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ABSTRACT

Cardinality estimation is a fundamental task in database
query processing and optimization. Unfortunately, the accu-
racy of traditional estimation techniques is poor resulting in
non-optimal query execution plans. With the recent expan-
sion of machine learning into the field of data management,
there is the general notion that data analysis, especially neu-
ral networks, can lead to better estimation accuracy. Up to
now, all proposed neural network approaches for the cardi-
nality estimation follow a global approach considering the
whole database schema at once. These global models are
prone to sparse data at training leading to misestimates for
queries which were not represented in the sample space
used for generating training queries. To overcome this is-
sue, we introduce a novel local-oriented approach in this
paper, therefore the local context is a specific sub-part of the
schema. As we will show, this leads to better representation
of data correlation and thus better estimation accuracy. Com-
pared to global approaches, our novel approach achieves an
improvement by two orders of magnitude in accuracy and
by a factor of four in training time performance for local
models.

CCS CONCEPTS

« Information systems — Query optimization; - Com-
puting methodologies — Neural networks; Supervised
learning by regression; Ensemble methods.
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1 INTRODUCTION

Query optimization is still an important challenge due to
ever-increasing data sizes, whereby most query optimization
techniques are cost-based [2, 19]. In this cost-based approach,
cardinality estimation plays a dominant role with the task to
approximate the number of returned tuples for every query
operator within a query execution plan [2, 19, 21]. These es-
timations are used within different optimization techniques
for various decisions such as determining the right join or-
der [3], choosing the optimal operator variant [27], or finding
the optimal placement within a heterogeneous hardware en-
vironment [9, 10]. For this reason, it is important to have
cardinality estimations with high accuracy.

Unfortunately, most traditional estimation approaches,
which are based on statistical models with strong assump-
tions, are not accurate enough [15]. Here, the main critical
assumptions are uniformity and data independence [19]. For
example, the color red is usually uniformly distributed over
all car brands but its distribution for the manufacturer Fer-
rari is rather skewed since most of them are red. In this
case, the color and the manufacturer are highly correlated in
non-uniform way leading to erroneous cardinality estimates
using traditional approaches.

A promising way to overcome these limitations is the use
of machine learning, including neural networks, for cardi-
nality estimation [11, 16, 17, 23]. Here, the main assumption
is that a sufficiently deep neural network can model the
very complex data dependencies and correlations. In this
regard, available techniques are based on a global approach
by creating a single neural network (global model) over the
entire database schema. This concept is detailed in Figure
1, where Tables R, S, T, U, V, and W are a complete schema
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Figure 1: Global vs. local approach.

in a database. The resulting global model for cardinality es-
timation can become large in structure to model as many
aspects of the schema as possible and arbitrary cardinality
estimates are possible. The global model is trained on sam-
pled queries from the entire schema. However, this leads to
sparse query sampling because even for a limited number
of tables and predicates, the number of possible training
queries becomes extremely large. For example, our six tables
with five columns each containing 1,000 possible values and
three possible predicate operators (<, =, >) would generate
a sample space of (2° — 1) - 2° - 1,000 - 3 = 6,048,000 queries.

Our Contribution and Outline

To tackle this issue, we propose a cardinality estimation tech-
nique with a focus on smaller neural network structures in
this paper. We call this a local approach because each lo-
cal model focuses on a small part of the schema instead of
the whole schema. An example for a model on a sub-part
of a schema (i.e. a single join) is depicted in Figure 1. The
schema sub-part for a local model can be any number and
combination of joins. That means, each local model is al-
ways specialized to a specific schema sub-part. Without loss
of generalization, we focus on equi-joins in this paper. The
advantage of our local approach is that the query sampling
gets less sparse. Given our example from before concentrat-
ing on the join between R and T, we get a sample space of
(22-1)-25-1000-3 = 288,000 queries. Thus, the coverage of a
sample would increase because the same amount of sampled
queries would be less sparse for the local sample space. If we
sample 100,000 queries in both sample spaces, we cover ca.
1.6% of the global sample space but ca. 35% of the local sam-
ple space. Sampling 100,000 queries needs the same amount

Woltmann et al.

of time in both scenarios but the coverage of seen queries
with different cardinalities is higher for our local approach.
This gives a learned model the possibility to generalize its
prediction making it more accurate.

