
Efficient GPU Tree Walks for Effective Distributed N-Body
Simulations

Jianqiao Liu
Purdue University, USA
liu1274@purdue.edu

Michael Robson
University of Illinois Urbana-Champaign, USA

mprobson@illinois.edu

Thomas Quinn
University of Washington, USA
trq@astro.washington.edu

Milind Kulkarni
Purdue University, USA
milind@purdue.edu

ABSTRACT
N-body problems, such as simulating the motion of stars in a galaxy,
are popularly solved using tree codes like Barnes-Hut. ChaNGa
is a best-of-breed n-body platform that uses an asymptotically-
efficient tree traversal strategy known as a dual-tree walk to quickly
determine which bodies need to interact with each other to provide
an accurate simulation result. However, this strategy does not work
well on GPUs, due to the highly-irregular nature of the dual-tree
algorithm. On GPUs, ChaNGa uses a hybrid strategy where the CPU
performs the tree walk to determine which bodies interact while
the GPU performs the force computation. In this paper, we show
that a highly-optimized single-tree walk approach is able to achieve
better GPU performance by significantly accelerating the tree walk
and reducing CPU/GPU communication. Our experiments show
that this new design can achieve a 8.25× speedup over baseline
ChaNGa using a one node, one process per node configuration.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; • Applied computing → Astronomy.

KEYWORDS
N-body problems, Heterogeneous system, Distributed system, GPU,
Tree traversal
ACM Reference Format:
Jianqiao Liu, Michael Robson, Thomas Quinn, and Milind Kulkarni. 2019.
Efficient GPU Tree Walks for Effective Distributed N-Body Simulations. In
2019 International Conference on Supercomputing (ICS ’19), June 26–28, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3330345.3330348

1 INTRODUCTION
One important class of simulation problems is the n-body prob-
lem, which computes interactions between particles in a system to
evaluate the effects of forces between those bodies such as gravity,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’19, June 26–28, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6079-1/19/06. . . $15.00
https://doi.org/10.1145/3330345.3330348

electrical charge, etc. Perhaps the most classic example of an n-body
simulation is modelling the self gravity of astronomical bodies—
stars in a galaxy, for instance. As with all n-body problems, the
naïve approach to computing the gravitational force is the direct
approach: for each body in the system, compute the force acting
on it from the other n − 1 bodies, resulting in an O(n2) algorithm.

In 1986, Barnes and Hut proposed an approach that has since
become a standard way of performing n-body gravitational simu-
lations: a tree code [1]. This approach leverages the fact that the
gravitational force of a group of bodies can be approximated by a
multipole expansion1, the lowest term of which is proportional to
the total mass divided by the square of the distance, and higher or-
der terms drop off with successively higher powers of the distance.
Tree codes use a spatial tree (classically, an octree) to capture the
spatial relationship between bodies. To compute the forces on a
body, the body traverses the tree, computing approximate forces
from bodies that are far away by interacting with a node of the
octree that encompasses all of those far-away bodies, and exact
forces from bodies that are close by. In this way, theO(n2) algorithm
becomes an O(n logn) algorithm. At a high level, this algorithm
can be thought of as two interleaved components: a tree walk por-
tion that identifies what forces need to be computed for a body,
and a force computation portion that computes the forces on that
body. Note that a body is usually called a particle in gravitational
simulation, and a node in the tree corresponds to a cell in the space.
We use them interchangeably in this paper.

Because cosmological simulations can involve millions or even
trillions of bodies, distribution is a key approach to scaling up
computation. Over the years, there have been many frameworks
developed to perform distributed tree code–based n-body simula-
tions [22, 23, 25]. One of the most advanced, and most efficient, is
ChaNGa [14]. This framework, based on Charm++ [10], works by
breaking up the large spatial tree required by a tree-code into tree
pieces. Each of these tree pieces represents a sub-tree of the overall
spatial tree, and hence a subset of all the bodies in the simulation.
These tree pieces can then be distributed and executed on different
nodes in a system, combining the forces from “local walks” (bodies
in a tree piece interacting with other bodies in the same tree piece)
and “remote walks” (bodies interacting with remote tree pieces).
More details of ChaNGa and the underlying Charm++ runtime
system are in Section 2.

1The multipole expansion is the sum of spherical harmonics of the mass distribution.
ChaNGa uses fourth (hexadecapole) order Cartesian multipole expansions in the force
computation [21, 23].

24

https://doi.org/10.1145/3330345.3330348
https://doi.org/10.1145/3330345.3330348
https://doi.org/10.1145/3330345.3330348
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3330345.3330348&domain=pdf&date_stamp=2019-06-26

Efficient GPU Tree Walks for Effective Distributed N-Body Simulations ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

The local walks in ChaNGa are implemented using a dual tree
algorithm: rather than having each body perform separate tree
walks, resulting in particle-cell interactions (when a body deter-
mines whether all the bodies in a given subtree are far enough
away) and particle-particle interactions (when a body interacts di-
rectly with another body to compute forces), the dual-tree walk
also leverages cell-cell interactions. These cell-cell interactions can
quickly determine if all the bodies in one subtree are far enough
away from the bodies in another subtree to allow for approximate
computation (A variant of this approach is also used in another
classic n-body algorithm, the Fast Multipole Method [4, 17]). This
optimization further reduces the complexity of the tree walk to
O(n) compared to the original “single-tree” implementation. Note
that this complexity difference affects only the tree-walk portion
of the algorithm; the two variants perform asymptotically similar
numbers of force computations.

While the dual-tree approach is highly effective for CPU-only
computation, it suffers from several drawbacks when trying to
take advantage of the GPUs that are increasingly a part of dis-
tributed systems. Dual-tree walks derive their asymptotic benefit
from performing the tree walk for numerous points as part of a
single computation. While this is the source of the asymptotic win
versus single-tree implementations, it also reduces the amount of
parallelism available in the computation (all of the single-tree walks
are parallelizable, but the dual-tree walks for all the points must
be done as part of a single computation), underutilizing a GPU’s
massive parallel resources. Moreover, the dual-tree algorithm is
very control-heavy, leading to control divergence that compromises
a GPU’s SIMT execution model, further reducing utilization. As
a result, ChaNGa does not directly implement a dual-tree walk
on GPUs. Instead, ChaNGa separates the tree walk step from the
force computation step: the CPU performs the dual-tree traversal
to determine which bodies each other body needs to interact with
directly, building interaction lists, then the GPU uses these interac-
tion lists to perform the force computation. Because the interaction
lists are dense, regular structures, the force computation step can
be efficiently performed on the GPU.

ChaNGa’s CPU/GPU approach is an effective way to exploit
GPUs in its distributed computation. However, it means that the
GPU’s parallelism cannot be leveraged for the tree-walk portion of
the computation. Moreover, because the CPUmust perform the tree
walks and then send the interaction lists to the GPU, a significant
amount of time needs to be spent in this communication, further
reducing efficiency.

Contributions. In this paper, we observe that it is important to
match the algorithm to the target hardware. While dual-tree ap-
proaches have attractive asymptotic properties that are effective
for CPU computation, these asymptotic behaviors are counterbal-
anced by the specific requirements of efficient GPU computation:
the need for massive parallelism and regular control flow. Hence, in
this paper, we make a key change to ChaNGa’s GPU implementa-
tion: we use an efficient single-tree algorithm to perform local tree
computations.

