
Bridging the Latency Gap between NVM and DRAM for
Latency-bound Operations

Georgios Psaropoulos
georgios.psaropoulos@epfl.ch

EPFL, Switzerland
SAP SE, Germany

Ismail Oukid
ismail.oukid@sap.com
SAP SE, Germany

Thomas Legler
thomas.legler@sap.com

SAP SE, Germany

Norman May
norman.may@sap.com

SAP SE, Germany

Anastasia Ailamaki
anastasia.ailamaki@epfl.ch

EPFL, Switzerland
RAW Labs SA, Switzerland

ABSTRACT
Non-Volatile Memory (NVM) technologies exhibit 4× the read ac-
cess latency of conventional DRAM. When the working set does
not fit in the processor cache, this latency gap between DRAM and
NVM leads to more than 2× runtime increase for queries domi-
nated by latency-bound operations such as index joins and tuple
reconstruction. We explain how to easily hide NVM latency by
interleaving the execution of parallel work in index joins and tuple
reconstruction using coroutines. Our evaluation shows that inter-
leaving applied to the non-trivial implementations of these two
operations in a production-grade codebase accelerates end-to-end
query runtimes on both NVM and DRAM by up to 1.7× and 2.6×
respectively, thereby reducing the performance difference between
DRAM and NVM by more than 60%.

CCS CONCEPTS
• Information systems→Mainmemory engines; Point lookups;
Query operators; Storage class memory; • Software and its engi-
neering → Coroutines; Software architectures; Software perfor-
mance.

KEYWORDS
non-volatile memory, memory stalls, latency hiding, interleaved
execution, coroutines

ACM Reference Format:
Georgios Psaropoulos, Ismail Oukid, Thomas Legler, NormanMay, andAnas-
tasia Ailamaki. 2019. Bridging the Latency Gap between NVM and DRAM
for Latency-bound Operations. In International Workshop on Data Manage-
ment on New Hardware (DaMoN’19), July 1, 2019, Amsterdam, Netherlands.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3329785.3329917

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DaMoN’19, July 1, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6801-8/19/07. . . $15.00
https://doi.org/10.1145/3329785.3329917

1 INTRODUCTION
Non-Volatile Memory (NVM) is a new class of byte-addressable
memory technologies that offer the persistence and high density of
storage media with sub-microsecond access latencies. These proper-
ties enable NVM to serve as main memory and storage at the same
time, and have spurred a line of research investigating how to lever-
age them in database systems. Academic researchers have proposed
systems, such as SOFORT [29], Peloton [10], and FOEDUS [22], that
incorporate NVM both as memory and storage, whereas database
vendors like SAP, Oracle, Microsoft, and Aerospike, have raced
to announce NVM-enabled products [2, 3, 5, 7]. With the immi-
nent availability of Intel Optane DC Persistent Memory Module
(PMM) [4], i.e., Intel’s NVM DIMM1, the question is not whether,
but when we will see a database running on NVM in production.

Preliminary works show how to leverage the properties of NVM
with DRAM-like performance [7, 34]. Still, the 300 ns of NVM read
latency (see Section 2 for details) pose a major performance chal-
lenge for latency-bound database operations, such as index joins
and tuple reconstruction in the context of dictionary-encoded col-
umn stores [17, 20]. An index join consists of multiple pointer-
chasing lookups in one index, while tuple reconstruction visits
each column, retrieving the encoded row value and decoding it
with a lookup to the corresponding dictionary. Both operations
involve random memory accesses whose latency the processor can-
not hide; this latency is only exacerbated by placing data on NVM,
leading to significant slowdowns.

In this paper, we show how to use NVM in latency-bound op-
erations at a fraction of the slowdown incurred due to the 300 ns
latency. In the aforementioned cases of index joins and tuple recon-
struction, the respective index and column lookups do not depend
on each other, allowing the processor to “context switch” among
lookups upon cache misses and continue executing instructions in-
stead of waiting for data to be fetched from main memory. As prior
work [21, 31, 32] on join-like operations demonstrates, this form
of interleaved execution can be implemented in a practical manner
using coroutines, i.e., functions that can suspend their execution
and be resumed at a later point. Our work adds NVM latency to
the performance equation, focusing on the following questions:
(a) What is the performance difference between NVM and DRAM

1Unless otherwise noted, the term NVM in this paper refers to Intel Optane DC PMM.

https://doi.org/10.1145/3329785.3329917
https://doi.org/10.1145/3329785.3329917

DaMoN’19, July 1, 2019, Amsterdam, Netherlands Psaropoulos, et al.

for latency-bound operations? (b) How much does interleaved exe-
cution reduce this difference? We address both questions with the
binary search microbenchmark of [31], as well as the end-to-end
execution of two queries: a query with an IN-predicate and one
with a simple SELECT * statement, representing index joins and
tuple reconstruction respectively.

We make the following contributions:
• We introduce interleaved execution to tuple reconstruction.
Contrary to previous works that interleaved lookups to a
single data structure, tuple reconstruction is the first case, to
the best of our knowledge, to show that we can interleave
arbitrary codepaths accessing several data structures each.

• We show that NVM latency implies more than 2× slowdown
for two performance-critical operations: index join and tuple
reconstruction.

