
Persistent Buffer Management with Optimistic Consistency
Lucas Lersch

lucas.lersch@sap.com
TU Dresden & SAP SE

Wolfgang Lehner
wolfgang.lehner@tu-dresden.de

TU Dresden

Ismail Oukid
ismail.oukid@sap.com

SAP SE

ABSTRACT
Finding the best way to leverage non-volatile memory (NVM) on
modern database systems is still an open problem. The answer is far
from trivial since the clear boundary between memory and storage
present in most systems seems to be incompatible with the intrinsic
memory-storage duality of NVM. Rather than treating NVM either
solely as memory or solely as storage, in this work we propose
how NVM can be simultaneously used as both in the context of
modern database systems. We design a persistent buffer pool on
NVM, enabling pages to be directly read/written by the CPU (like
memory) while recovering corrupted pages after a failure (like
storage). The main benefits of our approach are an easy integration
in the existing database architectures, reduced costs (by replacing
DRAM with NVM), and faster peak-performance recovery.
ACM Reference Format:
Lucas Lersch, Wolfgang Lehner, and Ismail Oukid. 2019. Persistent Buffer
Management with Optimistic Consistency. In International Workshop on
Data Management on New Hardware (DaMoN’19), July 1, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3329785.3329931

1 INTRODUCTION
NVM is a persistent media promising higher bandwidth (2×) and
lower latency (10×) than modern NAND-flash SSDs. Furthermore,
NVM can be attached to the memory bus, thus allowing it to be
directly accessed by the CPU through its caches in a much smaller
granularity (cache-lines) than regular block devices. Therefore,
NVM introduces not only a new layer within the storage hierar-
chy [3], but it also enables more flexibility regarding data placement.

While a few factors slower, reading data directly from NVM
can be done the same way as with DRAM. However, writing data
directly to NVM imposes challenges in terms of data consistency.
The root of these challenges is the lack of control the application has
over data movement between CPU cache and NVM in comparison
to the data movement between DRAM and SSD. In other words, the
programmer cannot prevent cache lines from being evicted from
the CPU cache and written-back to NVM at arbitrary points in time.

Related work address these challenges with solutions that fall in
one of three categories (also identified by previous work [16]). First,
early proposals leverage NVM as a cheaper alternative to extend
DRAM, enabling larger buffer pools [13, 17]. These approaches

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DaMoN’19, July 1, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6801-8/19/07. . . $15.00
https://doi.org/10.1145/3329785.3329931

focus on reducing write amplification and improving wear leveling
onNVM, but they do not enforce any consistencywhenwriting data,
and therefore do not leverage persistency. Second, persistent data
structures [1, 4, 9, 14, 18] enable direct fine-grained writes to NVM
by issuing out-of-place writes and relying on instruction ordering
(SFENCE) and eagerly flushing cache lines (CLFLUSH/CLWB) to
make the operation visible (usually by flipping a validity bit). Third,
buffer managers were proposed to integrate NVM with the storage
hierarchy belowDRAMand above SSD [5, 15, 16]. These approaches
access data on DRAM, and therefore they have full control of when
data is persisted. Optimizations can be made regarding block sizes,
but they still impose movement of data between DRAM and NVM.

The first two categories treat NVM more like traditional mem-
ory, while the last one treats NVM more like traditional storage.
However, NVM is actually both. We consider that a database system
should allow NVM to be read and written directly, thus exploring
its memory-storage duality to its full potential. Our system accesses
NVM like memory, but it guarantees consistency of writes to NVM
like storage. We achieve that by integrating NVM in the buffer pool
of a database system to either extend DRAM or completely replace
it, while still leveraging its persistency in an optimistic way. In
other words, we never enforce ordering of writes or eagerly flush
cache lines. The main motivation is that corruption occurs when a
write operation is partially evicted from the CPU cache to NVM.
With the capacity of NVM being significantly higher than CPU
caches, the probability of corruption tends to be low and therefore
pessimistically enforcing consistency of every write introduces a
relatively high overhead by not leveraging the CPU cache.

Recent work [2] has gone into the same direction of allowing data
to be accessed directly on NVM. This approach complements our
approach by focusing on cost models for optimizing data movement,
while we focus on enabling direct writes to NVM to be consistent.

2 BACKGROUND
We give an overview of the techniques that we use to implement a
persistent buffer management in a database system.

Buffer Management: We assume a traditional transactional
storage manager having a B+Tree as its workhorse data structure.
The B+tree is organized such that nodes are represented by pages,
which are the unit of data movement and buffering. Optimiza-
tions like pointer swizzling [8] and low-overhead replacement poli-
cies [10] may apply. The atomicity and durability of writes to pages
buffered in DRAM is guaranteed by write-ahead logging (WAL).

