
Deep Reuse: Streamline CNN Inference On the Fly via
Coarse-Grained Computation Reuse

Lin Ning, Xipeng Shen

{lning,xshen5}@ncsu.edu

North Carolina State University

ABSTRACT
This paper presents deep reuse, a method for speeding up CNN

inferences by detecting and exploiting deep reusable computations

on the fly. It empirically reveals the massive similarities among

neuron vectors in activation maps, both within CNN inferences on

an input and across inputs. It gives an in-depth study on how to

effectively turn the similarities into beneficial computation reuse to

speed up CNN inferences. The investigation covers various factors,

ranging from the clustering methods for similarity detection, to

clustering scopes, similarity metrics, and neuron vector granulari-

ties. The insights help create deep reuse. As an on-line method, deep
reuse is easy to apply, and adapts to each CNN (compressed or not)

and its input. Using no special hardware support or CNN model

changes, this method speeds up inferences by 1.77-2X (up to 4.3X

layer-wise) on the fly with virtually no (<0.0005) loss in accuracy.

KEYWORDS
Deep neural networks, Program Optimizations, GPU

ACM Reference Format:
Lin Ning, Xipeng Shen. 2019. Deep Reuse: Streamline CNN Inference On
the Fly via Coarse-Grained Computation Reuse. In ICS’19: International
Conference on Supercomputing, June 26–28, 2019, Phoenix, AZ. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3330345.3330384

1 INTRODUCTION
Deep Convolutional Neural Networks (CNN) have shown successes

in many machine learning applications. The speed of inferences (or

predictions) by CNN is important for many of its uses, which has

prompted numerous recent efforts in speeding up CNN inferences.

Some propose special hardware accelerators [9, 13, 29, 36], others

build high performance libraries (e.g., CUDNN
1
, MKL-DNN

2
),

methods to compress models [14, 15, 34], Tensor graph optimiza-

tions
3
, and other techniques.

However, despite the many efforts, faster CNN inference remains

a pressing need, especially for many emerging CNN applications in

1
https://developer.nvidia.com/cudnn

2
https://github.com/intel/mkl-dnn

3
https://www.tensorflow.org/lite/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS’19, June 26–28, 2019, Phoenix, AZ
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6079-1/19/06…$15.00
https://doi.org/10.1145/3330345.3330384

Input Layer

a neuron-vector
in input layer

a neuron-vector
in activation map

Activation Map

Convolutional
Layer 1

Convolutional
Layer i

Figure 1: Illustration of a simple 1-DCNN. The input for con-
volutional layer 1 is called the input layerwhile the input for
convolutional layer i with i , 1 is called the activation map.
Neurons in the same block form a neuron-vector. Block col-
ors indicate the similarity of the neuron-vector values.

throughput or latency sensitive domains. Surveillance image analy-

sis, for instance, continuously faces demands for higher processing

throughput as more surveillance images of higher resolutions are

streaming from thousands of cameras into the servers in a growing

speed. In autonomous vehicles, real-time detection of objects is

essential for minimizing the control latency, which is crucial for

driving safety.

In this work, we approach the problem from a different per-

spective. Rather than proposing new hardware or more thorough

ways to apply traditional code optimization techniques (e.g., loop

tiling), we investigate the opportunities of computation reuse in
CNN. Specifically, we propose deep reuse, a new technique for

speeding up CNN inferences by discovering and exploiting deep

reusable computations on the fly. Deep reuse is effective, halving
the inference time of CNNs implemented on state-of-the-art high

performance libraries and compression techniques, while causing

virtually no (<0.0005) accuracy loss. It is meanwhile easy to use, re-

quiring no special hardware support or CNN model changes, ready

to be applied on today’s systems.

Deep reuse centers around similarities among neuron vectors.

A neuron vector is made up of values carried by some consecutive

neurons at a CNN layer. As Figure 1 illustrates, if the layer is an

input image layer, a neuron vector contains the values of a segment

of input image pixels; if the layer is a hidden layer, it contains a

segment in its activation map.

438

https://doi.org/10.1145/000000.000000
https://doi.org/10.1145/000000.000000
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3330345.3330384&domain=pdf&date_stamp=2019-06-26

x11

x21

x31

x41

x12

x22

x32

x43

w12 w11

w22 w21

x
W

group 1: x11, x31, x41 group 3: x12, x22
group 2: x21 group 4: x32, x43

x21w11+x22w21

x31w11+x32w21

x41w11+x42w21

x11w11+x12w21 x11w12+x12w22

x21w12+x22w22

x31w12+x32w22

x41w12+x42w22

Figure 2: An example of the basic formof computation reuse
across neuron vectors in convolution X ×W .

The basic idea of deep reuse is to leverage similarities among

neuron vectors, such that computation results attained on one

neuron vector can be effectively reused for some other neuron

vectors in CNN inferences. Figure 2 illustrates the basic form of

such reuses. The eight 3-neuron vectors, represented by ®xi j , form
four groups. Neuron vectors in a group are similar to each other. In

this example, when the dot product of one of them is reused for all

others in the group (e.g., ®x11 · ®w11 for ®x31 · ®w11 and ®x41 · ®w11), half

of the computations in X ×W could be saved.

Although the basic idea is straightforward to understand, a series

of open questions must be answered for it to work beneficially for

CNN:

• Are there strong similarities among neuron vectors in prac-

tice?

• How to effectively detect the similarities and leverage them?

• Because activation maps change with inputs, finding similar

neuron vectors must be done at inference time. The overhead

is hence essential. How to minimize the overhead while

maximizing the reuse benefits?

• Can the reuse bring significant speedups with no or little

accuracy loss? Can it still apply if the CNNs are compressed?