• We bridge the performance gap between NVM and DRAM:
– For the binary search microbenchmark, interleaving yields
2.8×–5× speedups when the NVM-placed arrays are larger
than the processor cache (38.5MB), and exhausts NVM
bandwidth using 18 physical cores.

– For the two queries, interleaving improves runtime by
up to 1.7× and 2.6× respectively on DRAM and NVM,
reducing the gap between the two by more than 60%.

Our work corroborates the benefits of interleaved execution,
demonstrating that NVM latency can be hidden given (a) inde-
pendent work to execute, (b) sufficient memory-level parallelism
supported by the processor, and (c) enough memory bandwidth.

2 NON-VOLATILE MEMORY IN DATABASES
Non-Volatile Memory (NVM), also called Storage-Class Memory
or Persistent Memory, is a class of memory technologies that com-
bine the low latency (although higher) and byte-addressability of
DRAM with the non-volatility and large capacity of storage me-
dia. Examples of NVM include Phase-Change Memory (PCM) [26],
Magnetic RAM (MRAM) [14], and Resistive RAM (RRAM) [15]. In
the race to bring NVM to market, Intel recently announced the
commercial availability of its Optane DC Memory technology in
the DIMM form factor [4]: Optane DC Persistent Memory Modules
(PMM) embed up to 512GB NVM, i.e., double the capacity of the
largest DRAM DIMMs available today (256GB), enabling computer
systems with more main memory per socket. However, Optane
DC PMM (and NVM in general) exhibits higher access latency and
lower bandwidth in comparison to DRAM, with writes being slower
than reads. The latency and bandwidth of Optane DC PMM can
be masked with the Memory mode of operation, which leverages
DRAM as a cache and has no memory persistency; for persistency,
applications can use the App Direct mode, which exposes the PMM
as a storage device. The two modes are detailed in [18], while our
work employs the App Direct mode.

Table 1 compares the characteristics2 of DRAM, Optane DC PMM
in the App Direct mode, and a state-of-the-art SSD. We measured
the characteristics of DRAM and Optane DC PMM on a system with

2We do not discuss write operations and endurance; this work focuses on read opera-
tions, whereas endurance is expected to be several years thanks to the wear leveling
that Optane DC PMMs embed.

a second generation Intel Xeon Scalable processor (codenamed Cas-
cade Lake, see Table 2) using the Intel Memory Latency Checker [1].
As the table indicates, while noticeably faster than SSDs, Optane DC
PMM has 4× higher latency and 10× lower random read bandwidth
compared to DRAM.

Table 1: Characteristics of DDR4 DRAM, Intel Optane DC
PMM, and a 1 TB Samsung 970 PRO SSD.

DRAM Optane DC PMM SSD
Read Latency 73 ns 300 ns 230 µs
Seq. Read BW 110GB/s 36GB/s 3.5GB/s
Rand. Read BW 100GB/s 10GB/s 1.9GB/s
Byte-addressable Yes Yes No

To mitigate NVM’s higher latency, researchers have investigated
data structures and algorithmic trade-offs that we briefly discuss
below. We limit our discussion to techniques that aim to hide the
latency of NVM. Orthogonal optimizations that target efficient
failure-atomicity handling are out of the scope of this paper.

To decrease the number of NVMwrites, Chen et al. [12] proposed
to replace the traditionally sorted B-Tree nodes with unsorted ones,
thereby replacing the write-heavy sorted insertion with a simple
append operation. On the downside, search operations have to scan
the whole unsorted node, instead of a binary search in a sorted node.
The authors further investigate partitioned hash joins for NVM and
propose virtual cache partitioning, a technique that keeps compacted
references to the records instead of physically copying them; this
reduces the number of writes during partitioning, but increases the
number of reads during the join phase because records are scattered.
Moreover, Viglas [35] proposed a framework for trading writes for
reads, applied to several sorting and join algorithms on NVM. The
framework distinguishes between two classes of algorithms. In
the first one, the input is split between a write-incurring and a
write-limited part. The second class is based on lazy processing;
these algorithms trade reads for writes, keeping track of the cost of
reads versus savings ratio. When the cost exceeds the savings, the
algorithm writes an intermediate result, and then starts a new lazy
processing phase.

Building on their previous work, Chen et al. [13] proposed the
wB-Tree, an NVM-based persistent B+-Tree that keeps sorted in-
direction arrays to mitigate the fact that tree nodes are kept un-
sorted. Furthermore, Yang et al. [36] proposed the NV-Tree, a cache-
conscious B-Tree that does not enforce the consistency of inner
nodes since they can be rebuilt from the leaf nodes, thereby reduc-
ing the number of NVMwrites. Later, Oukid et al. [30] presented the
FPTree, a persistent B+-Tree that keeps inner nodes in DRAM and
leaf nodes in NVM, thereby avoiding NVM accesses while travers-
ing inner nodes. The FPTree also keeps fingerprints in leaf nodes to
minimize the number of cache lines that are touched in NVM. Other
NVM-based structures that build on the above techniques and fur-
ther optimize failure-atomicity handling have been proposed, e.g.,
the Write-Optimal Adaptive Radix Tree [27] and the Bz-Tree [8].
Following another approach, Van Renen [34] and Lersch et al. [28]
investigated efficient buffering techniques for accessing NVM either
through DRAM or directly. Additionally, Arulraj et al. [9] proposed

Bridging the Latency Gap between NVM and DRAM for Latency-bound Operations DaMoN’19, July 1, 2019, Amsterdam, Netherlands

to adapt the cost model of query optimizers to take into account
NVM’s read/write asymmetry. Finally, Izraelevitz et al. [19] have
recently studied the performance impact of Optane DC PMM on
various systems. One of their observations is that workloads with
random reads, which are the focus of our work, suffer significantly
from Optane DC PMM’s higher latency.