Single-page Recovery: Similar to traditional ARIES [12], we
assume a page-level physiological logging. This implies that pages
are not only a unit of data movement, but also of fault containment
and repair [7]. This enables techniques such as write-elision, on-
demand instant restart and restore, and single-page repair [6]. These
techniques are the base to enable direct writes directly made to
NVM to be consistent without eagerly flushing cache lines.

ar
X

iv
:1

90
5.

06
76

0v
1

 [
cs

.D
B

]
 1

6
M

ay
 2

01
9

https://doi.org/10.1145/3329785.3329931
https://doi.org/10.1145/3329785.3329931
https://doi.org/10.1145/3329785.3329931

DaMoN’19, July 1, 2019, Amsterdam, Netherlands Lersch et al.

DRAM NVMBuffer Pool

Database (SSD) Log

Read

Write1. Update page
2. Add log entry

1. Update page
2. Update checksum
3. Add log entry

Figure 1: During normal processing reads and writes can ac-
cess both DRAM and NVM directly (dashed lines). Whole
pages can be moved across any devices (solid lines). The
trade-offs between DRAM and NVM can be analysed by slid-
ing an abstract persistency bar.

3 SYSTEM DESIGN
The pages of our system are primarily located on SSD and only the
warm pages are buffered in NVM. Hot pages might be buffered in a
DRAM portion of the buffer pool, as seen in Figure 1.

Normal Processing: During normal transactional processing,
a page to be updated will be either on SSD, NVM, or DRAM. In case
the page is on SSD, it is loaded to the buffer pool (either to DRAM
or NVM, to be decided by a placement policy). In case the page is
on DRAM, we have a hit and the page is updated normally. If the
page is on NVM, two actions might occur. First, the page might be
identified as "heating up" by a placement policy such as 2Q [11], in
which case it will be copied to DRAM and updated there. Second,
the page might be simply warm, in which case the update is done
directly on NVM. In the last case, since atomicity and durability is
guaranteed by WAL, issuing CLFLUSH/CLWB after updating the
page is not necessary as the log serves as the single source of truth.
However, when restarting after a system failure, pages that were
on NVM might be corrupted because updates were not properly
persisted. As a consequence, the current state of a page on NVM is
unknown and therefore persistency of NVM cannot be leveraged.

We address this challenge by dividing it in two dimensions:
corruption detection and page repair. Each page contains an 8 Byte
checksum of the whole page. Whenever the content of a page is
modified directly on NVM, the page checksum is re-calculated and
updated. At this point, themodifications and the checksum of a page
might be persistent or not, since we do not explicitly flush them
from the CPU cache to NVM. In case the overhead of calculating
the checksum for the whole page after every update is too high,
it can be reduced either by updating the checksum only after a
certain number of updates (at the cost of higher corruption ratio)
or by introducing multiple checksums per page corresponding to
fractions of the page (at the cost of higher space consumption).

Corruption Detection After a system failure, the restart pro-
cess starts with log analysis, which identifies the state (not the
content) of pages right before the crash. We assume state-of-the-art
page-based on-demand restart [6], therefore a page being requested
might still be lingering in the NVM portion of the buffer pool since
before the crash. Two steps are required to determine if the page
can be used. First, its checksum is calculated and compared to the
checksum stored within the page. If the checksums do not match, it
is because either the checksum or the updated data were not evicted
from the CPU cache to NVM. Second, if the checksums match, the

log sequence number of the last update in the page (pageLSN) is
compared to the LSN retrieved during log analysis (expectedLSN).
To summarize, a page might be in one of the following states:

• Corrupted, if checksum does not match
• Behind, if checksum matches and paдeLSN < expectedLSN
• Current, if checksummatches and paдeLSN = expectedLSN
• Ahead, if checksum matches and paдeLSN > expectedLSN

The page is behind, if it was updated by a committed transaction
(the log records were flushed) but neither the update nor the check-
sum were evicted from the CPU cache. In this case, the page is in a
consistent but outdated state since it violated the write-ahead rule.
However, this violation is tolerated on NVM as long as it is guaran-
teed not to happen on SSD. Analogously, the page is ahead if both
update and checksum were persisted to NVM but the transactions
that made these updates did not commit. Finally, if both checksum
and LSNs match, the page is in its most current state and ready to
be accessed. Except for the current state, all other states must be
recovered by replaying log records.

Page Repair No assumption can be made about a corrupted
page, and therefore the only alternative is to retrieve its more recent
version from SSD (which acts as a backup) and replay the log records
referring to this page to bring it up to its most recent state. A behind
page is missing committed updates, therefore it can be used as the
basis for replaying the log records, not requiring an older version
of the page to be fetched from SSD. Ahead pages are consistent but
contain updates made by uncommitted transactions. Since ARIES-
style recovery only allows logical UNDO on a transaction level,
the updates of a single page cannot be independently rolled back.
Therefore, the same procedure of a corrupted page applies for rolling
forward. Since it is required that an older version of the page is
read from the database, it is convenient that frequently modified
pages are flushed to the database often to bound the recovery time
in such cases. Fortunately, this can be achieved by an asynchronous
cleaning job that iterates through the buffer pool and picks dirty
pages to be flushed to the database.