In this work, we give a systematic exploration to these ques-

tions, and create deep reuse runtime optimization for CNN. The

exploration is five-fold.

First, we conduct a series of measurements and confirm that a

large amount of similarities exists among neuron vectors. Further,

we find that, to fully uncover the similarities, one needs to consider

the relations among neuron vectors not only inside an activation

map, but also across the activation maps generated in different runs

of the CNN.

Second, we experiment with several clustering methods, includ-

ing K-means, Hyper-Cube, and Locality Sensitive Hashing (LSH),

for detecting similarities among neuron vectors to form groups.

The exploration identifies LSH as the most appealing choice for its

low overhead and high clustering quality for neuron vectors.

Third, we investigate three clustering scopes to find deep reuse

opportunities, including neuron vectors within the execution on

one input, within the executions of a batch of inputs, and across

executions in different batches. Through the process, we develop

a cluster reuse algorithm to maximize the benefits of LSH-based

clustering for all inputs.

Fourth, we experiment with two kinds of similarity distances,

and a spectrum of neuron vector granularities by adjusting the

length of neuron-vectors for clustering. We identify angular cosine
distance as a better choice over Euclidean distance for deep reuse,
and unveil the cost-benefit tradeoffs incurred by different neuron

vector granularities.

Finally, we integrate all findings into deep reuse and apply this

method to three popular CNN networks, CifarNet, AlexNet [17]

and VGG-19 [26]. We measure both the end-to-end performance

and accuracy, and provide detailed layer-wise performance analysis

results in various settings. Results show that, deep reuse gives 3.19-
4.32X layer-wise speedups and 1.77-2X whole network speedups

with virtually no (<0.0005) accuracy loss.

The produced deep reuse has several appealing properties: (1) All
its optimizations happen at inference time on the fly, adaptive to

every input to CNN. (2) It is compatible withmodel compression and

other existing CNN optimization techniques. Its reuse across neuron

vectors applies regardless whether themodel is pruned or quantized.

In Section 4.5, we demonstrate that the method remains effective

on compressed CNN models. (3) It is easy to apply, requiring no

special hardware support or CNNmodel changes, and meanwhile, it

is compatible with most exiting hardware or software accelerations,

as its optimized CNN still has matrix multiplications (on smaller

matrices) as its core computations. (4) It offers simple knobs (neuron

vector granularity) allowing users to tune to adjust the tradeoff

between accuracy and time savings. (5) Finally, it brings significant

performance benefits with no or little accuracy loss.

To the best of our knowledge, this is the first study on sys-

tematically leveraging neuron vector-level computation reuses for

speeding up CNN inferences. Our follow-up study, published re-

cently [21], shows that deep reuse can be further extended with

adaptivity to speed up CNN training as well.

2 BACKGROUND AND TERMINOLOGY
CNN is a type of deep neural networks for classification, which

takes in an input (e.g. an image) and predicts a class label for it.

Usually a CNN consists of multiple layers, including convolutional

layers, RELU layers, pooling layers, normalization layers, and fully

connected layers. Each layer has its own input (input image for

the first layer and activation maps for the following layers) and

output, mapping the input to the output through either a linear or

non-linear transformation. Among all these types of layers, the con-

volutional layer is the most compute intensive one and consumes a

large portion of the execution time. Figure 1 illustrates the concepts

of some basic components with a simple 1-D CNN, including the

input layer, the activation maps and the neuron vector.

To further clarify the terms and the computations in CNN, Figure

3 illustrates the computation in a 2D convolutional layer. As shown

in Figure 3 (a), the convolution operation shifts a window across the

input and computes the dot product between elements in a window

and a weight filter in order to produce one neuron in the output.

There could be more than one filter and each filter corresponds

to an output channel. In the example, we have two weight filters

W0 andW1. Therefore, the output has two channels O1 and O2. A

practical implementation for the convolution operation is unfolding

the input into a larger matrix x, putting all weight filters into one

matrixW , and calculating the output matrix y as the dot product

between x andW as y = x ·W . With Figure 3 (b), we see that all

439

Image

 Weight Filters

3

2 1

14 9

11 20

7 9

10 4

2

0

10

3

1

0

1 2

0

5

3 1

0

Output

W0

W1

O0

O1

(a)

0

3

2

1

5

0

3

1

1 0 2

0 1 3 0

2 3 0 1

3 1 2

7

9

10

4

14

9

11

20

3

0

x W y

(b)

Figure 3: Illustration of a 2D convolutional layer. (a) shows
the mechanism of a convolution operation. (b) shows the re-
sulting matrix matrix multiplication between the unfolded
input matrix x and the weight matrixW .

the input neurons in a window in Figure 3 (a) form a row of x and

each weight filter becomes a column ofW . As a result, an output

channel is mapped to a column of y.
Suppose that x has N rows and K columns andW has K rows

andM columns. The computation complexity of the matrix-matrix

multiplication for one convolutional layer is O(N · K ·M). Some-

times, instead of processing one image, a CNN takes a number

of inputs as a batch and processing them together. A batch of Nb
images turns into a larger input matrix with N · Nb rows and K
columns.

Here we list some terminologies that are essential for under-

standing the idea of deep reuse.
Input layer: The input to the first convolutional in a CNN is

called the input layer.
Activation map: The input to the convolutional layers other

than the first one in a CNN is an activation map.
Neuron vector: A number of consecutive neurons in the input

layer or the activation maps.

Batch: A number of inputs that are processed together within a

same iteration is called an input batch.