This paper complements these works, investigating a latency-
hiding technique that can be combined with existing techniques.

3 INTERLEAVINGWITH COROUTINES
In this section, we explain how to hide memory latency with inter-
leaved execution. First, we revisit prior work that uses coroutines
to implement interleaved execution, and then we introduce the
extensions and optimizations necessary to effectively hide DRAM
and NVM latency in arbitrary code.

3.1 Interleaved execution and coroutines
Interleaved execution is a universal latency-tolerance scheme [25]
that leverages the presence of multiple independent tasks in data-
and task-parallel code. This execution scheme avoids processor
stalls in case of long-latency operations in one task, overlapping
these operations with the execution of other tasks. To hide the
latency of memory operations, software implementations of inter-
leaved execution employ prefetch instructions to initiate asynchro-
nous data fetches. Traditionally, interleaving has implied extensive
code rewrites with techniques like group prefetching [11] and asyn-
chronous memory access chaining [24], and has thus been avoided
in production environments in favor of maintainability.

1 template <bool suspend >

2 task <int > binary_search(

3 vector <int >& array , int value

4) {

5 int low = 0; int size = array.size ();

6 while(size > 1){

7 int probe = low + size /2;

8 int v = co_await

9 load <suspend >(array[probe]);

10 if(v < value){ low = probe; }

11 size -= size /2;

12 }

13 if(size == 1 && array[low] < value){ low++; }

14 if(array[low] == value) co_return low;

15 else co_return -1;

16 }

Listing 1: Binary search as a C++20 coroutine.

Recent proposals [21, 23, 31, 32] avoid the prohibitive code
rewrites by encoding the independent tasks as coroutines, i.e., func-
tions that suspend their execution at specified points and later re-
sume from where they left off. Listing 1 hints the changes required
to enable interleaved execution through an example depicting a
binary search implemented as a C++20 coroutine [6]. The main
change is at lines 8–9, where array[probe], the array dereference
that likely causes a cache miss for large array sizes, is replaced
with co_await load<suspend>(array[probe]), an expression that,
depending on the template parameter suspend [32], either loads

array[probe] immediately, or issues a prefetch to array[probe], sus-
pends the execution of binary_search and loads the array[probe]

value from the cache upon resumption. Given the lack of hardware
support for informing memory operations [16], whether to fetch
or to prefetch-and-suspend cannot be decided at runtime based on
cache contents3; so the decision is static and relies on profiling to
identify potential main memory accesses. Furthermore, the return

keyword is changed to co_return, while the return type task<int>

denotes a coroutine that holds an int result and keeps a pointer to
its caller, enabling composition with other coroutines and propaga-
tion of suspensions/resumptions across call chains [21].

1 template <bool suspend >

2 vector <int > multiple_binary_searches(

3 int G,

4 vector <int >& array , vector <int >& values

5) {

6 vector <int > positions;

7 for_each <suspend >(G,

8 values.begin(), values.end(),

9 [&] (int value) -> root_task {

10 int position = co_await

11 binary_search <suspend >(array , value);

12 if(position != -1)

13 positions.push_back(low);

14 });

15 return output;

16 }

Listing 2: Interleaving binary searches.

Listing 2 illustrates the use of binary_search for multiple lookups
in the same array. multiple_binary_searches has two parameters,
the sorted array and the lookup values, and returns the positions

of found values. The for_each is a variant of the standard tem-
plate library (STL) algorithm that executes its last argument—here
a lambda expression— for each value in values with or without
interleaved execution, depending again on suspend. The lambda
expression captures references to positions and array and returns a
root_task coroutine, which is a simplified version of task that does
not contain a result value nor maintains a pointer to its caller. The
co_await expression in the lambda body has the following seman-
tics: (a) root_task calls binary_search, which returns a task<int>;
(b) root_task suspends, the pointer to caller of task<int> is set
to the root_task, and task<int> resumes; (c) root_task is resumed
by task<int> when the latter finishes execution. Note these sus-
pensions are an essential part of converting call chain nodes from
ordinary functions to coroutines, but have no direct connection
to latency hiding. When the task<int> of binary_search suspends
on a cache miss, execution control returns to for_each; for_each
has a round-robin coroutine scheduler [31] managing a group of
G coroutines running interleaved, where G is large enough to hide
the memory latency [32]. After the evaluation of the co_await ex-
pression, the returned position is used to check if array[position]
equals to value, in which case position is added to positions.

3With support for cache-content introspection, the suspension/resumption overhead
could be avoided in case of a cache hit [31, 32]

DaMoN’19, July 1, 2019, Amsterdam, Netherlands Psaropoulos, et al.

The implementations presented in Listings 1 and 2 showcase the
state of the art on how to use interleaving with coroutines to hide
memory latency across instances of the same lookup task on one
data structure. With the case of tuple reconstruction we discuss
below, we introduce a set of extensions that facilitate interleaving
for arbitrary codepaths.