By using a single-tree computation, we can move both the tree
walk and force computation steps to the GPU, eliminating the com-
munication bottleneck inherent in transferring interaction lists

1 void BarnesHut(particle, node) {
2 if (far_away(particle, node)) {
3 calculateGravity(particle, node); }
4 else if (isBucket(node)) {
5 for (p : node.particles())
6 calculateGravity(particle, p); }
7 else {
8 for (child : node.children())
9 BarnesHut(particle, child); }}

Figure 1: Barnes Hut pseudocode

between the CPU and GPU. While single-tree walks are still ir-
regular, we adapt recent developments in GPU tree walks from
Goldfarb et al. [6] and Liu et al. [13] that show that it is possible
to implement these tree walks in a way that limits control diver-
gence and hence can be made highly efficient on the GPU. By
combining these two effects—reduced communication costs and
reduced control divergence—our approach is able to overcome the
higher asymptotic complexity of the single-tree approach to deliver
a more efficient GPU implementation of ChaNGa, representing the
fastest known configuration of ChaNGa. We show, across several
benchmarks, our implementation is 11.29× faster than the original
ChaNGa in the best case, and 8.25× faster on average (using a one
node, one process per node configuration).

2 BACKGROUND
This section provides background on n-body codes in general, and
Barnes-Hut in particular. It also describes Charm++ [10], the dis-
tributed runtime system that ChaNGa (described in the next section)
is built on.

2.1 n-body codes
The naïve approach to perform ann-body simulation is to have each
particle in the space directly compute the gravity with all the rest
of the particles. Each particle requires O(n) computation, and the
overall complexity is O(n2). The Barnes Hut algorithm (BH) uses
an octree in three dimensional space to organize the particles. The
topmost node (the root) represents the whole space, and its eight
children represent the subspaces. The space is recursively divided
until the number of particles in each node is below a threshold. In
the simulation, a particle traverses the space from the root. If the
center of mass of one internal node is sufficiently far away from
the particle, the particles contained by that node are treated as a
single particle whose position and mass are captured by the internal
node’s attributes. Otherwise, the particle needs to traverse each
child of the internal node. The process is repeated until no more
nodes remain (Figure 1).

2.2 Charm++
Charm++ is an adaptive runtime system based on the principles of
asynchrony and overdecomposition. Programs written in Charm++
are comprised of migratable C++ objects, known as chares. These
chares can be grouped into collections, known as chare arrays.
Charm++ is a message-driven model in which these chares com-
municate via asynchronous messages, or entry methods. This asyn-
chronous model automatically enables adaptive overlap of com-
munication and computation, including on the CPU and GPU [8].

25

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Jianqiao Liu, Michael Robson, ThomasQuinn, and Milind Kulkarni

These features of adaptivity, asynchrony, migratability, and overde-
compositon, etc., when combined with the introspection in the
runtime system, enable various capabilities such as dynamic load
balancing and fault tolerance, both of which ChaNGa leverages.
The Charm++ system is a mature scalable parallel programming
model that underlies several successful applications.

GPU Manager. Charm++’s GPU Manager library was initially
designed for use in ChaNGa to accelerate various kernels [8]. The
library is focused on offloading GPU kernels and data copies with-
out blocking CPU code. It is able to achieve this by asynchronously
invoking various stages of a kernel’s execution (data copy in, ker-
nel launch and execution, data copy out) between the execution of
entry methods. The GPU manager utilizes streams to create overlap
between these different phases of different kernels. This is done to
promote overlap of communication and computation both on the
device and between the host and the device. An important note is
that the existence of this library does not prevent interested users
from independently taking advantage of the entire CUDA platform
[16]. The motivation behind this library is to provide the user with
various useful functionalities without impeding GPU performance.
These extensions include stream creation, data movement and man-
agement, kernel launch, synchronization, and notification. The GPU
manager library also initializes a pinned memory pool that is made
available to accelerate copies to and from the device. Finally, there
are extensions to the API for integration with Charm++’s profiling
and visualization tools. Most of these features were developed to
accelerate ChaNGa code through a process of co-design.

To use the GPU manager library, the program registers its kernel
functions and data buffers with the Charm++ runtime system. The
user still has complete control over the launch parameters of the
kernel. The runtime system then leverages its introspective nature
and automatically initiates data copies greedily both in and out
of the device and overlaps these copies with kernel launch and
execution. When the kernel is finished executing the runtime sys-
tem sends a notification message in the form of a callback function
when the data is copied back and ready for reuse.

3 CHANGA
This section describes ChaNGa, the n-body simulation code built
on top of Charm++. We begin by describing the high-level structure
of ChaNGa. We then describe its dual-tree approach to traversing
trees, and explain the unsuitability of GPUs for performing dual-
tree walks. Finally, we explain how ChaNGa currently supports
GPU execution.

3.1 ChaNGa structure
ChaNGa implements a large number of features necessary for mod-
elling astrophysical problems including periodic boundary con-
ditions, individual timestepping, and gas dynamics via Smooth
Particle Hydrodynamics (SPH) along with a variety of equations
of state. Here we focus on the implementation of the gravity cal-
culation within ChaNGa. The gravity calculation proceeds by first
decomposing particles into spatial domains, then building a tree
over the whole volume, and then traversing the tree with a Barnes-
Hut-like algorithm to calculate the gravitational forces on each

particle. Since each domain contains a contiguous part of the tree,
domain construction and tree building are intimately linked.

Tree construction. ChaNGa divides up the computational volume
with an octree similar to that described in the original Barnes-Hut
paper. One difference is that the tree is implemented as a binary
tree with divisions alternating in the X, Y, Z dimensions. The root
of the tree is constrained to be cubical, and every third level of
the tree contains cubical nodes. The leaves (referred to here as
“buckets”) of the tree contain a small number of particles (at least
12, by default, referred to here as the “bucket size”). All nodes of
the tree contain multipole moments, up to hexadecapole, of the
mass distribution of the particles within that node, which are used
to calculate forces due to all contained particles when the node
satisfies the opening criterion. The opening criterion determines
when to continue traversing a portion of the tree. Alternatively, its
converse can be thought of as a truncation criterion that determines
when to stop traversal.

The tree is constructed by first assigning each particle a key
corresponding to a location on a space-filling curve (by default the
Peano-Hilbert curve). The particles are then placed in tree-order
via a parallel sort. During the sort, particles are also divided among
tree pieces (each of which is a Charm++ chare). The Charm++ run
time system then distributes these tree pieces among the processors
in order to balance the computational load. Because each tree piece
has its boundary information, it is able to independently construct a
tree containing its particles all the way up to the root (see Figure 2).

3.2 Dual-tree traversals
The high-level pseudocode for n-body codes presented in Sec-
tion 2.1 is for single-tree traversals. The structure of the algorithm
is, roughly, “for each body in the system, traverse the spatial tree
to compute forces”; in other words, there is one tree that is used to
accelerate the traversals. One way to think about how this computa-
tion is structured is that it is based around particle-cell interactions,
where a body visits an interior node of the octree to determine
whether it should continue visiting that portion of the space; and
particle-particle interactions where, once a body reaches a leaf node
of the octree, it directly interacts with the bodies in that node to
compute forces.