3 DEEP REUSE FOR CNN
This section starts with the basic idea of deep reuse and the key

conditions for the idea to work beneficially for CNN, then describes

our detailed design of deep reuse, and finally concludes with a

discussion on the properties of deep reuse and its relationship with

some other common CNN optimizations.

x
W

2
3

1

xc yc
W

3

2
2

1

Cluster
Index

construct
output

2
3

1

2
2
3

y
1

cluster on
neuron-vectors

Figure 4: Illustration of using to reduce the computation cost
Numbers 1○, 2○ and 3○ are the cluster IDs.

3.1 Basic Idea and Key Conditions
The basic idea of deep reuse is grouping similar neuron vectors

into clusters and using the cluster centroids as the representatives

for computations. For example, as illustrated in Fig. 4, the original

computation is y = x ·W . With deep reuse, we may consider each

row of x as a neuron vector denoted with xi . First, we group the 4

neuron vectors into 3 clusters and compute the centroid vectors xc .
The centroid vectors are taken as representatives. In this example,

both x2 and x3 are represented by the value of xc,2 (the centroid
vector of cluster 2). The next step is to do the computation using the

centroids yc = xc ·W . The full results are then attained by reusing

the outputs of the centroid vectors for each cluster member; that is,

y2 = y3 = yc,2 in this example.

Computation Savings: In a general case, given an input matrix

x, we could group all the neuron vectors into |C | clusters. The
corresponding centroid vectors form a new matrix xc with size of

|C |×K . Since we only need to compute yc = xc ·W , the computation

complexity becomes O(|C | · K ·M). If |C | << N , we could save a

large number of computations. In the rest of the paper, we use

remaining ratio to indicate the fraction of computations left after

the optimization. It is defined as

Remaining ratio: rc =
|C |
N .

The smaller rc is, the more computations are saved.

Key Conditions: For the idea to actually benefit CNN infer-

ences, three conditions must hold.

(1) There is a substantial amount of strong similarities among

neuron vectors.

(2) The time needed by detecting and leveraging the similarities

should be much smaller than the time savings it brings to

CNN. It is important to notice that deep reuse is an on-line

process. Because activation maps change with each input,

the detection of similarities among the neuron vectors in an

activation map must happen on the fly at the inference time.

The same is the operations for saving the dot products of

cluster centroids and for retrieving them for reuse. There-

fore, it is essential that the overhead of these introduced

440

operations is kept much smaller than the time savings they

bring to CNN.

(3) The reuses cause no or negligible loss of inference accuracy.

The first condition needs empirical studies on actually CNNs

to check. A brief summary of our observations is that on three

popular CNNs (CifarNet, AlexNet, VGG-16) and two datasets (Ci-

far10, ImageNet), our study consistently finds strong similarities

among neuron vectors across every convolution layer both within

the inference on one input and across inputs. We put the details

into Section 4 and will elaborate them later. In this section, we

concentrate on our design of deep reuse for effectively finding the

similarities on the fly and turning them into better inference speed.

3.2 Design of Deep Reuse
To fully capitalize on neuron vector similarities and at the same

time achieve good trade-off between runtime overhead and the

gains, the design of deep reuse employs a set of features, including

an efficient runtime clustering algorithm, the capability in har-

nessing deep reuse opportunities in three scopes, the flexibility in

accommodating various neuron vector granularities, and the use

of a similarity metric that empirically proves effective. We explain

each of the features next.

3.2.1 ClusteringMethod. Choosing an appropriate clusteringmethod

is essential for the effectiveness of deep reuse. First, the method

should be able to give good clustering results for effectively cap-

turing the similarities between neuron vectors. Second, it must be

lightweight such that it does not introduce too much overhead at

runtime.

In this work, we studied several different methods, and identified

Locality Sensitive Hashing (LSH) as the clustering method for deep
reuse.

LSH is widely used as an algorithm for solving the approximate

or exact Nearest Neighbor problem in high dimension spaces [2, 3, 7,

16, 30]. For each input vector x, a hashing function h is determined

by a random vector v in the following way:

hv(x) =

{
1 i f v · x > 0

0 i f v · x ≤ 0

(1)

Given a series of random vectors, LSH maps an input vector into a

bit vector.

Using LSH, input vectors with smaller distances have a high

probability to be hashed into the same bit vector. Thus, when apply-

ing LSH into our context, we consider each bit vector as a cluster

ID and all the neuron vectors mapped to the same bit vector form a

cluster.

Our experiments (Section 4) show that LSH can be applied to

both short and long vectors while achieving good accuracy. The

hashing itself takes some time. With LSH applied, the operations

at a convolution layer now consist of two parts: hashing and the

centroid-weight multiplication. If having |H | hashing functions, the

computation complexity is O(N · K · |H | + |C | · K ·M). Comparing

to the original complexity of O(N · K ·M), LSH brings benefit only

if |H | << M(1 − rc), where rc is the remaining ratio NC/N .

In addition to LSH, we have explored two other clustering algo-

rithms: K-means, and Hyper-Cube clustering. As one of the most

classical clustering algorithm, K-means could give us relatively

good clustering results, which makes it a good choice for studying

the similarity between neuron vectors. However, K-means is not

practically useful for reducing computations because of its large

clustering overhead. Even though in some cases, we could recover

the accuracy of the original network with a very small remain-

ing ratio (rc < 0.1), the computation cost of running K-means

itself is even larger than the original matrix-matrix multiplication.

Therefore, we only use K-means to study the similarity between

neuron-vectors and explore the potential of our approach.