3.2 Interleaving arbitrary codepaths
In the context of a column store like the one of SAP HANA, tuple
reconstruction is a loop over the requested set of columns. Column
stores often employ dictionary encoding, under which a column
consists of a dictionary and a data vector, each having a different
physical representation that depends on the stored datatype and the
compression scheme used. Retrieving a value from such a column
in a production-grade system involves a long call chain that differs
from column to column, depending mainly on the data type and
the compression scheme used in the dictionary and data vector
implementations.

The long call chains in conjunction with the variety of code-
paths substantially differentiate tuple reconstruction from index
joins, which involve one data structure and one lookup implemen-
tation with few nested function calls. This differentiation precludes
manual interleaving in the form of group prefetching [11] or asyn-
chronous memory access chaining [24]: the first because static
code rewriting cannot cover all column combinations for arbitrary
schemas; and the second because suspensions at arbitrary depths in
the call stack need to be surfaced to the function that iterates over
the columns, requiring to convert all functions into state machines
and thereby increase code complexity to extreme levels.

Still, where manual interleaving techniques fail, coroutines just
work. We convert the functions involved in the column lookups
into coroutines, in similar manner to the binary search example.
However, we define load to accept an additional parameter, a lookup
context that comprises the following:

• An optional id that identifies each column lookup and facili-
tates debugging.

• A low-overhead allocator for coroutine frames: given the
size of all coroutine frames in a column lookup is bounded,
we avoid the unnecessary overheads of a general purpose
allocator by using a private-per-lookup, append-only allo-
cator with preallocated memory. By reseting the allocator
when the lookup finishes, we can reuse it in the next lookup.

• A reference to the coroutine scheduler of for_each. This
reference enables load to directly resume the next lookup
with a tail call.

Listing 3 depicts a simplified implementation of tuple reconstruc-
tion that interleaves the lookups to columns. To reconstruct the
tuple that corresponds to a given key, we first look for the matching
row in the KEY column of table TBL (line 2). Then we iterate over all
columns (lines 4–10), and in each column we look for the corre-
sponding value by calling get with the provided context (which is
distinct per iteration) and the row as arguments (line 9); we store the
retrieved value in the appropriate tuple position (tuple[col.id]).
We should note here that context simplifies the implementation of
root_task, which was originally [21] required to keep track of the
current suspended leaf coroutine.

1 tuple_t reconstruct(int key) {

2 int row = TBL.columns[KEY].find(key);

3 tuple_t tuple;

4 for_each(G,

5 TBL.columns.begin(), TBL.columns.end(),

6 [&] (context_t& ctx , column_t& col)

7 -> root_task {

8 tuple[col.id] =

9 co_await col.get(ctx , row);

10 });

11 return tuple;

12 }

13
14 task <value_t > column_t ::get(

15 context_t& ctx , int id

16) {

17 int code = co_await load(ctx , codes[id]);

18 co_return co_await dict.decode(ctx , code);

19 }

Listing 3: Interleaving tuple reconstruction.

We already mentioned that each column implementation is dif-
ferent depending on the datatype and the compression scheme of
the column. In Listing 3, we also present an implementation of the
column_t::get method for a dictionary-encoded column: we first
load the encoded row value from a codes array (line 17) and then
decode it using the dictionary dict (line 18)—the array access causes
one cache miss, so we use the load to prefetch, suspend, and load,
whereas decode causes one or more cache misses depending on the
dict implementation. Despite its simplicity, this example is repre-
sentative of the code changes necessary also for production-level
column implementations, such as the ones of SAP HANA—the only
difference is the number of functions we need to convert into tasks.

1 task <int > f_coroutine(context_t& context) {

2 co_return transform(co_await g(context));

3 }

4
5 wrapped <int > f_function(context_t& context) {

6 return wrapped <int >{g(context), transform };

7 }

Listing 4: Example of coroutine elision.

Coroutine elision. A column lookup comprises many small func-
tions that are inlined by the compiler. Essential to good performance
is a compiler that inlines also the task counterparts of these func-
tions, eliding a plethora of small coroutine allocations [33] and the
associated instructions that manage coroutine lifetime.
At the time of writing, no compiler can reliably inline tasks, so
we systematically replace each task that co_awaits one nested task,
with an ordinary function that has no co_await nor co_return in
its body. Consider the example in Listing 4: f_coroutine passes
the result of the co_await expression to a transform function be-
fore returning it (line 2). We convert f_coroutine to f_function by
wrapping the task<int> returned from g along with the function
transform in a wrapped<int> object. This object is not a separate

Bridging the Latency Gap between NVM and DRAM for Latency-bound Operations DaMoN’19, July 1, 2019, Amsterdam, Netherlands

coroutine, but a wrapper that can participate in a co_await expres-
sion, with the distinctive property of transforming the result of the
wrapped coroutine before returning it. One variation of this pattern
has no result transformation, in which case the nested coroutine
can be immediately returned without a wrapper. In other cases,
there are two or more code branches that co_await different nested
coroutines and apply distinct result transformations each; to unify
the code branches, we define the wrapper to accept not only dif-
ferent transformations but also coroutine types other than task.
Furthermore, to ensure a task does not outlive its parameters—a
likely case when we elide coroutines—we move call parameters
either to the nested coroutine or the wrapper. These considerations
increase implementation complexity, but, as compiler support for
coroutines matures, we expect coroutine elision to become a job
for the compiler and not the programmer.