An algorithmic advance that reduces the complexity of the algo-
rithm is to replace the outer loop of the high level n-body algorithm
with a different approach. Instead of simply looping over all the
bodies in the system to traverse the tree, dual tree algorithms take
advantage of the fact that the bodies are already arranged in a
spatial tree to accelerate the process. Dual-tree algorithms use two
trees (which are often identical): the body tree that represents the
bodies in the “outer loop” of the force computation, and the target
tree (inner tree) that represents the original spatial tree.

Dual-tree algorithms introduce a third kind of interaction to
the particle-cell and particle-particle interactions in single-tree
traversals: the cell-cell interaction. In this interaction, an interior
node from the body tree (call it node X) interacts with an interior
node from the target tree (call it node Y). If none of the bodies in
nodeX need to interact with any of the bodies in nodeY , then none
of the bodies in node X need to continue visiting this portion of
the spatial tree. Crucially, this computation can be done by using

26

Efficient GPU Tree Walks for Effective Distributed N-Body Simulations ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

2
(0,18)

1
(0,18)

0
(0,18)

3
(0,18)

4
(0,18)

5
(0,18)

‐3
(0,0)

‐2
(0,0)

‐4
(0,0)

‐1
(0,0)

6
(0,9)

‐5
(0,0)

7
(10,18)

‐2

‐3

‐5

6
6

7

‐3

‐1

‐2

‐4 ‐5

‐5

‐1

‐4

X

Y Z

(a) (b)

Figure 2: (a) Tree structure: Each chare builds its piece of the tree
starting with internal nodes (yellow), eventually getting to bound-
ary nodes (blue) which have non local children (red) and are dupli-
cated on other tree pieces. The top boundary node is the root which
is duplicated on all tree pieces. Numbers in the nodes in this figure
correspond to node index (range of contained buckets). (b) Spatial
representation: The cube represents node 0’s space. The boundary
nodes (blue) are replaced by their children (red and yellow). We dif-
ferentiate a non local node’s distance to the local tree-piece by its
color. Darker colors indicate farther nodes. Nodes include their chil-
dren (e.g., Node 5 includes Nodes 6 and 7.)

summary information about node X , amortizing the cost of this
interaction across all the bodies in node X . If any body in node X
needs to interact with Y , then the cell-cell interaction decomposes
into new cell-cell interactions: the two child nodes of X perform
cell-cell interactions with each of the child nodes of Y (i.e., four
new cell-cell interactions are performed), effectively continuing the
traversal of the tree.

Note that this recursive procedure means that the opening crite-
rion for tree traversal can efficiently be calculated across multiple
bodies in the system with a single cell-cell interaction. Note that the
dual-tree opening criterion is a little bit looser than the opening cri-
terion in the single-tree traversal, as cell-cell interactions stop only
if no body in the two cells should interact. Nevertheless, even with
this looser opening criterion resulting in larger walks of the tree,
the amortization effect wins out: the complexity of dual-tree traver-
sals drops fromO(n logn) toO(n). Figure 3 shows pseudocode for a
dual-tree traversal. ChaNGa uses this style of traversal to accelerate
its Barnes-Hut implementation, giving its CPU implementation
attractive asymptotic complexity and beneficial cache behavior.

Why are GPUs unsuited for dual-tree traversals? A natural ques-
tion is whether it makes sense to implement the dual-tree walk on
GPUs, to take advantage of the GPU’s greater parallelism compared

1 void dualTreeWalk(outerNode, checkList, interactionList){
2 for (innerNode : checkList) {
3 checkList.remove(innerNode);
4 action = openCriterion(innerNode, outerNode);
5 if (action == CONTAINED) {
6 checkList.append(innerNode.children()); }
7 else if (action == INTERSECT) {
8 if (isBucket(innerNode)) {
9 interactionList.plist.append(innerNode.particles

()); }
10 else {
11 checkList.append(innerNode.children()); }}
12 else { // TRUNCATED
13 interactionList.clist.append(innerNode); }}
14 if (isBucket(outerNode))
15 calculateGravity(outerNode.particles(),

interactionList);
16 else {
17 dualTreeWalk(outerNode.left, checkList,

interactionList);
18 dualTreeWalk(outerNode.right, checkList,

interactionList); }}

Figure 3: Dual treewalk: the three possible actions from the opening
criterion are 1) CONTAINED,meaning all particles in the outerNode
will pass the acceptance criterion, 2) INTERSECT, meaning some
may fail, and (implied) TRUNCATED,meaning all particles will fail
the criterion.

to CPUs. Interestingly, the answer appears, at least for straightfor-
ward implementations, to be “no.”

To understand why dual-tree traversals do not map well to GPUs,
it is useful to recall why dual-tree traversals gain an asymptotic
advantage over single-tree traversals in the first place: the cell-cell
interactions. Their key advantage is that in a cell-cell interaction, all
the bodies in a cell in the body tree can leverage a single interaction
computation to determine whether they should continue traversing
the target tree. Hence, work that would, in the single-tree case,
need to be repeated across every body in the system, can be done
just once. Consider, for example, the very first interaction, between
a body and the root node of the octree. In the single tree walk, this
interaction must be calculated for every body in the system, even
though every body will determine that it must continue traversal;
in the dual tree walk, this computation happens exactly one time.
Fundamentally, this optimization saves on computation at the cost
of parallelism.

The GPU gets its performance advantage from massive paral-
lelism. Each individual thread on the GPU is relatively weak, with
in-order execution, many hardware stalls, and, crucially, a SIMT
(single instruction, multiple thread) execution model that penalizes
control divergence, where different threads execute different in-
structions. All of these combine tomean that to get real performance
gains out of a GPU, computations need large amounts of parallel
threads that are all performing similar work. That is exactly what
a dual-tree execution does not provide. A single thread perform-
ing a cell-cell interaction to amortize the cost of computing many
particle-cell interactions provides no parallelism at all—indeed, the
other hardware threads on a GPU are effectively wasted, when they
could have been used to compute particle-cell interactions.

There are thus two drawbacks to a dual-tree execution on a
GPU. First, as mentioned, the reduced parallelism means that a

27

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Jianqiao Liu, Michael Robson, ThomasQuinn, and Milind Kulkarni

GPU is performing slow single-threaded (or low–thread count)
computation instead of highly multithreaded computation. Second,
this low–thread count computation is still using the looser stopping
criterion of a dual-tree walk, which means that it pays an additional
penalty of traversing more of the tree than a single tree walk would.
We build on both of these insights in Section 4 in our turn to single
tree walks to improve performance. Of course, this still leaves the
key problem for GPUs of minimizing control divergence, which
our approach also addresses.

3.3 Hybrid CPU/GPU execution in ChaNGa
Given the unsuitability of dual-tree computations for GPUs, how
does ChaNGa leverage GPUs in its current implementation? It does
so by splitting the computation into two phases: a tree walk phase,
which performs the dual-tree walk to determine which leaf nodes
of the body tree need to interact with the target tree, building
interaction lists that give, for each body, which other bodies and
cells it needs to interact with, and a force computation phase which
processes the interaction lists to compute the forces [8].