The other alternative method we explored is Hyper-Cube clus-

tering. It regards the data space as a D-dimension hyper-cube, and

clusters neuron vectors by applying simple linear algebra opera-

tions to each of the selected D primary dimensions of each neuron

vector. Let x
(j)
i be the jth (j = 1, 2, · · · ,D) element of a neuron

vector ®xi . Hyper-cube clustering derives a bin number b
(j)
i for it,

equaling

b
(j)
i = B · (x

(j)
i − min

i′≤N
x
(j)
i′)/(max

i′≤N
x
(j)
i′ − min

i′≤N
x
(j)
i′),

where, B is the total number of bins for each dimension. The cluster

ID of the neuron vector ®xi is set as C ®xi = [b
(1)

i ,b
(2)

i , · · · ,b
(D)

i]. The

number of clusters, DB
, could be large, depending on D and B. Our

experiments show that in practice, often many bins are empty and

the total number of real clusters are much smaller than DB
.

Hyper-Cube is lightweight since the cluster assignment is simple

and the complexity of computing the cluster ID for each neuron-

vector is only O(D). However, our experiments (Section 4) show

that this method only works well for short neuron vectors. Reuse

on short neuron vectors involves many adding operations to sum

the partial products together. As a result, computation savings by

Hyper-Cube are less significant than by LSH as our experiments in

Section 4 will report.

LSH has an additional distinctive advantage over the other two

clustering algorithms. It applies seamlessly to all scopes of similarity

detection, as explained next.

3.2.2 Clustering Scopes. To detect the full reuse opportunities

among neuron vectors, deep reuse supports the detection of similar-

ities of neuron vectors in three levels of clustering scopes: within

one input, within a batch of inputs, and across batches.

For the single-input or single-batch level, the detection can be

done simply by applying the clustering algorithm to all the neuron-

vectors within an input or within a batch directly. There are ex-

tra complexities when the scope expands across batches. Because

inputs from different batches come at different times, it is often

impractical to wait for all the inputs to apply the clustering. Deep
reuse addresses the complexity through cluster reuse.

Cluster Reuse: The purpose of cluster reuse is to allow for

neuron-vectors from different input batches to share the computa-

tion results of the same cluster centroid. If K-means or Hyper-Cube

clustering are used, it is hard to reuse the clusters attained on one

batch for another batch as they build different clusters for different

batches. But with LSH, it can be achieved naturally.

With LSH, we can reuse an existing cluster if a new neuron

vector is hashed to a bit vector that has appeared before. No matter

which batches two neuron vectors belong to, if they map to the

same bit vector, they are assigned with the same cluster ID and thus

441

Algorithm 1 Cluster Reuse

1: Input: input matrix x with dimension N × K ; a set of cluster
ID Sid ; the set of outputs Oid corresponding to Sid .

2: Algorithm:
3: for all row vectors xi do
4: Apply LSH to get the cluster id IDi
5: end for
6: for i = 1 to N do
7: if IDi ∈ Sid then
8: reuse Oid=IDi
9: else
10: insert IDi into Sid
11: Oid=IDi = xi ·W
12: insert Oid=IDi into Oid
13: end if
14: end for

1
1
1
2

5

5
74

4
4

3
6

x
W

y

5
6
5
7

3
+

4
4
4

1
1
1
2

xc(1)

xc(3)

xc(2)

1
2

1
2

3
4

3
4

5
6
7

5
6
7

construct
output for sub-matrix

sum to get
final output

y(1)

y(2)

y(3)

+

Figure 5: Illustration of deep reuse with a smaller clustering
granularity (sub-vector clustering).

to the same cluster. We need to use the same family of hash function

H to do the hashing for all the neuron vectors across batches.

Algorithm 1 provides some details on how to reuse the clusters

and the corresponding results with LSH. The algorithm employs

a set Sid to store all previously appeared bit vectors (the cluster

IDs) and an array Oid to store all the outputs computed with those

cluster centroids. When a new batch of inputs come, it first maps all

the neuron vectors to bit vectors using LSH. Then for neuron vectors

mapped to the existing clusters, it can reuse the corresponding

outputs. For those mapped to a new cluster, it first computes the

centroid xc and calculates the output of xc ·W , which are used in

updating Sid and Oid . Let R be the averaged cluster reuse rate for

a batch. The computation complexity becomes O(N · K · |H | + (1 −

R) · |C | ·K ·M) (if one neuron vector is a whole row in an activation

map.) A larger cluster reuse rate helps save more computations.

3.2.3 Clustering Granularity. In the basic scheme shown in Fig-

ure 4, each row vector in matrix X is taken as a neuron vector. Our

experiments indicate that a smaller clustering granularity with a

shorter neuron-vector length can often expose more reuse oppor-

tunities. We refer to the first case as the whole-vector clustering and

the second case as the sub-vector clustering. Deep reuse supports
both cases, allowing a flexible adjustment of the granularity, useful

for users to attain a desired cost-benefit tradeoff.

Fig. 5 illustrates the procedures of deep reuse with sub-vector
clustering. The input matrix x is divided into three sub-matrices

x(1), x(2) and x(3). The neuron vectors used for clustering have a

length of 2. For each sub-matrix, deep reuse groups the neuron

vectors into clusters, and computes the centroids matrix x(i)c and

the corresponding output y(i)c . Then it reconstructs the output y(i)

for each sub-matrix. In comparison to the whole-vector clustering
(Fig. 4), the sub-vector clustering has one more step: the result y is

computed by adding the partial results together, as y = y(1) +y(2) +
y(3).