In detail, we make the following contributions in this
paper: The contributions of our work are the following:

e In Section 2, we outline the current research context
of our approach.

e We introduce an approach for learned cardinalities

with local models, i.e. neural networks in Section 3.

Section 3 also provides details on our vectorization pro-

cess transforming SQL queries into numerical vectors

to be utilizable by the neural network as input.

e We provide a comprehensive evaluation in Section 4.
In particular, we show that our local approach shows
an accuracy improvement by two orders of magnitude
and a speed-up by three orders of magnitude for the
forward pass compared to a global model.

Finally, we close the paper with an outlook onto our future
research in Section 5 and a brief summary in Section 6.

2 RELATED WORK

Traditional approaches of cardinality estimation in relational
data management systems (RDBMS) rely on statistics that in-
clude one-dimensional equi-depth or equi-width histograms
on each column in a table [5-7, 25], a list of most frequent
values and their frequencies, the number of distinct values,
and min and max values [24]. However, the main assump-
tions of uniformity and data independence have shown to
be a major problem for these statistical approaches leading
to non-optimal query execution plans in the end [15, 26].
To solve this issue in a more sophisticated way, there have
been works on formulating cardinality estimation as a su-
pervised learning problem [11, 14, 16]. On the one hand, the
authors in [16] proposed learned cardinality estimators for
single tables only. On the other hand, Kipf et al. introduced
a universal approach called multi-set convolutional neural
network (MSCN) which models cardinality estimation as a
global model. The neural network processes three inputs
from an SQL query independently. These are the used tables,
the join keys, and the chosen predicates on the used tables.
Additionally, MSCN uses samples of the first 1,000 rows of a
query as a bitmap given the truth values of the query’s predi-
cates. MSCN is capable of modeling joins and predicates over
several tables and hence can cover correlations in the data. A
very complex network structure estimates the cardinality of
the given query. The large sampling space to cover the whole
schema leads to a sparse representation of different queries
and their cardinalities. If a query without a representative is
passed to the network, the network’s interpolation capability
fails and the estimate is erroneous. The complex network
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Figure 2: Process for cardinality estimation with learned models.

structure also results in an increased learning time of the
model and slower cardinality estimation itself.

Besides cardinality estimation, machine learning tech-
niques have been also used to optimize other RDMS internals.
For example, reinforcement learning has been applied for
query optimization as well as to solve the join ordering chal-
lenge [17, 23]. Moreover, Kraska et al. proposed a learned
index structure as novel indexing approach [12]. Here, a
model learns the sort order or the structure of lookup keys
and uses these signals to effectively predict the position or
existence of tuples.

3 LOCAL CARDINALITY ESTIMATION

As already demonstrated by [11, 14, 16], the application of
deep learning techniques to the cardinality estimation task
enhances the accuracy compared to traditional approaches.
Nevertheless, all recently introduced approaches have short-
comings in terms of accuracy, network size or effort for train-
ing as mentioned in the previous section. To overcome these
issues, we propose a novel local model approach in this paper.
Our local model approach is characterized by the fact that
we build different neural networks (models) for various sub-
parts of the database schema instead of having one global
neural network for the whole schema at once. Specifically,
we build our models at the granularity of n-ary joins and
their corresponding filter predicates that occur in a given
workload. Without loss of generality, we restrict ourselves
to equi-joins at the moment with different filter predicates
opportunities.

The exact structure of the network, i.e. number of layers
and the number of neurons, is subject to the adaption of our
local model to the problem, also known as hyperparameter
tuning. We explain these structural properties of the neural
network and their influences in Section 4.3 as part of the
evaluation. In machine learning, cardinality estimation can

be seen as a regression problem using SQL queries with
relation and attribute constraints as input and the cardinality
as the objective. A machine learning based estimator takes
any vectorized query as input and returns a cardinality for
said query. This assumption holds for both global and local
models. In Section 3.1, we detail how a neural network can be
used for regression. The featurization of queries is described
in Section 3.2.