Notably, the tree walk phase is highly irregular, but consumes
relatively little of the overall computation time, while, once the in-
teraction lists are computed, the force computation phase is highly
regular: the interaction list for each body can be stored in a dense
array, and processing each interaction list requires the same arith-
metic operations and can be readily parallelized. This leads to a
natural separation of concerns: ChaNGa performs the tree walk
on the CPU and sends the computed interaction lists to the GPU,
and then performs the force computations on the GPU. Further im-
proving matters, the interaction lists can be computed by multiple
CPUs and sent asynchronously to the GPU to compute the forces2.

While this is a very attractive approach to exploiting GPU par-
allelism, it does come with a drawback: the interaction lists are
quite large, and as a result, communicating them from the CPU
to the GPU is a significant expense. Indeed, the GPU often spends
upwards of 46% of its total runtime merely transferring data from
the CPU. Hence, even though the interaction list computation is
highly regular and parallel, utilizing the GPUs resources well, the
communication overheads still result in underutilization.

A second drawback of this approach is that it does not leverage
increasing GPU resources well. The large amounts of parallelism in
the GPUmeans that the force computation phase can complete very
quickly. Indeed, in the hybrid approach, only 5% of the time is spent
in GPU computation versus CPU computation. This means that
adding more CPU cores can speed up the overall computation, by
speeding up the tree walk phase that is the bottleneck. Conversely,
however, a simple Amdahl’s law argument shows that adding more
GPU resources (either multiple GPUs per node or more powerful
GPUs per node) without commensurately adding CPU resources
will not result in much performance improvement. As GPUs are en-
ergy efficient (and cost effective) compared to CPUs, this precludes
adding GPUs as an efficient way of improving performance.

2We note that recent distributed GPU implementations of the fast multipole method
use a similar approach, where the interaction lists are built on the CPU (during tree
construction) and then processed on the GPU [3, 12]. Because FMM builds its interac-
tion lists differently, we would not expect our GPU traversal approach to be as effective
(see Section 7).

What we would like is an alternative strategy for exploiting
GPUs in ChaNGa. One where 1) we do not underutilize the GPU
by spending significant amounts of time in communication; and 2)
the GPU is the computational bottleneck, opening up avenues for
performance improvement by increasing the number of GPUs. We
discuss exactly this strategy next.

4 DESIGN
This section describes the key change we make to ChaNGa to more
effectively utilize GPU resources: rather than using the hybrid
CPU/GPU approach, we instead offload the entire local tree walk
to the GPU.

4.1 Offloading the local tree walk
As we discussed before, moving ChaNGa’s dual-tree algorithm
to the GPU is unlikely to effectively leverage the GPU’s paral-
lelism. Thus, we return to the simple single tree computation, and
offload that to the GPU. Because a single-tree walk has each particle
traverse the tree independently, it features abundant parallelism,
taking better advantage of a GPU’s execution resources than a
dual-tree walk would.

Importantly, a single-tree walk dramatically reduces the amount
of data that needs to be communicated to the GPU compared to the
interaction-list approach. In the interaction-list approach, the body
data (positions, etc.) needs to be sent to the GPU to facilitate force
computation. In addition, for each body an interaction list needs
to be sent to the GPU. It is this extra data that leads to the 46%
communication overheads on GPU side seen in the interaction-list
approach. In contrast, when the entire tree walk is offloaded to the
GPU, only the body data, in the form of the octree, needs to be
sent to the GPU. Interaction lists do not need to be sent as they are
computed as part of the GPU tree walk. As we will see in Section 6,
this change means that by offloading the entire tree walk to the
GPU reduces communication overheads from 46% to 5%.

Communication overheads are not the whole story, though. In
the interaction-list approach, the force computation performed
on the GPU is highly regular, matching the execution model of
the GPU. On the other hand, a tree walk is inherently irregular,
whether dual-tree or single-tree: even if the tree is laid out in a
dense fashion (e.g., by linearizing the tree), the key feature that
makes tree walks efficient is the opening criterion that prevents
bodies from traversing the entire tree. As a result, bodies will make
distinct, data-dependent decisions about which parts of the tree to
traverse, leading to memory divergence—as different bodies touch
different parts of the tree—and control divergence—as different
bodies make different truncation decisions. Without addressing
this divergence, moving the entire tree walk to the GPU is likely to
result in severe underutilization of the GPU.

Recent developments in tree walks on GPUs give hope to this
approach [2, 6, 13]. Burtscher et al. showed that a single-tree walk
can be effectively placed on a GPU without incurring severe diver-
gence through performing warp-level truncation instead of body-
level truncation [2]. Rather than each body independently deciding
whether to stop traversing a specific part of the tree, all bodies
that are packed into a single GPU warp vote on truncation. If any
body in the warp wants to continue traversing the tree, all bodies

28

Efficient GPU Tree Walks for Effective Distributed N-Body Simulations ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

do. This prevents memory divergence, as all bodies in the warp
consistently access the same parts of the tree.

Goldfarb et al. [6] generalize this approach through an optimiza-
tion they call lockstepping that uses the same warp-level voting
mechanism as Burtscher et al. but with explicit masks to block
out threads that do not need to perform computation. They also
add a technique called autoropes that uses an explicit rope stack to
maintain the traversal order of the tree and avoid redundant visits
to interior nodes as a traversal moves up and down through the
octree. Finally, Liu et al. [13] refine Goldfarb et al.’s approach to
minimize the amount of state needed to track the masks and the
rope stack, reducing the number of registers required to perform
tree traversal, thus allowing the GPU to perform more concurrent
traversals.

Putting all of these advances together, we find that replacing the
CPU-based tree traversal and GPU-based force computation with a
GPU only single-tree traversal leads to better performance overall,
dramatically reducing communication overhead, while controlling
divergence sufficiently such that the overall GPU computation time
for doing the entire tree walk is comparable to the time for the
force computation only.

4.2 Complexity concerns
One notable drawback to switching to a single-tree traversal on
the GPU is that we sacrifice the asymptotic complexity advantages
of the dual-tree traversal, which the interaction-list approach pre-
serves. For many inputs, the ability of our GPU-only approach to
fully exploit a GPU’s massive parallelism outweighs the asymptotic
complexity disadvantage (since, of course, constant factors matter).
However for large inputs, it is possible that the interaction-list ap-
proach will win out. We note, however, that the design of ChaNGa,
and the principles of Charm++, limits this: as the input scales up,
we expect the input to be broken up into more tree pieces, limiting
the size of the local tree walks, and hence limiting the downside
of the O(n logn) complexity of the single-tree approach. Typically,
there are more tree pieces than the number of processors to benefit
from overlapping CPU/GPU computation and load-balancing. Thus
the tree piece size is smaller than the GPU memory limit.

We want to emphasize that the dual- vs. single-tree complexity
comparison is mainly about the tree walk part. The force calculation
itself is not affected by the treewalk strategy. Interestingly, although
the dual-tree walk wins in complexity, our results show that single-
tree walk requires less particle-to-particle calculation due to the
tighter opening criterion (Table 2).

4.3 Further optimizations
Our current implementation only examines how offloading local
tree walks to the GPU can improve performance. We make minimal
changes to other portions of ChaNGa. However, our strategy does
open up further opportunities for performance improvement.While
we have not yet implemented these techniques, we discuss them
here.