Since the clustering algorithms usually work better on low di-

mension data, we see better clustering results with a smaller clus-

tering granularity. However, a smaller neuron-vector length results

more neuron vectors, and hence more adding operations. Hence,

it does not always save more computations. Assuming each input

row vector is divided into Nnv neuron vectors and the size of each

neuron vector is L. We have Nnv · L = K ; the computation intro-

duced by all the adding operations is O(N · KL ·M), where K ,M,N
are the length of a weight filter, the number of weights filters and

the number of rows for a batch of inputs. The average number

of clusters when using the sub-vector clustering is |C |nv,avд =
1

Nnv

∑Nnv
j=1 |C |nv, j . So the remaining ratio is rc =

|C |nv,avд
N . The

computation complexity of using the sub-vector clustering becomes

O((rc,nv + 1

L) · N · K · M). With a smaller clustering granularity,

we are more likely to have a smaller rc,nv but a larger
1

L . A bal-

ance between these two parts is needed to minimize the overall

computations.

Deep reuse exposes the clustering granularity as a user definable

parameter. Its default value is the channel size of the corresponding

activation map, but users can set it differently. One possible way

users may use is to simply include it as one of the hyper-parameters

of the CNN to tune during the CNN model training stage.

3.2.4 Similarity Metric. In this work, we experimented with two

different similarity metrics between neuron vectors: the Euclidean

distance and the angular cosine distance. For Euclidean distance, the

clustering result is decided by evaluating

xi − xj

of any two vec-

tors xi and xj. For the angular cosine distance, the vectors are first
normalized (x̂i =

xi
∥xi ∥

) before the distance (

x̂i − x̂j

) is computed.

We find that clustering using angular cosine distance usually per-

forms better than clustering using Euclidean distance (Section 4.3).

Deep reuse hence uses angular cosine distance by default.

3.3 Properties of Deep Reuse
As an optimization technique, deep reuse features several appealing
properties:

First, because it detects similarities on the fly, it is adaptive to

every CNN and each of its inputs. The clusters are not built on offline

training inputs, but formed continuously as the CNN processes its

inputs. This adaptivity helps deep reuse effectively discover reuse

opportunities in actual inferences.

442

Second, deep reuse is generally applicable. It works on CNNs

despite their structural differences or compression status. As Sec-

tion 4 reports, it gives consistent speedups on compressed and

uncompressed CNNs.

Third, it is easy to apply. It does not require special hardware

support or CNN model changes, but at the same time, is compatible

with common CNN accelerators—hardware or software based—

as its optimized CNN still has matrix multiplications as its core

computations.

Fourth, it offers simple knobs, through which users can easily

adjust the tradeoff between accuracy and time savings. The knobs

include the neuron vector granularity and the strength of the clus-

tering (i.e., the size of the hashing function family used in LSH).

Users can simply include these knobs as part of the hyperparame-

ters of the CNN to tune in the training stage.

Finally, it brings significant speedups with no or little accuracy

loss, as Section 4 will report.

4 EXPERIMENTAL RESULTS
To examine the existence of neuron vector similarities and to evalu-

ate the efficacy of the deep reuse, we experiment with three different

networks: CifarNet, AlexNet [17] and VGG-19 [26]. As shown in

Table 1 and the first four columns of Table 2, these three networks

have a range of sizes and complexities. The first network works

on small images of size 32 × 32, the other two work on images of

224 × 224. The Cifar10 datasets
4
has 60000 color images of size

32 × 32. ImageNet
5
is a large dataset containing over 14 million

images of size 224 × 224 in 1000 classes. Both of the datasets are

widely used for studying CNN performance. For all the experiments,

the input images are randomly shuffled before being fed into the

network. To fully demonstrate the potential of our optimization,

we study the performance of deep reuse on both GPU servers and

mobile devices.

The baseline network implementation we use to measure the

speedups comes from the slim model
6
in the TensorFlow frame-

work
7
. We implement our optimized CNNs by incorporating deep

reuse into the TensorFlow code for GPU experiments and Tensor-

Flow Lite
8
code for mobile device experiments. For the set of GPU

experiments, both the original and our optimized CNNs automati-

cally leverage the state-of-the-art GPU DNN library cuDNN
9
and

other libraries that TensorFlow uses in default. The experiments

are done on a machine with an Intel(R) Xeon(R) CPU E5-1607 v2

and a GTX1080 GPU. For the set of mobile device experiments,

we convert the models to Tensorflow Lite files and run them on

a Huawei SE mate mobile phone, which has a Huawei HiSilicon

KIRIN 659 processor and a 4 GB memory.

On GPUs, we first apply our approach to only a single convo-

lutional layer to measure the single layer speedups and the cor-

responding accuracy for each of the networks. Then we measure

the end-to-end speedups for the full networks. The neuron-vector

length L and the number of hashing functions H used in deep reuse

4
https://www.cs.toronto.edu/ kriz/cifar.html

5
http://image-net.org/about-overview

6
https://github.com/tensorflow/models/tree/master/research/slim

7
https://github.com/tensorflow/tensorflow

8
https://www.tensorflow.org/lite/

9
https://developer.nvidia.com/cudnn

Table 1: Benchmark networks

Network Dataset # ConvLayers image order

CifarNet Cifar10 2 random

AlexNet ImageNet 5 random

VGG-19 ImageNet 16 random

are determined for each convolution layer as part of the hyper-

parameters tuning process of CNN training. Sections 4.1 and 4.2

presents the speedup results. In Section 4.3, we report some insights

on how different scopes, granularities and similarity distances af-

fect the performance of the deep reuse in terms of the rc−accuracy
relationship. (Here rc = |C |/N is the remaining ratio as defined in

Section 3.1.)

Section 4.5 reports the speedups when deep reuse applies to CNNs
after model compression [14], demonstrating its complementary

relations with model quantization and compression. The speedups

achieved on mobile device for each convolutional layer of CifarNet

and AlexNet are presented in section 4.6. Finally, section 4.4 gives

a head-to-head comparison with perforated CNN, the work most

closely related to this study.

All timing results are the average of 20 repeated measurements;

variances across repeated runs are marginal unless noted otherwise.