3.1 Regression with Neural Networks

A standard way for modeling regression with neural net-
works are multi-layer perceptrons (MLP). This kind of neu-
ral network is defined by three types of layers: an input
layer, hidden layers, and an output layer. Figure 2 shows an
example of such a neural network. Each layer contains a
configurable but fixed number of neurons. Each neuron is
connected to all neurons in both the previous and follow-
ing layer. Therefore, these layers are called fully-connected.
When applied to regression, MLPs use an n-dimensional vec-
tor as input and produce a floating point or an integer number
as output. The input vector dictates the numbers of neurons
in the input layer of the neural net. The output of a regression
neural network is a scalar. While training, example queries
with known cardinalities will be passed through the network.
Such example queries are called the ground truth. The neural
network self-optimizes its prediction of the output (i.e. car-
dinalities) based on the ground truth. Once trained, a neural
network can be used to estimate cardinalities for both known
queries which were already in the workload or unknown
queries which are newly introduced to the workload. Our
approach uses such a regression neural network. The input
vector is the vectorized query (see Section 3.2) and the output
is the estimated cardinality of the query.
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Figure 3: Vectorization of a query

3.2 Vectorization

In order to model a join and the resulting correlations in the
data, we need to instantiate the given join in the database.
This generates a join table of width n where n = #cols(R) +
#cols(S). These assumptions also hold for more complex joins
over three or more tables.

A neural network can only take numerical values as its
input vector. An SQL query has to be transformed from its
string representation to a numerical vector. This process
is called vectorization. We use the predicates on the two
tables on which the join is based as a foundation for our
vectorization. Every possible predicate p; € {p1,...,pn} on
those two tables generates 4 entries in the input vector X €
R*", We are only allowing selections on non-key predicates
because we argue that there are no useful selections on key
predicates in our scenario.

We differentiate between two encodings in our vector-
ization: the operator encoding and the value encoding. The
operator encoding vectorizes the choice of operator for the
predicate p;. We use one-hot encoding to transform a number
of choices to a vector. With three singular operators <, =,
and >, we need a vector of length three to model all possible
operators. The presence of an operator dictates a 1 at the cor-
responding position in the vector. We have chosen to use the
order (<, =, >) for our purposes. For example, < generates
the vector (1,0, 0) and <= generates the vector (1, 1,0). The
operator encoding takes up the first three entries for each
predicate. Next, we need to encode the chosen value for the
predicate p;. Usually, this is the numeric or character value
v; on the right hand side of the operator. The value encoding
is a single floating point number representing this value. If
this value is non-numeric, we use dictionary encoding to
transform it to an integer. Neural networks are usually used
with min-max-normalized input vectors ranging from 0 to 1
to enhance their accuracy [8]. We normalize our predicate
value v; to this range as shown in Equation (1).

- _ v —min(p;)
vi= max(p;) — min(p;) M

The minimum and maximum values are the boundaries of
the range of the predicate p; where v; is the value of p; in
the query. These can be obtained directly from the database.

For the purpose of our model, we only take those predicates
into account which select directly on the join table.

From Figure 2, we assume that the join of R and S has
three columns {p1, ps, p3} excluding the join predicate. The
vectorization generates an input vector X of length 12, four
entries for each predicate. Note that the predicates are chosen
from different relations, i.e. p; comes from R and p; and ps;
come from S. Figure 3 shows the encoding for the example
query. We mark the direct translation of query predicates to
parts of the input vector.

4 EVALUATION

We conduct an experimental study to evaluate the perfor-
mance of our approach. We begin with the experimental
setup (Section 4.1), including the evaluation data and the
comparison techniques. This is followed by a detailed de-
scription of the experiments and the discussion of their re-
sults.

The process of generating data according to the experi-
mental setup of Kipf et al. is described in Section 4.1. We
compare our results to two other estimators, one traditional
estimator and one learned estimator, in Section 4.2. In Sec-
tion 4.3, we evaluate different configurations of our network
topology. We perform experiments on how many queries are
necessary for a stable model in Section 4.4. Last, we show the
performance of all tested models and compare their training
time and test time in Section 4.5.