Overlapping with remote work. Our approach to offloading tree
walks to the GPU applies only to the local tree walk performed by
a tree piece. The bodies in that tree piece still need to account for
forces acting on them by remote parts of the tree. Because these

remote computations are relatively small portions of the overall
computation, we leave these computations completely to the CPU,
and preserve their dual-tree nature. This design fits naturally into
the existing ChaNGa architecture, which separates local and remote
computations.

We note that offloading the local tree walk to the GPU does offer
up a potential performance advantage, as shown in Figure 4. Rather
than the CPUs devoting time to performing local tree walks and
computing interaction lists, in our approach, CPU resources can be
fully devoted to remote tree walks, leading to a potentially large
performance improvement from overlapping remote and local work.
Our current implementation has not modified ChaNGa’s scheduler,
however, so we currently do not exploit this opportunity.

Intermediate time steps. A real-world n-body simulation will typ-
ically simulate the behavior of bodies for multiple time steps. From
one time step to the next, most bodies have not moved significantly,
and hence ChaNGa adopts an incremental strategy where in “ma-
jor” time steps, all bodies are simulated, while in intermediate time
steps, only a subset of bodies have their full forces recomputed.

In the current implementation the interaction lists for all bodies
in a bucket are constructed and sent to the GPU for intermediate
time steps (because a dual-tree walk naturally computes all of
them), even though only some of the bodies have their interaction
lists processed for force computation. Thus, ChaNGa’s current
implementation pays a large CPU-to-GPU communication overhead
for all time steps, even when only some bodies are being updated.

Our single-tree approach is a natural fit for exploiting this dis-
crepancy: we only perform tree walks for whichever bodies are
sent to the GPU, allowing us to only compute interaction lists for
the subset of bodies that are updated in the intermediate time step.

5 IMPLEMENTATION
This section describes some of the implementation details of our
single tree walk, culminating in pseudocode specifying the GPU
implementation.

Bucket-to-node opening criterion. The opening criterion, or trun-
cation condition, is the computation that decides whether one or a
batch of particles need to traverse the subtree rooted at a node. It is
the key factor of any tree traversal algorithm. To conduct the force
computation efficiently, ChaNGa adopts a node-to-node opening
criterion. When walking the tree to compute the force, the opening
criterion is computed between the inner and outer nodes, and all
the particles under the inner node should satisfy it. When moving
to a single-tree walk, where we are concerned with individual par-
ticles traversing the tree, this node-to-node opening criterion is not
optimal: it may lead a particle to traverse a node because the other
particles under the same inner node want to traverse that node,
even though the particle itself does not. In our implementation,
we use a bucket-to-node opening criterion: each particle tests the
opening criterion between the bucket it belongs to and the outer
node, leading to more precise traversals.

In our measurements, this bucket-to-node opening criterion re-
sults in significantly fewer opening criterion calculations than the
original looser criterion, as seen in Table 1. Furthermore, while
the two open criteria result in similar interaction list sizes, the

29

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Jianqiao Liu, Michael Robson, ThomasQuinn, and Milind Kulkarni

Construct
interaction listCPU:

GPU:

CPU:

GPU:

Initialization Data transfer Local Compute

Construct
interaction list

Construct
interaction list

Construct
interaction list

Remote
work

Remote
work

Remote Compute

Figure 4: Strategy comparison: (1) the upper part is the original ChaNGa. The whole interaction list building process is chopped into pieces to
overlap CPU/GPU computation time. When the number of lists reaches a threshold, the CPU sends the built lists to the GPU for computation
then resumes the building process. (2) The lower part is the new ChaNGa design. The GPU handles both the tree walk and force computation.
(3) The remote gravity computation in both strategies is simplified as a single walk plus a single computation block.

Benchmarks Simulated original ChaNGa Single tree walk
lambs 6.16E+09 2.41E+09 (-3.75E+09)
lambb 3.42E+11 1.18E+11 (-2.24E+11)
dwf1 8.75E+09 3.51E+09 (-5.24E+09)

dwf1.6144 1.18E+11 4.46E+10 (-7.31E+10)

Table 1: Number of target tree interactions with original
opening criterion vs. single tree condition.

Bench- node-to-node bucket-to-node
marks cell particle cell particle
lambs 9.55E+08 4.30E+09 1.00E+09 (+4.5E+08) 3.37E+09 (-9.3E+08)
lambb 5.30E+10 1.17E+11 5.33E+10 (+3E+08) 9.61E+10 (-2E+10)
dwf1 1.49E+09 4.52E+09 1.52E+09 (+3E+07) 4.02E+09 (-5E+08)
dwf1. 1.98E+10 4.29E+10 1.99E+10 (+1E+08) 4.12E+10 (-1.7E+09)6144

Table 2: The comparison of the total size of interaction lists
for different opening criterion strategies. The "particle" rep-
resents the particle-particle interaction list, and the "cell"
implies the particle-cell interaction list.

bucket-to-node opening criterion conducts more truncations than
the node-to-node open criterion. It requires more particle-cell com-
putation, but reduces particle-particle computation by much more
(Table 2). Note that our new implementation achieves the same
level of accuracy as the original ChaNGa in standard accuracy tests.

Reducing the latency in tree walk. The gravity computation is
complicated and requires massive memory resources. Each tree
node contains several pieces of information, such as the mass, po-
sition, radius, hexadecapole expansion, etc. Even worse, we need
to track more data to enable the local tree walk on the GPU, such
as information about child nodes, etc. The compiler has to assign
each thread enough registers to handle its work, which can limit
GPU occupancy (the number of threads that can be in context si-
multaneously) and hence lead to poor parallelism. This makes the
gravity calculation a latency bound problem.

Note, though, that as the particles walk the tree, not all the data in
the tree node is necessary. Atmost nodes, the particles just check the
opening criterion, or compute with the particles under these nodes.
Only a few nodes require the remaining information to compute
forces. This leads to an optimized tree node data management
strategy. In each iteration, the threads only load a subset of data (48

bytes) needed for the opening criterion, instead of the whole tree
node (164 bytes). The full hexadecapole expansion is only accessed
when the threads need to compute the gravity between particles
and the node.

Tree walk pseudocode. Figure 5 shows pseudocode for the GPU
tree walk. For the most part, this pseudocode tracks the single-tree
Barnes-Hut pseudocode in Figure 1. We note a few key details.

Because GPUs do not manage recursion particularly efficiently,
recursion is instead implemented through an explicit stack, stk.
As we see in line 22 of the pseudocode, traversal is implemented by
pushing children nodes onto the stack. This has the added benefit
that, because this is a pre-order tree walk, we do not need to spend
any time returning back from recursive calls. This captures the
autoropes approach of Goldfarb et al. [6]. The core of autoropes is to
use a stack of dynamically-instantiated pointers to linearize trees.

Line 19 of the pseducode uses the CUDAwarp-wide voting mech-
anism __any. This returns true if any thread in the warp returns
true. This is used to implement Liu et al.’s optimized lockstepping
strategy [13], where if any thread in a warp wants to continue
traversing the tree, all threads do. Note that it is critical that this
decision is made only at the warp level, rather than across all the
bodies in a cell. Because of the GPU’s SIMT execution model, “car-
rying along” other bodies in a warp that do not actually want to
continue traversal does not incur extra cost; the threads responsi-
ble for those bodies would have stayed idle anyway. Making this
decision across more bodies than are processed by a warp, however,
can cause some warps to do extra work even if none of the bodies
in that warp want to visit part of the tree.