3.3 Interleaving accesses to NVM
Everything described so far about interleaving with coroutines ap-
plies to any use case with data- or task-level parallelism in which
memory latency is exposed to runtime. What changes by placing
data and/or working set to NVM, is the 4× latency increase and
the 10× bandwidth reduction (see Section 2). To hide the higher
latency, more instructions are needed. These instructions can be
found by increasing the group size, i.e., the number of interleaved
coroutines. However, the memory-level parallelism (MLP) of cur-
rent Intel processors is 10 in-flight memory requests per core [18].
This limit means higher group sizes offer little to no benefit in
case all prefetches go to main memory. Furthermore, scaling in-
terleaved execution to multiple cores is bound to reach the band-
width limit of NVM—even in the absence of scans. Under these
constrains, interleaving converts execution from latency- to MLP-
or bandwidth-bound, as we demonstrate next.

4 EVALUATION
In this section, we show that interleaving with coroutines drasti-
cally narrows the performance gap between NVM and DRAM for
latency-bound operations despite the significant latency difference.
To that end, we interleave two types of operations: (a) lookups on
a single index, and (b) lookups on different indexes. In Section 4.1,
we compare the single-thread runtime and the scalability of inter-
leaved and non-interleaved binary searches having sorted arrays
on DRAM and NVM. Then, we assess the gap between DRAM and
NVM and the effect of interleaving on the end-to-end execution of
two queries running on a prototype based on SAP HANA: a query
with an IN-predicate resembling an index join (Section 4.2), and a
simple SELECT(*) query (Section 4.3), which is the poster child of
tuple reconstruction.

We compile the microbenchmarks and the prototype with Clang
7.0.1 using the -fcoroutines-ts option that enables coroutine sup-
port, our version of the experimental/coroutine header from the
C++ standard library of LLVM (libcxx), which works with the widely
available GNUC++ Library (libstdc++), and the task type from Lewis
Baker’s cppcoro library4. We run our experiments on a dual socket
system equipped with an Intel Xeon Platinum 8280L processor, 6
DRAMDIMMs, and 6 Optane DC PMMs per socket (see Table 2) and
4https://github.com/lewissbaker/cppcoro

Processor Intel Xeon Platinum 8280L
(codename Cascade Lake)

Architecture Cascade Lake
Technology 14 nm @ 2.7GHz (up to 4GHz)
Cores (per socket) 28
L1 I/D (per core) 32 kB/32 kB, 8-way associative
Line Fill Buffers 10
L2 (per core) 1MB, 16-way associative
L3 (per core) 38.5MB, 11-way associative,

non-inclusive, victim cache
DTLB (4 kB/2MB/1GB pages) 64/32/4 entries,

4-way/4-way/fully associative
STLB (4 kB/2MB/1GB pages) 1536/1536/16 entries,

12-/12-/4-way associative
DRAM (per socket) 96GB (6 × 16GB)
Optane DC PMM (per socket) 768GB (6 × 128GB)

Table 2: Architectural parameters.

0
20
40
60
80
100
120

1MB 2MB 4MB 8MB 16MB
32MB

64MB
128MB

256MB
512MB

1GB 2GB 4GB

Cy
cl
es

pe
rs

ea
rc
h
(x
10
0)

Array size (log scale)

Baseline (DRAM)
Baseline (NVM)
Coro (DRAM)
Coro (NVM)

Figure 1: Binary search performance on DRAM vs NVM.

SUSE Linux Enterprise Server 15 (Linux kernel 4.12); we dedicate
one socket to our experiments, pinning all other processes to the
other socket.

4.1 Microbenchmarks
We use the binary search microbenchmark described in [31], as
representative of a simple index join. We use two implementations
that look for a list of values in a sorted array of 32-bit signed
(int32_t) integers. The first implementation, Baseline, executes
one binary search after the other for each of the list values, while
the second implementation, Coro, interleaves the execution of G

binary searches at a time using coroutines, as described in [31]. The
sorted array sizes range between 1MB–4GB, increased by 1 kB to
circumvent alignment issues that hurt TLB performance [31]. For
the lookup list we select 10’000 values from the sorted array using
std::mt19937 with a fixed seed of value 0 and std::uniform_int_-

distribution. We run our experiments with the array placed first
in DRAM and then in NVM.

https://github.com/lewissbaker/cppcoro

DaMoN’19, July 1, 2019, Amsterdam, Netherlands Psaropoulos, et al.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28

Sp
ee
du

p

#Physical cores

Baseline (DRAM)
Baseline (NVM)
Coro (DRAM)
Coro (NVM)

Figure 2: Scalability of binary search for a 2GB sorted array.