4 CONCLUSION
In this work we propose extending database systems with a persis-
tent buffer pool on NVM. We consider such extension to impose a
low implementation effort, since NVM is treated very similarly to
DRAM during runtime, while leveraging well-understood recovery
algorithms to enforce its consistency. The consequence is that the
persistency aspect can be leveraged in an optimistic way, without
major changes in the code base to enforce ordering of writes to
NVM. Furthermore, cache lines do not have to be eagerly flushed,
which enables write operations to be cached in the CPU and amor-
tize the higher latencies of NVM. We also consider that in the short
and medium term, NVM will not replace neither DRAM or SSD, but
should act in synergy with both. Our design also enables the user to
explore different proportions of DRAM and NVM in the buffer pool:
more DRAMwill lead to higher performance, while more NVMwill
lead to reduced costs and faster recovery (higher availability). This
adds more flexibility for analyzing trade-offs and navigating the
performance continuum between modern expensive in-memory
databases and more traditional low-cost disk-based systems.

Persistent Buffer Management with Optimistic Consistency DaMoN’19, July 1, 2019, Amsterdam, Netherlands

REFERENCES
[1] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory.
PVLDB 11, 5 (2018), 553–565.

[2] Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. 2019. Multi-Tier Buffer
Management and Storage System Design for Non-Volatile Memory. CoRR
abs/1901.10938 (2019). arXiv:1901.10938 http://arxiv.org/abs/1901.10938

[3] Philippe Bonnet. 2017. What’s up with the storage hierarchy?. In CIDR.
[4] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in Non-Volatile Main Memory.

PVLDB 8, 7 (2015), 786–797.
[5] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,

Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018. Reducing
DRAM Footprint with NVM in Facebook. In Proceedings of the Thirteenth EuroSys
Conference. ACM, 42.

[6] Goetz Graefe, Wey Guy, and Caetano Sauer. 2014. Instant Recovery with Write-
Ahead Logging: Page Repair, System Restart, and Media Restore. Synthesis
Lectures on Data Management 6, 5 (2014), 1–85.

[7] Goetz Graefe and Harumi A. Kuno. 2012. Definition, Detection, and Recovery
of Single-Page Failures, a Fourth Class of Database Failures. PVLDB 5, 7 (2012),
646–655.

[8] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi Kuno, Joseph Tucek, Mark
Lillibridge, and Alistair Veitch. 2014. In-memory Performance for Big Data.
PVLDB 8, 1 (2014), 37–48.

[9] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh.
2017. WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems.
In 15th USENIX Conference on File and Storage Technologies (FAST 17). 257–270.

[10] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management Beyond Main Memory. In 2018 IEEE

34th International Conference on Data Engineering (ICDE). IEEE, 185–196.
[11] Lucas Lersch, Ismail Oukid, Ivan Schreter, andWolfgang Lehner. 2017. Rethinking

DRAM Caching for LSMs in an NVRAM Environment. In European Conference
on Advances in Databases and Information Systems. Springer, 326–340.

[12] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. 1992.
ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking
and Partial Rollbacks UsingWrite-Ahead Logging. ACM Transactions on Database
Systems (TODS) 17, 1 (1992), 94–162.

[13] Yi Ou, Lei Chen, Jianliang Xu, and Theo Härder. 2014. Wear-Aware Algorithms
for PCM-Based Database Buffer Pools. In International Conference on Web-Age
Information Management. Springer, 165–176.

[14] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-tree
for Storage Class Memory. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 371–386.

[15] Steven Pelley, Thomas F Wenisch, Brian T Gold, and Bill Bridge. 2013. Storage
Management in the NVRAM Era. PVLDB 7, 2 (2013), 121–132.

[16] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing Non-Volatile Memory in Database Systems. In Proceedings of the 2018
International Conference on Management of Data. ACM, 1541–1555.

[17] Zhangling Wu, Peiquan Jin, Chengcheng Yang, and Lihua Yue. 2014. APP-LRU: A
New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems.
In IFIP International Conference on Network and Parallel Computing. Springer,
84–95.

[18] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-based Single
Level Systems. In 13th USENIX Conference on File and Storage Technologies (FAST
15). 167–181.

http://arxiv.org/abs/1901.10938
http://arxiv.org/abs/1901.10938

	Abstract
	1 Introduction
	2 Background
	3 System Design
	4 Conclusion
	References