4.1 Experimental Setup

The base for our evaluation is the IMDB data set!. We fo-
cused on two joins: (1) titler<movie_info and (2) movie_
companies><movie_infor<title. The first join results in ap-
proximately 29 million tuples and the second one in 134
million tuples. Further information about the data can be
found in Table 1. All properties are chosen in order to ensure
comparability to other approaches. We selected all columns
from each join which can be represented as integers. All
experiments are executed five times and their results are av-
eraged. For each of the five complete training runs in every
experiment, we randomly split our data set of 105,000 queries
in 90,000 queries for training, 10,000 queries for validation,

Iftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/
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table column number of
distinct values
title kind id 8
title production_year 145
movie_info info_type_id 78
movie_companies company_id 362,131
movie_companies company_type_id 2

Table 1: Properties of IMDB tables and columns.

and 5,000 queries for testing. All sets are disjunctive from
each other. This gives a good assessment of the model’s gen-
eralization and prevents overfitting. Note that in real-world
scenarios, there can be an overlap between training and test
sets but this would only improve the performance of our
neural network. The neural network sees different queries
and cardinalities each training run. Thus, we prevent it from
just remembering specific queries through repetition.

As the evaluation metric, we choose the q-error or multi-
plicative error [20]. This measurement is the factor of mis-
judgment between the ground truth value y;,4. and the
estimated value y,,. It ranges from 1 for yes; = yrye to oo
for misestimates because it has no upper limit.

max(ytrue’ yest)
min(ytru(Es yest)

We use the sampling technique for the generation of queries
as proposed in [11]. We only need to sample the predicates
because the number of joins is fixed for each of our neural
network. For this, we sample the number of predicates [ uni-
formly from [1, p,]| with [ € N. This is done coherently to
Kipf et al. We use the same operator set (<, =, >) as well.
Every generated query is executed through a database to
obtain the correct cardinality. We generate a total of 105,000
queries for each join table. This is a strict subset of the sam-
pling space proposed by Kipf et al. This set of queries only
assesses the example joins but they are still covered in the
original sample space. So, the global MSCN should be able to

q(ytrue’ yest) = (2)

model mean median max 95th mean
q-error g-error  q-error q-error

2-way join

Posgres 212,311.8 62.6 23,913,682.0 638,227.4
MSCN 1,353.8 3.4 194,170.7 1,973.6
Local NN 4.9 1.4 1,569.7 11.7
3-way join

MSCN 4748.5 5.0 1315521.7 2041.1
Local NN 26.4 1.9 24304.8 324

Table 2: Resulting q-errors of different approaches.

aiDM’19, July 5, 2019, Amsterdam, Netherlands
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Figure 4: Evaluation results of different cardinality es-
timators.

generalize from its training data to estimate the cardinalities
of these queries.

All experiments are executed on an AMD A10-7870K Ra-
deon R7 with 32GB RAM. All neural networks, including
networks from other publications, are trained with CUDA
capability on an NVIDIA Tesla K20c with keras?.

4.2 Accuracy

To evaluate the estimation accuracy of our local model, we
compare our approach with two other techniques. First, we
select a baseline estimator which does not use machine
learning. Postgres uses traditional estimations based on his-
tograms or most frequent values®. This approach is not ca-
pable to model correlations between predicates because it
assumes data independence. Next, we choose multi-set con-
volutional neural network (MSCN) as a state-of-the-art ap-
proach using deep learning for cardinality estimation. The
MSCN model is trained on the data set from the original
publication. These queries are sampled from the same IMDB
tables, we use throughout our evaluation. Last, we train our
local estimator on the sampled queries mentioned in Sec-
tion 4.1. For this, we choose the network structure which
performs best on our data sets. An evaluation of different
tested structures can be found in Section 4.3.

Figure 4 and Table 2 detail the accuracy results for all
estimators on join (1) and (2). The g-error of each estimate
in our test set is scaled to a symmetric log-space on the
y-axis. Whereas underestimates get a negative value and

https://keras.io
Shttps://www.postgresql.org/docs/10/row-estimation-examples.html
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overestimates a positive value, both between 1 and co. The
blue line is the tendency of an estimator to overestimate or
underestimate. The box for each model details the confidence
interval (CI) around the median g-error. The number of g-
errors which are outside the CI but inside 1.5 times the CI
are represented with whiskers. Outliers are plotted as points
outside the whiskers. The closer all elements are around
the g-error range between —1 and 1 the better the accuracy
of a model. Table 2 shows the mean g-error, the median q-
error, the maximum g-error, and the mean g-error of the 95th
percentile. All q-errors refer to the accuracy of the models
on 5,000 test queries.