4.1 Single Layer Speedup
For every single convolutional layer of the three networks, we run

experiments using all the three clustering methods with a range

of different clustering configurations and collect the rc−accuracy
relationship. For the purpose of study, for both of the Hyper-Cube

and LSH clustering methods, we select the configurations that can

recover the accuracy while reducing the maximum amount of com-

putations according to the computation complexity analysis. We

measure the speedups of every single layer using these configura-

tions.

For example, when using LSHwith sub-vector clustering, the com-

putation complexity isO(N ·K · |H | + rc ·N ·K ·M + 1

L ·N ·K ·M).

The number of hashing functions |H | and the neuron-vector length

L are the parameters for clustering configurations. For each pair of

the |H | and L, there is a corresponding rc . Given the rc−accuracy
relationship, we find the |H | and L pairs that can recover the accu-

racy or give the highest accuracy if no configurations recover the

full accuracy. Among these configurations, we then use the one that

gives the maximum computations savings (M/(|H | + rc ·M +M/L))
to measure the speedup.

Speedups from intra-batch reuse. Columns 5−11 in Table 2 report

the speedups that the reuse method produces for each convolutional

layer when the reuse applies within a batch (i.e., cluster reuse is
not used). On average, the method obtains up to 1.63X speedups

with Hyper-Cube clustering and 2.41X with LSH clustering. The

speedups come with no accuracy loss.

The result shows that on all the layers except the first convo-

lutional layer of VGG-19, LSH brings larger speedups than the

Hyper-Cube clustering does. Since LSH recovers the accuracy with

longer neuron-vectors as shown in column 9 of Table 2, it introduces

443

Table 2: Single Layer speedups. K is the kernel size andM is the number of weight filters.Tb is the running time of the baseline
model. L refers to the neuron-vector length. rc = |C |/N is the remaining ratio.

Network ConvLayer K M Tb (µs)
No Cluster Reuse Cluster Reuse

HyperCube LSH LSH

L rc speedup h L rc speedup speedup

CifarNet

conv1 75 64 286 3 0.03 1.57X 15 5 0.01 1.58X 1.59X

conv2 1600 64 139 10 0.11 1.68X 10 10 0.01 2.51X 2.58X

avg 1.63X 2.05X 2.09X

AlexNet

conv1 363 64 279 11 0.14 0.94X 16 11 0.13 1.63X 1.96X

conv2 1600 192 269 5 0.11 2.13X 15 20 0.18 2.84X 4.23X

conv3 1728 384 144 6 0.11 1.22X 15 12 0.15 2.58X 3.92X

conv4 3456 384 137 6 0.13 1.14X 15 12 0.17 2.76X 3.99X

conv5 3456 256 115 6 0.11 1.14X 15 24 0.15 2.23X 4.12X

avg 1.31X 2.41X 3.64X

VGG-16

conv1-1 27 64 3535 9 0.05 2.89X 20 9 0.08 2.35X 2.83X

conv1-2 576 64 10023 6 0.05 1.37X 20 16 0.11 2.06X 2.59X

conv2-1 576 128 3880 3 0.03 1.07X 18 16 0.13 1.83X 2.48X

conv2-2 1152 128 6143 3 0.03 0.91X 18 16 0.11 1.95X 2.49X

conv3-1 1152 256 3176 3 0.02 0.88X 16 16 0.09 2.22X 3.39X

conv3-2 2304 256 5680 3 0.02 0.89X 16 16 0.11 2.03X 3.38X

conv3-3 2304 256 5801 3 0.02 0.84X 16 16 0.06 2.79X 3.31X

conv3-4 2304 256 5853 3 0.02 0.85X 16 16 0.09 2.52X 3.40X

conv4-1 2304 512 2943 3 0.03 0.91X 15 16 0.05 3.19X 4.05X

conv4-2 4068 512 5333 3 0.03 0.85X 15 24 0.1 2.85X 4.32X

conv4-3 4068 512 5373 3 0.03 0.92X 15 24 0.11 2.37X 4.16X

conv4-4 4068 512 5439 3 0.03 0.89X 15 24 0.13 2.44X 4.13X

conv5-1 4068 512 1688 3 0.02 0.88X 12 24 0.2 1.86X 3.26X

conv5-2 4068 512 1689 3 0.02 0.91X 12 24 0.18 1.81X 3.28X

conv5-3 4068 512 1687 3 0.02 0.91X 12 24 0.18 1.81X 3.26X

conv5-4 4068 512 1693 3 0.02 0.85X 12 24 0.16 2.02X 3.31X

avg 1.05X 2.26X 3.35X

less adding operations, making deep reuse more efficient. Therefore,

LSH always has a higher remaining ratio and gives more speedups.

Extra Benefits from inter-batch Cluster Reuse Column 12

in Table 2 shows that cluster reuse could bring even more speedups.

Although it introduces small accuracy loss (less than 3% if only

quantizing one of the convolutional layers), it is still attractive to

tasks that could tolerate such accuracy loss.

Fig 6 shows the cluster reuse rate (R) for each convolutional

layer of CifarNet across batches. The reuse rate (the fraction of

neuron-vectors in current batch that falls into the existing clusters)

increases from 0 to around 0.98 after processing 20 batches. We also

observed similar patterns in the convolutional layers of AlexNet

and VGG-19. The reuse rates all reach over 0.95. This high cluster

reuse rate is the main reason for the large increases of the speedups

(from an average of 2.4X to 3.6X for AlexNet and from an average

of 2.3X to 3.4X for VGG-19).

For CifarNet, cluster reuse brings only modest extra speedups. It

is because the remaining ratio of the two convolutional layers are

already very small (about 0.01). There are few computations left

that can be saved by cluster reuse in this case.