6 EVALUATION
This section evaluates the effectiveness of our GPU local tree walk
in ChaNGa. We choose ChaNGa as our baseline because its per-
formance has already been well-proven [9]. First, we compare the
tree walks’ performance with the original ChaNGa GPU approach.
We analyze the details of why our implementation wins or loses in
performance. Then we investigate scalability.
Platform We evaluate our application on the Comet cluster (at
San Diego Supercomputer Center). Its GPU nodes consist of two

30

Efficient GPU Tree Walks for Effective Distributed N-Body Simulations ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

1 void gpuLocalTreeWalk() {
2 stk = new stack(); // on GPU shared memory
3 for(pidx = globalThreadIdx; pidx < numParticles;
4 pidx += blockSize * gridSize) {
5 init(stk); bucket = loadBucketNode();
6 while (!stk.empty()) {
7 target = stk.top(); stk.pop();
8 if (current_thread_need_to_work()) {
9 action = openCriterion(bucket, target);
10 cond = isContainedOrIntersect(action);
11 if (action == COMPUTE_NODE) {
12 if (openSoftening(target, node))
13 // evaluate as a MonoPole
14 else
15 // evaluate as a MultiPole }
16 else if (action == COMPUTE_PARTICLES) {
17 for (particle : target)
18 // evaluate the force for particle }
19 if (!__any(cond))
20 continue;
21 for (child : target.children())
22 stk.push(child.Idx) }}}}}

Figure 5: GPU single tree walk

Intel Xenon E5-2680v3 processors, 128GB DDR4 DRAM and four
NVIDIA P100 GPUs. We are able to get consistent access to 8 nodes
in this cluster for our experiments.
BenchmarksWe use the original ChaNGa GPU implementation
as the baseline, and compare its performance with a variant of
ChaNGa that uses our new GPU-only local tree walk. We use the
following inputs. lambs is a 3 million particle representation of the
final state (i.e., the current state of the Universe) of a cosmological
simulation of a cubical volume 70 megaparsecs in size. lambb is
an 80 million particle representation of that same volume. These
simulations were originally used in [19]. dwf1 is a 5 million particle
zoom-in simulation. It represents a cosmological volume similar to
the above benchmarks, but the particle sampling focuses on a single
halo of roughly 1 × 1011 solar masses. dwf1.6144 is a 50 million
particle representation of that same halo.

The first two inputs, while clustered on small scales, are roughly
uniform on the scale of the entire volume. The second two bench-
marks have a non-uniform particle distribution on all scales, i.e.,
the variance of the number of particles in a volume is large, even
for volumes comparable in size to the entire volume.

Performance comparison. ChaNGa is designed for a multi-node
and multi-process scenario, and we evaluate the performance under
different combinations.We choose a bucket (leaf node) size of 32 and
64 bodies because the GPU version of ChaNGa usually gets the best
performance for buckets about that size. We also configure ChaNGa
to use the minimal number of treepieces per process (typically one).

The results of running ChaNGa with several configurations are
shown in Table 6 (confidence intervals are negligible). We first
explore a simple, though unrealistic, configuration of 1 process on
1 node. In this configuration, there is no distribution, and hence all
the work is in local tree walks. This maximizes the performance
benefit of our new tree walk, as our improvements only target the
local tree computation, and we see significant speedups across the
inputs—on average 8.25× better.

Name Total time Number of calls
Interaction list construction (CPU) ~8s 1

CUDA memcpy HtoD 235.29ms 891
Particle interaction list process (GPU) 180.52ms 144
Cell interaction list process (GPU) 95.16ms 78

CUDA memcpy DtoH 4.59ms 1

Table 3: Runtime breakdown for original ChaNGa

Name Total time Number of calls
Interaction list construction (CPU) 0 0

CUDA memcpy HtoD 16.24ms 7
Local tree walk (GPU) 297.11ms 1
CUDA memcpy DtoH 4.54ms 1

Table 4: Runtime breakdown for new ChaNGa

When using 4 processes per node (the second group of results)
the story changes. Here, the work is divided into 4 tree pieces. In
original ChaNGa, each process handles a different tree piece and
sends the interaction lists to its “private” GPU (remember there are
4 GPUs per node). Because the bottleneck in original ChaNGa is the
CPU walk, this results in a significant speedup, while adding CPU
resources does not help our implementation because it has no need
to use these additional CPU resources. However, these resources
could be put to use in other computations required by ChaNGa—
such as SPH—though we do not explore that in this study. Further,
the remote tree walk, which we do not target, starts to consume
resources. Hence, the overall speedup of our new configuration
over original ChaNGa drops to 2.13×. As we oversubscribe the GPU
resource, with 8 processes per node (hence 2 processes per GPU),
the GPU becomes the bottleneck, but our implementation is still
1.55× faster.

Aswe increase the number of nodes, we spend relatively less time
on local tree walks, so, as expected, the advantages of our GPU tree
walk are reduced. Nevertheless, when we use the maximum number
of nodes possible and oversubscribe the CPUs, the GPU local tree
walk is still 1.40× faster than the baseline on average. With larger
input files, the GPU local tree walk shows better performance.

Performance breakdowns. Next, we break down the amount of
time spent in different phases of the computation for the 1-process
configuration (allowing us to use nvprof for profiling) with the
lambs input. In original ChaNGa (Table 3), the dominant cost
is the CPU building the interaction list: about 8 seconds. How-
ever, these interaction lists are large, so sending them to the GPU
(CUDA memcpy HtoD) and performing the force computations
takes 235ms and 276ms, respectively3. In contrast, our implementa-
tion (Table 4) requires no CPU computation time, and only needs
to send the tree to the GPU (taking a mere 16ms). Then the GPU
performs a full tree walk, encompassing both building the interac-
tion lists and processing them, in only 297ms. Indeed, performing
the entire walk on the GPU takes only 10% more time than just
processing the interaction lists on the GPU in original ChaNGa, and
only 25% more time than simply sending the interaction lists to the
GPU. By the time the original implementation finishes transferring
the interaction lists to the GPU, our implementation would almost
be done with the whole computation!

3The "CUDA memcpy HtoD" takes 46% of GPU overall runtime (235.29 + 180.52 +
95.16 + 4.59 = 515.56ms) in original ChaNGa.

