. High Temporal Precision Accurate onset and offset of individual 
holding events

What is the timing of holding behaviors over the course of the 
day? Is holding or holding duration contingent upon infant 
distress or is it unrelated to infant activity?

2. Event-based Accuracy (with 
Thresholds)

Successful identification of a specific 
activity obtaining a certain amount of 
overlap between ground truth and 
prediction

How many times is the infant held over the course of a day? Is 
rate of holding decreased in cases of maternal depression?

3. Contingency Analysis Determine whether an activity happens 
with a certain window of time

Is infant held at all within two minutes of crying onset?

4. Absolute Activity Summaries Total sum of the amount of an activity How much time is a child held over the course of a day?

5. Relative Activity Summaries The amount of an activity comparing to 
others and different days.

Does the model accurately identify the rank order of holding 
time across children? Are children who are held more often 
than others accurately identified by the model as such?
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Table 2.

Definitions of holding activities between mothers and infants

Activities Definition

Holding Caregiver is physically supporting the infant while either standing or sitting. Includes carrying, picking up, putting down and 
bouncing so long as child’s weight is completely supported by caregiver.

Not holding Caregiver is not supporting the weight of the baby. Includes all periods without physical contact as well as touching or leaning 
behaviors in which physical contact does not completely support the child’s weight.
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Table 3.

Second-by-second Accuracy

Accuracy Fl Average Holding precision Holding recall

Mean 0.870 0.831 0.818 0.854

Std 0.059 0.091 0.105 0.102
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Table 4.

Confusion matrices of Contingency-Analysis Assessment (Scenario 3) for Windows Summed across All 26 

Sessions

Ground Truth Predictions

Not Holding Holding

Not Holding 6801 870

Holding 717 4924

(a) 5 sec confusion matrix

Ground Truth Predictions

Not Holding Holding

Not Holding 245 127

Holding 41 684

(b) 2 min confusion matrix
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Table 5.

Performance of Contingency-Analysis Assessment (Scenario 3) for Each Participant (considering 2 min 

windows)

Session Accuracy Fl average Hold Precision Hold Recall

Mean 0.855 0.894 0.855 0.944

Std 0.081 0.067 0.088 0.069
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Table 6.

Comparison of accuracy between wrist-worn sensors and chest-worn sensors in all five scenarios (recorded 

simultaneously in the same five sessions). Note that for Scenario 2, precision and recall were calculated for all 

events longer than 15 seconds with over 60% of overlap. In addition, scenario 3 is the mean measurements of 

2 minute contingency windows.

Wrist-worn Chest-worn

Scenario 1 Precision Recall Precision Recall

0.784 0.716 0.826 0.868

Scenario 2 Precision Recall Precision Recall

0.693 0.709 0.859 0.949

Scenario 3 Precision Recall Precision Recall

0.84 0.919 0.862 0.955

Scenario 4 Correlation R2 Correlation R2

0.878 0.747 0.952 0.878

Scenario 5 Correlation R2 Correlation R2

0.600 0.360 0.800 0.640
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