It can be observed that our model can estimate data cor-
relation much more precisely. We gain an improvement in
accuracy of four orders of magnitude to traditional estima-
tors and a factor of 275 to the global model regarding the
mean g-errors from Table 2. With a smaller focus, our neural
network has the advantage of using more of its estimation
quality on queries which access similar data. The neural net-
work does not need to generalize over a large data context
like a complete schema but learns local data correlations
which are easier to model in general. This leads to two im-
provements as shown by the fliers and whiskers in Figure 4:
1) Our model is not as susceptible to misestimates. 2) The
variance in our estimates is much smaller.

The assumption that MSCNs can generalize from a general
workload of sample queries to a specific one does not hold.
By using our local approach different joins can be evaluated
with different specialized local models (see Section 5). This
also allows for using other approaches such as histograms or
sketches where a neural network would introduce too much
overhead.

Our model can not only be used for joins over two tables
but also for an arbitrary number of tables. To show the accu-
racy of a larger join, we use join (2) mentioned in Section 4.1.
The last two box plots in Figure 4 and the last lines in Table 3
show the performance of MSCN and our model on join (2).
The accuracy improves by a factor of 180 compared to the
global approach when comparing the mean g-errors. Note
that this model is trained on only 50,000 sample queries as
motivated in Section 4.4. This shows, that our approach can
be generalized to n-way joins be keeping higher accuracy
compared to global models.

4.3 Network Structure

There are two main components which have the most signif-
icant influence on the accuracy of a neural network: width
and depth. The width of a fully-connected neural network
is the number of neurons in the first hidden layer®. The
depth describes the number of consecutive hidden layers

4 All following layers have half the number of neurons as their predecessor.
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g-error for different network compositions
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Figure 5: Neural network structure evaluation.

in the network. To tune the network for our purposes, we
use an exhaustive grid search with depth and width as the
search space axes. The width varies between the values
(32, 64, 128, 256, 512) and the depth varies between the values
(1,2,3,4,5). For each combination of a given depth and width,
a network is instantiated with these parameters, trained on
the train data with 100 epochs and tested on the test data.
We have chosen the 2-way join (1) for this experiment with
predicates on three attributes depicted in Table 3. Figure 5
shows the g-errors for all network combinations. The x-axis
describes the depth parameter, whereas the y-axis details the
width parameter. It is clearly visible that the best combina-
tion is a network with two hidden layers and 512 neurons in
the first layer. Another result is that width has more impact
on the g-error than the depth. Shallow models with broad
layers perform better than deep models with narrow layers
up to a factor of ten. For all other experiments, we therefore
decide to use a network with the following configuration: in-
put layer (4n neurons), hidden layer 1 (512 neurons), hidden
layer 2 (256 neurons), output layer (1 neuron).

4.4 Number of Sampled Queries

The cold start problem in machine learning means that if a
system is freshly installed, a lot of training data is required for
a first model. Most of the time, one does not have a sufficient
number of samples for training in this scenario and compute
expensive data generation (see Section 4.1) is required. In
data management and especially in cardinality estimation
this usually leads to random sampling of example queries
representing an artificial workload. To mitigate the cold start
problem, we assess how fast our network converges given a
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Figure 6: Number of samples needed.

specific number of input queries from the workload as train-
ing data. We look at the number of required queries for an
artificial start-up workload to result in a stable estimation for
join (1). The number of queries used for training is increased
by 10,000 in each step and a sample of 5,000 queries is chosen
from the remaining queries for testing. The neural network
is trained with a batch size of 32. The results are shown in
Figure 6.

First of all, the runtime of a neural network in training
scales linearly with the number of training queries if param-
eters like width, depth and batch size are kept constant on a
single machine. It shows that we reach a mean g-error of 6.9
when using 50% of queries. We argue that therefore 50,000
queries are enough to build a first robust model for this join.
This leaves us with 50% of runtime for model training (i.e.
598s) compared to the full sample set.