Increasing the array size. Figure 1 depicts the cycles per binary
search for all array sizes and for the optimal group sizes, i.e., the
one for which Coro has the best performance. First, for Baseline, we
notice the performance gap between DRAM and NVM, a gap that widens
from 2.3× to 4.2× as the number of cache misses increases with
the array size. For Coro, the performance difference ranges from
1.7× at 1MB to 2.4× at 4GB. The corresponding optimal group
sizes are in the range 21–44 for DRAM and 22–49 for NVM. We
observe values in the upper part of these ranges with small arrays
and, conversely, values in the lower part with large arrays. For
small arrays most accesses hit in the cache, allowing to interleave
more than 10 coroutines at a time and thereby hide most of the
latency of the few main memory accesses. As the number of main
memory accesses increases, the hardware-imposed limit on in-flight
memory requests becomes a bottleneck and decreases the optimal
group size; still, the group size is above 20 because array values of
the first binary search iterations fit in the cache, so the respective
prefetches finish fast, allowing new prefetches to be issued5. The
hardware-imposed limit explains also why interleaved execution
does not eliminate the difference: the 7 assembly instructions that
exist between subsequent array lookups in a binary search are
inadequate for eliminating the latency gap given the group size
limit. Still, interleaving improves NVM performance by up to 5×
for 4 GB arrays, reaching runtimes similar to Baseline on DRAM.

Scaling up to 28 cores. We assess the scalability of inteleaved
execution on NVM by running a multithreaded version of the above
microbenchmark on one socket using 1–28 physical cores. Figure 2
shows the speedups over Baseline (DRAM) with 1 core. Contrary
to the latency-bound Baseline, that scales well on both DRAM
and NVM, Coro on NVM becomes bandwidth-bound with 18 cores,
reaching a maximum speedup of 8× and incurs a slight slowdown
as the number of cores used increases further to 28 due to increasing
resource contention on the socket; on DRAM performance scales
sublinearly up to 50×.

5Note that the difference to the optimal group size 10 reported in [31] is due to the
higher suspension/resumption overhead of the code generated by the Microsoft Visual
C++ compiler. Compiler support matters and is improving over the years.

0

10

20

30

40

50

Original Coro 0

10

20

30

40

50

Original Coro

Q
ue
ry

ru
nt
im

e
(in

m
s)

DRAM NVM

Figure 3: IN-predicate query on tables with 100M rows.

0
0.1
0.2
0.3

Original Coro

0

0.2

0.4

0.6

0.8

1

1.2

Original Coro

0
0.1
0.2
0.3

Original CoroQ
ue
ry

ru
nt
im

e
(in

m
s)

10 cols (38 MB) 1000 cols (4 GB)

DRAM NVM

100 cols (381 MB)

Figure 4: ‘SELECT (*)’ query on INTEGER tables with 1M rows
and varying column counts.

4.2 Index join
In addition to the binary search microbenchmark, we evaluate the
respective effects of NVM latency and interleaved execution on
the semijoin of IN-predicate clauses involving dictionary-encoded
columns [31]. We run the following IN-predicate query on our pro-
totype: SELECT COUNT(*) FROM TBL WHERE COL IN LIST, where TBL

has 100M rows and is placed first in DRAM and then in NVM, LIST
contains 10000 randomly generated values, and for COL we analyze
two datatypes: either INTEGER or VARCHAR(15). In Figure 3, we re-
port the average runtimes of 1000 executions per datatype. For the
Original implementations and both datatypes, NVM runtime is 2×
the DRAM runtime, while coroutines (Coro) reduce the difference
to 30%—the difference is not eliminated because the index lookup is
a variant of binary search with additional compression-related indi-
rection and thus lacks the amount of work required to completely
hide NVM latency. Still, Coro performs better than Original.

4.3 Tuple reconstruction
To evaluate the effect of interleaved execution on tuple reconstruc-
tion, we use a SELECT(*) FROM TBL WHERE KEY=X query, where KEY

has unique values.

Bridging the Latency Gap between NVM and DRAM for Latency-bound Operations DaMoN’19, July 1, 2019, Amsterdam, Netherlands

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

Original Coro 0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

Original Coro

Q
ue
ry

ru
nt
im

e
(in

m
s)

Turbo On (4Ghz)

DRAM NVM

Turbo Off (2.7GHz)

Figure 5: ‘SELECT (*)’ query on a table with 1M rows and
1000 columns (of INTEGER, DECIMAL(10,2), and NVAR-
CHAR(50) type), with and without frequency scaling.

Ranging column count. We assess the worst-case slowdown due
to NVM by executing the query on a TBL with 1M rows and 10,
100, and 1000 INTEGER columns with unique values each. Retrieving
the value from each INTEGER column incurs two cache misses—one
when accessing the data vector and another one when accessing
the dictionary—that dominate execution. In Figure 4, we depict the
average runtime of 10000 query executions, having placed TBL on
DRAM and NVM, with (Coro) and without (Original) interleaving.
We observe the runtime gap between Original and Coro widen
from 6% to 150%, as the work in the reconstruction loop increases
along with the column count; for Coro, the gap is 1%–8% and not
eliminated due to lack of instructions. More interestingly, for 1000
columns, Coro on NVM is 30% faster than Original on DRAM.