Based on the previous computational complexity analysis, the

computations being saved by cluster reuse-based LSH isM/(|H | +

R · rc ·M +M/L). Therefore, when rc plays a more major role than

|H | and M/L in the computational complexity, cluster reuse in-

creases speedups more. This conclusion is confirmed by the results

in Table 2.

4.2 End-to-End Speedup and Runtime
Overhead

In measuring the end-to-end speedups of the full network, for better

accuracy, we use LSH-based deep reuse without cluster reuse. We

determine the clustering configurations of each convolutional layer

in the network by simply adopting the configurations from the

single layer experiments since they cause no accuracy loss.

As shown in Table 3, our approach obtains up to 2X speedups

on the end-to-end running time of the full network, including all

the runtime overhead of deep reuse. Figure 7 shows the execution
444

0 20 40 60 80 100
batch id

0.0

0.2

0.4

0.6

0.8

1.0

cl
us

te
r r

eu
se

 ra
te

conv1
conv2

Figure 6: Cluster reuse rate in CifarNet

Table 3: End-to-End Full Network Performance (accuracy
loss ∆Acc, average speedup S and standard derivation of
the speedups σ (S)) and overhead (applying LSH and recon-
sturcting the output matrix) with deep reuse. (Negative er-
rors means improvements of accuracy)

Network Acc
Performance Overhead

∆Acc S LSH Recons

CifarNet 0.7892 -0.0011 1.75X 43.6% 45.8%

AlexNet 0.5360 -0.0002 2.02X 29.7% 35.3%

VGG-19 0.7118 +0.0005 1.89X 23.9% 28.8%

time of both the baseline version and the deep reuse version of

the three networks. As indicated by the r_c column in Table 2,

deep reuse needs to conduct only 1-18% of the original convolution

calculations. The end-to-end speedups are not as much for two

reasons. First, besides convolution layers, there are other layers (e.g.,

ReLU, pooling) in a CNN. Second, as a runtime technique, deep reuse
introduces extra operations. There are mainly two kinds of extra

operations: LSH, and the reconstruction of the activation maps after

the optimized convolution. As the convolutions are dramatically

accelerated, these two kinds of operations become a major portion

of the end-to-end time, as shown in Table 3. A potential direction to

explore in the future is to further accelerate these operations (e.g.,

through hardware support), which may materialize the benefits of

deep reuse even more.

Table 3 also reports the overall prediction accuracies of the net-

work inferences and the differences from those by the original

networks. The maximum extra error our technique causes is 0.0005,

marginal compared to the 54-78% overall inference accuracies.

4.3 Insights on Clustering Scope, Granularity
and Similarity Distance

Experiments show that we could recover the accuracy with a small

remaining ratio rc . This validates the existence of substantial neuron
vector similarities and their potential for effective reuse. Besides

clustering methods, clustering scope, granularity and similarity

distance also affect the efficacy of deep reuse in detecting such

similarities.

baseline deep reuse
CifarNet

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

t(m
s)

baseline deep reuse
AlexNet

1.0

1.2

1.4

1.6

1.8

2.0

2.2

baseline deep reuse
VGG-19

50

60

70

80

90

100

Figure 7: Execution time of baseline and deep reuse version
for CifarNet, AlexNet and VGG-19.

To understand the influence, we conducted a series of experi-

ments. Because this part of exploration is for gaining the insights of

the relations between these factors and the full reuse opportunities

(rather than for runtime inferences), it is important to minimize

the influence from other factors (e.g., clustering errors), whereas

runtime clustering overhead is not a concern. Therefore, we use

the most accurate clustering method, K-means, for neuron vector

clustering in this part of experiments. Specifically, we take the

rc−accuracy results of applying K-means based clustering on Cifar-

Net for a focused study. (Given the same rc value, a higher accuracy
means better identification of the similarities.)

Scope: Section 4.1 has already reported the substantially more

saving opportunities that inter-batch reuse can bring and the corre-

sponding speedups. In this part, we provide a detailed study on the

effects when the reuse scope expands from the inference on one

image to inferences across images in a batch.

Our discussion draws on the detailed results on the first two

convolution layers of CifarNet, as shown in the two graphs in Fig. 8,

where, "image" is for reuse within the run on each individual image,

while "batch" is for cross images in a batch. In both graphs, the

batch-level clustering gives the highest accuracy for a given rc
(remaining ratio), for the more reuse opportunities the clustering

brings. The curves of the batch-level clustering are shorter than the

image-level ones because when rc exceeds 0.05, in the batch-level

case, K-means clustering runs out of memory.

Granularity: To study how granularity affects the performance,

we experiment with the whole-vector clustering and the sub-vector
clusteringwith a neuron-vector size of 25 for both the convolutional
layers of CifarNet. In the first layer (Fig. 8a), the sub-vector cluster-
ing doesn’t perform as well as the whole-vector clustering when

the scope is small. However, when applying the sub-vector cluster-
ing with a larger scope, it becomes the best. For the second layer

(Fig. 8b), clustering at a smaller granularity always gives better

results.