31

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Jianqiao Liu, Michael Robson, ThomasQuinn, and Milind Kulkarni

32 64
Runtime(s) Runtime(s) Runtime(s) Speedup Runtime(s) Speedup

lambs 9.58 5.10 1.06 9.01x 0.85 6.01x
lambb 359.67 189.29 31.85 11.29x 26.01 7.28x
dwf1 16.89 9.16 1.71 9.86x 1.40 6.54x
dwf1.6144 194.84 103.93 19.69 9.90x 16.95 6.13x
lambs 3.08 1.66 1.22 2.53x 0.89 1.88x
lambb 101.22 54.38 29.55 3.43x 23.18 2.35x
dwf1 6.26 3.42 3.15 1.99x 1.95 1.76x
dwf1.6144 67.52 37.07 40.73 1.66x 25.20 1.47x
lambs 1.89 1.07 1.05 1.80x 0.77 1.38x
lambb 55.16 30.94 24.07 2.29x 19.83 1.56x
dwf1 3.49 1.90 2.40 1.45x 1.55 1.22x
dwf1.6144 38.40 20.71 26.75 1.44x 16.32 1.27x
lambs 1.92 1.04 1.07 1.80x 0.78 1.33x
lambb 49.49 27.47 15.41 3.21x 10.41 2.64x
dwf1 3.51 1.90 2.37 1.48x 1.55 1.22x
dwf1.6144 39.10 20.67 27.36 1.43x 16.56 1.25x
lambs 1.50 0.88 0.90 1.67x 0.67 1.31x
lambb 41.11 22.13 16.94 2.43x 13.36 1.66x
dwf1 2.27 1.37 1.68 1.35x 1.20 1.14x
dwf1.6144 22.93 12.46 14.92 1.54x 10.49 1.19x
lambs 0.80 0.57 0.57 1.39x 0.45 1.27x
lambb 21.55 11.70 10.15 2.12x 7.58 1.54x
dwf1 1.28 0.82 1.05 1.22x 0.74 1.10x
dwf1.6144 11.80 6.50 8.66 1.36x 5.43 1.20x

Bucket Size

Tree walk strategies
Average
Speedup

8.25x

2.13x

1 node, 1 process per node

1 node, 4 processes per node

Original ChaNGa New ChaNGa
32 64

1.55x

8 nodes, 1 process per node

8 nodes, 4 processes per node

8 nodes, 8 processes per node

1.80x

1.53x

1.40x

1 node, 8 processes per node

Figure 6: Runtime Comparison on Comet (Time in seconds)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Sp
ee
du

p

Number of nodes

Original ChaNGa New ChaNGa

Figure 7: Strong scaling. Base line is original ChaNGa with 1 node.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1M 2M 3M 4M 5M 6M 7M 8M

N
or
m
al
ize

d
ru
nt
im

e

Input data size (particles)

Original ChaNGa New ChaNGa

Figure 8: Weak scaling. Base line is original ChaNGa with 1 node.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ru
nt
im

e
(s
)

Theta value

Original ChaNGa New ChaNGa

Figure 9: Runtime comparison under different theta values

Scalability. Finally, we evaluate strong and weak scaling, with
one process per node. For weak scaling (Figure 8) we use synthetic
data with 1M–8M Poisson distributed particles. We do weak scaling
with 1M particles per node. For strong scaling (Figure 7), we use
the synthetic 8M-particle data. In both cases, our new design scales
similarly to the original ChaNGa. This makes sense: we would
expect that as we increase the number of nodes, the local tree walk
accounts for less of the computation, so the new ChaNGa will
eventually scale the same as the original ChaNGa, which has been
proven to be scalable.

Runtime comparison over theta. theta is the opening angle that
determines when to traverse a node in a tree; it is a parameter

32

Efficient GPU Tree Walks for Effective Distributed N-Body Simulations ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

to the opening criteria. With a smaller theta value, the algorithm
opens more nodes, does more computation, and produces more
accurate results. Most cosmology simulations set theta in the range
0.6–0.7 [18, 20]. However, we want to study the potential of our
approach and evaluate its performance under even higher accuracy
requirements. We vary theta with the 1-process configuration and
standard theta-test input (30K particles). The dual-tree walk does
the tree walk only once for all particles, so we expect it to perform
better with smaller theta. However, our evaluation shows that its
advantage is overwhelmed by the GPU’s strong parallelism. The
interaction list construction process on the CPU side becomes a
bottleneck in original ChaNGa, and with small theta, our approach
vastly outperforms it.

7 RELATEDWORK
There has been much research about mapping tree traversals onto
GPUs. Gieseke et al. [5] presented a novel data structure called a
buffer kd-tree for massive nearest neighbor queries, which relies on
a CPU to schedule a GPU’s parallel execution of partial tree walks.
Similarly, Liu et al.’s [13] work also relies on the CPU to schedule
work for GPU execution.

Khatami et al. [11] presented a scalable n-body application im-
plemented with HPX that uses futures to reduce synchronization
between nodes. Like ChaNGa, SteinBusch et al. [24] use a dual-tree
walk in their PEPCwork, which is a distributed memory parallel BH
tree code for electrostatic interactions. Pearce et al. [15] proposed
a load balance technique that balances interactions rather than
particles for distributed Barnes-Hut application. Hegde et al. [7]
created a novel framework that selects the place to compute the
remote force for particles differently. If a particle needs to compute
the interaction with a remote subtree, SPIRIT sends the particle to
the target remote subtree, asking the subtree to do the computa-
tion and send back the result. None of above works support GPU
acceleration.

Recent work on hybrid CPU/GPU implementations of the Fast
Multipole Method (FMM) [3, 12] exploit GPUs in a similar way to
ChaNGa’s original GPU implementation: an interaction list is built
on the CPU, and then this list is processed efficiently on the GPU.
FMM makes different tradeoffs than Barnes-Hut: the interaction
lists in FMM are based on the structure of the tree and can be built
during tree construction rather than requiring additional tree tra-
versal. Moreover, if a tree is incrementally modified when bodies
move, these interaction lists can be updated incrementally. In con-
trast, in Barnes-Hut, at each time step the tree must be traversed
anew to reconstruct each body’s interaction list, even if the tree
can be incrementally rebuilt. As a result, FMM spends relatively
less time in interaction list construction than does Barnes-Hut, so
our approach of GPU-accelerating interaction list building may be
less effective.

8 CONCLUSIONS
ChaNGa is a state-of-the-art distributed computational astrophysics
platform that uses a dual-tree variant of Barnes-Hut to efficiently
simulate gravitational forces. Unfortunately, ChaNGa’s current
method for targeting GPUs requires a split computation, where
CPUs determine which force computations must happen while

GPUs carry out those computations, an approach that underutilizes
the GPU and leaves the CPU as a bottleneck. In this paper, we
showed that an efficient single-tree GPU implementation, though it
gives up some asymptotic complexity over the dual-tree approach,
can more effectively utilize the GPU and gives consistent perfor-
mance benefits over the original ChaNGa framework.

9 ACKNOWLEDGEMENTS
This research was supported in part by the NSF (OAC-1550234 and
OAC-1550525) and a DOE Early Career Award (DE-SC0010295).
This work used the Comet computational resource, which is sup-
ported by NSF grant ACI-1341698.

REFERENCES
[1] J. Barnes and P. Hut. 1986. A hierarchical O(N log N) force-calculation algorithm.

nature 324 (1986), 4.
[2] Martin Burtscher and Keshav Pingali. 2011. An Efficient CUDA Implementation of

the Tree-based Barnes Hut n-Body Algorithm. In GPU Computing Gems Emerald
Edition. Elsevier Inc., 75–92.

[3] Jee Choi, Aparna Chandramowlishwaran, Kamesh Madduri, and Richard Vuduc.
2014. A cpu: Gpu hybrid implementation and model-driven scheduling of the
fast multipole method. In Proceedings of Workshop on General Purpose Processing
Using GPUs. ACM, 64.