Mixed datatypes. We show interleaving of three distinct code-
paths by executing the query on a table TBL of 1000 columns, of
which one third have datatype INTEGER, another third DECIMAL(10,2),
and the last third VARCHAR(50). Moreover, we highlight the effect
of processor frequency on execution by running the experiment
with frequency scaling enabled (Turbo On) and disabled (Turbo Off).
In Figure 5, we see interleaved execution reduces the performance
gap from 123% to 37% for Turbo On. Lookups in DECIMAL and VARCHAR

columns involve more instructions compared to INTEGER columns,
explaining the higher runtime compared to the 1000 column case in
Figure 4. However, the dictionaries of VARCHAR columns use prefix
compression, which means dictionary lookups first retrieve the
prefix and then the rest of the value with an additional indirection;
contrary to the latter access that is a guaranteed cache miss for
different values, the prefix is found in cache often enough to not
justify a blind suspension for DRAM accesses, leading to the 37%
gap for Coro—hardware support for cache content introspection
would be beneficial for this case. Again, Coro runtime on NVM is
faster than Original on DRAM. Finally, for Turbo Off, we see the gap
reduces from 106% to 7% due to the lower frequency: the work
needed to hide a given latency is less at 2.7GHz than at 4GHz.

5 CONCLUSIONS
Non-volatile memory brings higher main memory capacities with
a latency 4× higher than DRAM. In this paper, we have showed
how to bridge this latency gap and facilitate the adoption of NVM
for latency-bound workloads by leveraging the abundant parallel
work present in these workloads. We hide most of the NVM latency
by interleaving the execution of this work in a practical manner,
using language support in the form of coroutines. In the end, NVM
latency is just a higher latency that can be hidden given enough
parallel work and hardware resources.

ACKNOWLEDGMENTS
We would like to thank our Intel colleagues, Thomas Willhalm and
Roman Dementiev, for providing access to Cascade Lake systems
equipped with Intel Optane DC Persistent Memory, and for their
key role in understanding the behavior of these systems. We also
thank the anonymous reviewers, as well as Angelos Anadiotis,
Periklis Chrysogelos, Stella Giannakopoulou, and Stefan Noll for
their valuable feedback.

REFERENCES
[1] 2013. Intel Memory Latency Checker. http://www.intel.com/software/mlc

[Online; accessed 18-March-2019].
[2] 2019. Aerospike 4.5: Persistent Memory and Compression. https://www.

aerospike.com/blog/aerospike-4-5-persistent-memory-compression/ [Online;
accessed 18-March-2019].

[3] 2019. How to configure persistent memory (PMEM) for SQL Server on Linux.
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem?
view=sqlallproducts-allversions [Online; accessed 18-March-2019].

[4] 2019. Intel Optane DC Persistent Memory Module. www.intel.com/
optanedcpersistentmemory [Online; accessed 20-March-2019].

[5] 2019. Oracle TimesTen In-Memory Database. https://www.oracle.com/database/
technologies/related/timesten.html [Online; accessed 18-March-2019].

[6] 2019. Working Draft, Standard for Programming Language C++. http://eel.is/c+
+draft/dcl.fct.def.coroutine [Online; accessed 25-March-2019].

[7] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze, Carsten
Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian
Seifert, Surendra Vishnoi, Daniel Booss, Thomas Peh, Ivan Schreter, Werner
Thesing, Mehul Wagle, and Thomas Willhalm. 2017. SAP HANA Adoption
of Non-volatile Memory. Proc. VLDB Endow. 10, 12 (Aug. 2017), 1754–1765.
https://doi.org/10.14778/3137765.3137780

[8] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
BzTree: A high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment 11, 5 (2018), 553–565.

[9] Joy Arulraj and Andrew Pavlo. 2017. How to Build a Non-Volatile Memory
Database Management System. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1753–1758.

[10] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-behind logging.
PVLDB 10, 4 (2016), 337–348.

[11] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. 2007.
Improving Hash Join Performance Through Prefetching. ACM Trans. Database
Syst. 32, 3 (2007).

[12] Shimin Chen, Phillip B Gibbons, and Suman Nath. 2011. Rethinking Database
Algorithms for Phase Change Memory. In Fifth Biennial Conference on Innovative
Data Systems Research (CIDR). 21–31.

[13] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile MainMemory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[14] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Helen Li, and Yiran Chen.
2008. Circuit and microarchitecture evaluation of 3D stacking magnetic RAM
(MRAM) as a universal memory replacement. In 45th ACM/IEEE Design Automa-
tion Conference. IEEE, 554–559.

[15] B Govoreanu, GS Kar, YY Chen, V Paraschiv, S Kubicek, A Fantini, IP Radu, L
Goux, S Clima, R Degraeve, et al. 2011. 10× 10nm 2 Hf/HfO x crossbar resistive
RAM with excellent performance, reliability and low-energy operation. In IEEE
International Electron Devices Meeting (IEDM). IEEE, 31–6.

[16] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith.
1996. Informing Memory Operations: Providing Memory Performance Feedback
in Modern Processors. SIGARCH Comput. Archit. News 24, 2 (May 1996), 260–270.
https://doi.org/10.1145/232974.233000

http://www.intel.com/software/mlc
https://www.aerospike.com/blog/aerospike-4-5-persistent-memory-compression/
https://www.aerospike.com/blog/aerospike-4-5-persistent-memory-compression/
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem?view=sqlallproducts-allversions
www.intel.com/optanedcpersistentmemory
www.intel.com/optanedcpersistentmemory
https://www.oracle.com/database/technologies/related/timesten.html
https://www.oracle.com/database/technologies/related/timesten.html
http://eel.is/c++draft/dcl.fct.def.coroutine
http://eel.is/c++draft/dcl.fct.def.coroutine
https://doi.org/10.14778/3137765.3137780
https://doi.org/10.1145/232974.233000

DaMoN’19, July 1, 2019, Amsterdam, Netherlands Psaropoulos, et al.