4.5 Runtime Performance

Since performance is a key feature for using learned car-
dinality estimators in database management systems, we
detail the runtime evaluation of all models. For evaluating
the runtimes of different models, we use join (1) and 105,000
sampled queries accessing this join. The experiment is car-
ried out as described in Section 4.1. Additionally, our model
is also trained with the number of samples necessary for a
stable model (see Section 4.4). The MSCN and our model are
trained with GPU capability and a batch size of 32.

Table 3 details the training and test time for all model-
based approach and the runtime for the Postgres query ana-
lyzer. The training time consists of the 100 epochs needed for
each model to be fitted to the 100,000 train queries. The test
time is the evaluation time for a single query, i.e. the time
for the EXPLAIN ANALYZE statement for Postgres or the time
for a forward pass through the neural network. One could
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Model Training time Testing time

(per sample)
Postgres - 1.8s
MSCN 4945s 33ms
Local NN (full sample set) 1159s 29ps
Local NN (sufficient samples) 598s 29us

Table 3: Runtime performance of models.

argue that histogram construction in Postgres is equivalent
to a training process but it uses a different type of data, the
data distribution of each attribute. Therefore, a comparison
would be insufficient.

For model training, we can achieve a speed-up of factor
four and a factor of eight if only a reduced number of queries
is used. Our neural network estimator is faster than Postgres
by a factor of 62,000. Compared to MSCN, the forward pass
of the local model is three orders of magnitude faster since
the structure is much smaller. When we apply our model
is fast enough to have little to zero impact on the query’s
execution time.

5 FUTURE WORK

The approach of using neural network for cardinality estima-
tion is still in its infancy and there is a multitude of challenges
ahead that needs to be solved. The most important issues that
have to be tackled are the cold start problem, the number of
samples needed to train the network, the maintenance of the
models, and their interplay and integration with statistical
approaches based on histograms.

Curriculum Learning. We want to mitigate the cold
start problem for cardinality estimation by applying cur-
riculum learning. The basis notion is that in human learning
the supervision often follows a curriculum where the teacher
presents the examples not randomly but in a specific order.
The approach of curriculum learning [1] transfers this prin-
ciple to supervised learning. It is an extension of stochastic
gradient descent where easy examples are over-sampled at
the beginning of training. This gives a higher probability to
escape a low quality local minimum, since the variance of
the gradient direction increases with the difficulty of sam-
ples [28]. In [13, 28] it was shown, that by applying curricu-
lum learning the training converges much faster but also
improves the generalization performance of the learned mod-
els. For learning cardinality estimations, the key question is
how to rank samples according to their difficulty. This can be
done either by using the estimation error of the underlying
database, by investigating existing models or by using opera-
tor embeddings [18]. Operator embeddings [18] map a query
operator to a low-dimensional vector space that captures
much information about the operator. The authors of [18]
showed that operator embeddings can be used to classify
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operators for which the query optimizer’s cardinality esti-
mate is correct, too high, or too low. This could be used as
an approximation of the difficulty.

Model Maintenance. Currently, we are assuming that
our database schema as well as the underlying data is static.
While the learned cardinality estimation models should be
general enough to tolerate minor shifts in data distribution
and correlation, there will also be cases where these models
need to be adapted or learned from scratch. Therefore, we
need to monitor the cardinality estimation error and trigger
model maintenance if needed. The notion of model main-
tenance shares some aspects with the approach of transfer
learning. Transfer learning is the improvement of learning in
a new task through the transfer of knowledge from a related
task that has already been learned [22]. The core question
that has to be investigated is whether it is possible to transfer
the knowledge from a given model to another setup with
different data characteristics.

Integration with Statistical Approaches. Moreover, we
want to combine existing statistical approaches with learned
models. Since the computation of histograms is pretty cheap
compared to learning neural networks, they provide a plain-
vanilla approach that could be used to mitigate the cold
start problem. Additionally, they remain applicable for all
cases where the independence assumption holds. To support
a decision-making process in choosing either statistical or
neural-network approaches, we plan to discover functional
dependencies and correlations between pairs of column [4]

6 CONCLUSION

In this paper, we present a neural network approach for car-
dinality estimation that focuses on local models instead of
global models. The evaluation shows that our local models
outperform global models in terms of accuracy as well as
training and testing time. Beside this significant improve-
ment, we believe that local models have the advantage to be
much easier to maintain when it comes to drifts in data or
schema and workload changes compared to global models
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