[4] W. Dehnen. 2002. A HierarchicalO (N) Force Calculation Algorithm. J. Comput.
Phys. 179 (June 2002), 27–42. https://doi.org/10.1006/jcph.2002.7026 arXiv:astro-
ph/0202512

[5] Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. 2014.
Buffer kd trees: processing massive nearest neighbor queries on GPUs. In Inter-
national Conference on Machine Learning. 172–180.

[6] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013. General Trans-
formations for GPU Execution of Tree Traversals. In Proceedings of SC13: In-
ternational Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’13). ACM, New York, NY, USA, Article 10, 12 pages. https:
//doi.org/10.1145/2503210.2503223

[7] Nikhil Hegde, Jianqiao Liu, and Milind Kulkarni. 2017. SPIRIT: a framework for
creating distributed recursive tree applications. In Proceedings of the International
Conference on Supercomputing. ACM, 3.

[8] Pritish Jetley, Lukasz Wesolowski, Filippo Gioachin, Laxmikant V. Kalé, and
Thomas R. Quinn. 2010. Scaling Hierarchical N-body Simulations on GPU Clus-
ters. In Proceedings of the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC ’10). IEEE Computer
Society, Washington, DC, USA, 1–11. https://doi.org/10.1109/SC.2010.49

[9] Laxmikant V Kale and Abhinav Bhatele. 2016. Parallel science and engineering
applications: The Charm++ approach. CRC Press.

[10] L. V. Kale and Sanjeev Krishnan. 1996. Charm++: Parallel Programming with
Message-Driven Objects. In Parallel Programming using C++, Gregory V. Wilson
and Paul Lu (Eds.). MIT Press, 175–213.

[11] Zahra Khatami, Hartmut Kaiser, Patricia Grubel, Adrian Serio, and J Ramanujam.
2016. A massively parallel distributed n-body application implemented with hpx.
In 2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA). IEEE, 57–64.

[12] Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-Anh
Nguyen, Rahul Sampath, Aashay Shringarpure, Richard Vuduc, Lexing Ying,
Denis Zorin, and George Biros. 2009. A massively parallel adaptive fast-multipole
method on heterogeneous architectures. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. ACM, 58.

[13] Jianqiao Liu, Nikhil Hegde, and Milind Kulkarni. 2016. Hybrid CPU-GPU sched-
uling and execution of tree traversals. In Proceedings of the 2016 International
Conference on Supercomputing. ACM, 2.

[14] Harshitha Menon, Lukasz Wesolowski, Gengbin Zheng, Pritish Jetley, Laxmikant
Kale, Thomas Quinn, and Fabio Governato. 2015. Adaptive techniques for clus-
tered n-body cosmological simulations. Computational Astrophysics and Cosmol-
ogy 2, 1 (2015), 1.

[15] Olga Pearce, Todd Gamblin, Bronis R De Supinski, Tom Arsenlis, and Nancy M
Amato. 2014. Load balancing n-body simulations with highly non-uniform
density. In Proceedings of the 28th ACM international conference on Supercomputing.
ACM, 113–122.

[16] James C. Phillips, John E. Stone, and Klaus Schulten. 2008. Adapting a Message-
driven Parallel Application to GPU-accelerated Clusters. In Proceedings of the
2008 ACM/IEEE Conference on Supercomputing (SC ’08). IEEE Press, Piscataway,
NJ, USA, Article 8, 9 pages. http://dl.acm.org/citation.cfm?id=1413370.1413379

33

https://doi.org/10.1006/jcph.2002.7026
http://arxiv.org/abs/astro-ph/0202512
http://arxiv.org/abs/astro-ph/0202512
https://doi.org/10.1145/2503210.2503223
https://doi.org/10.1145/2503210.2503223
https://doi.org/10.1109/SC.2010.49
http://dl.acm.org/citation.cfm?id=1413370.1413379

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Jianqiao Liu, Michael Robson, ThomasQuinn, and Milind Kulkarni

[17] D. Potter, J. Stadel, and R. Teyssier. 2017. PKDGRAV3: beyond trillion particle
cosmological simulations for the next era of galaxy surveys. Computational
Astrophysics and Cosmology 4, Article 2 (May 2017), 2 pages. https://doi.org/10.
1186/s40668-017-0021-1 arXiv:astro-ph.IM/1609.08621

[18] Chris Power, JF Navarro, A Jenkins, CS Frenk, Simon DMWhite, V Springel, J
Stadel, and T Quinn. 2003. The inner structure ofΛCDM haloesâĂŤI. A numerical
convergence study. Monthly Notices of the Royal Astronomical Society 338, 1 (2003),
14–34.

[19] D. Reed, J. Gardner, T. Quinn, J. Stadel, M. Fardal, G. Lake, and F. Governato. 2003.
Evolution of the mass function of dark matter haloes. MNRAS 346 (Dec. 2003),
565–572. https://doi.org/10.1046/j.1365-2966.2003.07113.x arXiv:astro-ph/0301270

[20] Darren Reed, Jeffrey Gardner, Thomas Quinn, Joachim Stadel, Mark Fardal,
George Lake, and Fabio Governato. 2003. Evolution of the mass function of
dark matter haloes. Monthly Notices of the Royal Astronomical Society 346, 2

(2003), 565–572.
[21] John K. Salmon and Michael S. Warren. 1994. Skeletons from the Treecode Closet.

J. Comput. Phys. 111, 1 (1994), 136 – 155. https://doi.org/10.1006/jcph.1994.1050
[22] V. Springel. 2005. The cosmological simulation code GADGET-2. Monthly

Notices of the Royal Astronomical Society 364 (Dec. 2005), 1105–1134. https:
//doi.org/10.1111/j.1365-2966.2005.09655.x arXiv:arXiv:astro-ph/0505010

[23] J. G. Stadel. 2001. Cosmological N-body Simulations and their Analysis. Ph.D.
Dissertation. Department of Astronomy, University of Washington.

[24] Benedikt Steinbusch, Marvin-Lucas Henkel, Mathias Winkel, and Paul Gibbon.
2015. A Massively Parallel Barnes-Hut Tree Code with Dual Tree Traversal.. In
PARCO. 439–448.

[25] M. S.Warren and J. K. Salmon. 1993. A parallel hashed Oct-Tree N-body algorithm.
In Proceedings of the 1993 ACM/IEEE conference on Supercomputing (Supercomput-
ing ’93). ACM, New York, NY, USA, 12–21. https://doi.org/10.1145/169627.169640

34

https://doi.org/10.1186/s40668-017-0021-1
https://doi.org/10.1186/s40668-017-0021-1
http://arxiv.org/abs/astro-ph.IM/1609.08621
https://doi.org/10.1046/j.1365-2966.2003.07113.x
http://arxiv.org/abs/astro-ph/0301270
https://doi.org/10.1006/jcph.1994.1050
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1111/j.1365-2966.2005.09655.x
http://arxiv.org/abs/arXiv:astro-ph/0505010
https://doi.org/10.1145/169627.169640

	Abstract
	1 Introduction
	2 Background
	2.1 n-body codes
	2.2 Charm++

	3 ChaNGa
	3.1 ChaNGa structure
	3.2 Dual-tree traversals
	3.3 Hybrid CPU/GPU execution in ChaNGa

	4 Design
	4.1 Offloading the local tree walk
	4.2 Complexity concerns
	4.3 Further optimizations

	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusions
	9 Acknowledgements
	References