[17] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2009. Self-organizing
Tuple Reconstruction in Column-stores. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’09). ACM, New York,
NY, USA, 297–308. https://doi.org/10.1145/1559845.1559878

[18] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Optimization Reference
Manual.

[19] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic Performance Measurements of the Intel Optane DC Persistent Mem-
ory Module. arXiv preprint arXiv:1903.05714 (2019).

[20] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel Madden. 2007. Ma-
terialization Strategies in a Column-Oriented DBMS. Proceedings - International
Conference on Data Engineering, 466–475. https://doi.org/10.1109/ICDE.2007.
367892

[21] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski,
andGorNishanov. 2018. Exploiting Coroutines to Attack the "Killer Nanoseconds".
PVLDB 11, 11 (July 2018), 1702–1714. https://doi.org/10.14778/3236187.3236216

[22] Hideaki Kimura. 2015. FOEDUS: OLTP engine for a thousand cores and NVRAM.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. ACM, 691–706.

[23] Vladimir Kiriansky, Haoran Xu, Martin Rinard, and Saman Amarasinghe. 2018.
Cimple: Instruction andMemory Level Parallelism: A DSL for Uncovering ILP and
MLP. In Proceedings of the 27th International Conference on Parallel Architectures
and Compilation Techniques (PACT ’18). ACM, New York, NY, USA, Article 30,
16 pages. https://doi.org/10.1145/3243176.3243185

[24] Onur Kocberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous Memory
Access Chaining. PVLDB 9, 4 (2015), 252–263. https://doi.org/10.14778/2856318.
2856321

[25] James Laudon, Anoop Gupta, and Mark Horowitz. 1994. Interleaving: A Multi-
threading Technique Targeting Multiprocessors and Workstations. In Proceedings
of the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI). ACM, New York, NY, USA, 308–
318. https://doi.org/10.1145/195473.195576

[26] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur
Mutlu, and Doug Burger. 2010. Phase-Change Technology and the Future of

Main Memory. IEEE Micro 30, 1 (2010).
[27] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh.

2017. WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems.
In 15th USENIX Conference on File and Storage Technologies (FAST 17). 257–270.

[28] Lucas Lersch, Ismail Oukid, Ivan Schreter, andWolfgang Lehner. 2017. Rethinking
DRAM caching for LSMs in an NVRAM environment. In European Conference on
Advances in Databases and Information Systems. Springer, 326–340.

[29] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas
Willhalm. 2014. SOFORT: A hybrid SCM-DRAM storage engine for fast data
recovery. In Proceedings of the Tenth International Workshop on Data Management
on New Hardware. ACM, 8.

[30] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage ClassMemory. In Proceedings of the 2016 ACM International Conference
on Management of Data (SIGMOD). ACM, 371–386.

[31] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
2017. Interleaving with Coroutines: A Practical Approach for Robust Index Joins.
PVLDB 11, 2 (Oct. 2017), 230–242. https://doi.org/10.14778/3149193.3149202

[32] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
2018. Interleaving with coroutines: a systematic and practical approach to hide
memory latency in index joins. The VLDB Journal (14 Dec 2018). https://doi.
org/10.1007/s00778-018-0533-6

[33] Richard Smith and Gor Nishanov. 2018. Halo: coroutine Heap Allocation eLision
Optimization: the joint response. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2018/p0981r0.html [Online; accessed 15-March-2019].

[34] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing non-volatile memory in database systems. In Proceedings of the 2018
International Conference on Management of Data. ACM, 1541–1555.

[35] Stratis D Viglas. 2014. Write-limited sorts and joins for persistent memory.
Proceedings of the VLDB Endowment 7, 5 (2014), 413–424.

[36] J. Yang, Q.Wei, C.Wang, C. Chen, K. Yong, and B. He. 2015. NV-Tree: A Consistent
and Workload-adaptive Tree Structure for Non-volatile Memory. IEEE Trans.
Comput. PP, 99 (2015).

https://doi.org/10.1145/1559845.1559878
https://doi.org/10.1109/ICDE.2007.367892
https://doi.org/10.1109/ICDE.2007.367892
https://doi.org/10.14778/3236187.3236216
https://doi.org/10.1145/3243176.3243185
https://doi.org/10.14778/2856318.2856321
https://doi.org/10.14778/2856318.2856321
https://doi.org/10.1145/195473.195576
https://doi.org/10.14778/3149193.3149202
https://doi.org/10.1007/s00778-018-0533-6
https://doi.org/10.1007/s00778-018-0533-6
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html

	Abstract
	1 Introduction
	2 Non-Volatile Memory in Databases
	3 Interleaving with coroutines
	3.1 Interleaved execution and coroutines
	3.2 Interleaving arbitrary codepaths
	3.3 Interleaving accesses to NVM

	4 Evaluation
	4.1 Microbenchmarks
	4.2 Index join
	4.3 Tuple reconstruction

	5 Conclusions
	Acknowledgments
	References