Distance: Fig. 8a shows that on the first layer, clustering based

on angular cosine distance is consistently better in identifying the

similarities compared to clustering on Euclidean distance. For the

second layer (Fig. 8b), the same results hold for all the experiments

except one. When performing the whole-vector clustering within

a single input, using the angular cosine distance gives a slightly

445

0.0 0.2 0.4 0.6 0.8 1.0
rc (remaining ratio)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu
ra
cy

image+whole-vector+Euclidean
image+whole-vector+angular
image+sub-vector+Euclidean
image+sub-vector+angular batch
+whole-vector+Euclidean batch
+whole-vector+angular batch+sub-
vector+Euclidean
batch+sub-vector+angular

(a) conv1

0.0 0.2 0.4 0.6 0.8 1.0
rc (remaining ratio)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

image+whole-vector+Euclidean
image+whole-vector+angular
image+sub-vector+Euclidean
image+sub-vector+angular
batch+whole-vector+Euclidean
batch+whole-vector+angular batch
+sub-vector+Euclidean
batch+sub-vector+angular

(b) conv2

Figure 8: Comparison of the rc−accuracy relationships
on CifarNet at different configurations in scopes (‘image’,
‘batch’), granularities (sub-vector or whole-vector), and dis-
tances (angular or Euclidean). The legend has the pattern of
scope+granularity+distance.

worse results than using the Euclidean distance. However, the best

clustering quality on the second convolutional layer is still achieved

by the angular cosine distance.

In a nutshell, as indicated in Fig. 8, a combination of larger scope

(batch-level clustering), smaller granularity (sub-vector clustering)
and angular cosine distance gives the best clustering results, bet-

ter accuracy and smaller rc . The same conclusion holds for the

convolutional layers of the other two CNNs.

4.4 Comparison with Perforated CNN
The work most closely related to this study is the proposal of perfo-

rated CNN [10]. It proposes to reduce computations by performing

calculations with a small fraction of input patches. The evaluation

of the skipped positions is done via interpolation on the computed

results. Even though it may avoid some computations, it does not

capitalize on dynamically discovered similarities of neuron vectors,

but uses some pre-fixed perforation mask to pick the input rows

for computations. The corresponding input rows chosen by their

perforation mask are fixed for all inputs.

Deep reuse offers a more systematic way to identify computations

to skip, adaptive to each input and every run. It enables neuron

vector sharing and chooses the shared centroid vectors based on

the similarities of neuron vectors measured at inference time. These

shared vectors vary from input to input, and from run to run. In

addition, it reuses the clusters and computation results from pre-

vious batches to further reduce the computation cost. Moreover,

perforated CNN requires a fine-tuning process for the quantized

model to recover the prediction accuracy. The use of deep reuse
needs no such fine-tuning process.

We provide a quantitative comparison. As mentioned, perfo-

rated CNN causes significant accuracy loss and hence requires a

fine-tuning process to recover the prediction accuracy. In our com-

parison, we use the most accurate cases reported in the previous

work [10]. As Table 4 reports, deep reuse achieves much better accu-

racies in all the cases. It meanwhile saves many more computations

(3.3X versus 2.0X for AlexNet and 4.5X versus 1.9X for VGG) com-

pared to the numbers reported in the previous work [10]. We cannot

compare the execution times with the previous paper because the

previous implementation was on a different DNN framework and

their code is not available to us. However, given that the runtime

overhead of our method is small as the previous subsections have

shown, we expect that our method shall outperform perforated

CNN in a degree similar to the rates in computation savings. The

results confirm the significant benefits from the more principled

approach taken by deep reuse for saving computations.

4.5 Results on Compressed Models
Network compression is a common method for minimizing the

size of CNN models. Through quantization, pruning or compact

network designs [14, 34], a CNN model can become much smaller

without much quality loss. Deep reuse is complementary to these

techniques in the sense that it tries to minimize CNN computations

through online computation reuse rather than model size through

offline weights compression. It can be applied to a compressed

model to speed up its inference, just as how it helps uncompressed

models.

Table 5 reports the speedups when we apply deep reuse to the

compressed AlexNet model from an earlier work [14]. Deep reuse
gives up to 3.64X speedups on the convolutional layers, quantita-

tively demonstrating its complementary relationship with model

compression, as well as its general applicability.

4.6 Speedup on Mobile Devices
On mobile devices, the computation resources are limited. There-

fore, it is more critical to have an optimized CNN inference algo-

rithm which saves both the computation time and energy consump-

tion. We demonstrate the potential of deep reuse by measuring the

performance of CifarNet and AlexNet on a mobile phone. The size

of the VGG-19 model is too large to run on the mobile device. As

shown in Table 6, deep reuse achieves an average of 2.12X speedup

for CifarNet and 2.55X for AlexNet. The speedups are a little bit

larger comparing to those on a GPU for most of the layers.

5 RELATEDWORK
This section discusses other related works beside the aforemen-

tioned Perforated CNN [10].

446

Table 4: Comparison with Perforated CNN (deep reuse needs no fine tuning)

Method Network Computation Accuracy loss

Savings before fine-tuning after fine-tuning

Perforated CNN

AlexNet 2.0X 8.5 2

VGG 1.9X 23.1 2.5

Deep Reuse

AlexNet 3.3X -0.02 -

VGG 4.5X 0.05 -

Table 5: Speedup of applying deep reuse to the compressed
AlexNet generated by pruning and weight quantization.

Layer conv1 conv2 conv3 conv4 conv5

speedup 1.81X 3.29X 3.64X 3.45X 2.71X

Table 6: End-to-End Network Speedups for CifarNet and
AlexNet on themobile device.Tb is the running time of base-
line model. S is the average speedup and σ (S) is the standard
derivation of the speedups.

Network CTb (ms) S σ (S)

CifarNet 29.42 2.12X 0.163

AlexNet 326.15 2.55X 0.336

Network quantization [5, 14, 34, 37] also uses clustering, but

mostly for offline compression of model parameters rather than

online computation reuse on activation maps. RedCNN [33] is an-

other work trying to reduce the model size. It does it by applying

a transform matrix to the activation maps of each layer and fine

tuning the network. It also works offline, working during the train-

ing time. In contrast to these techniques, deep reuse is an online

technique, with a purpose for speeding up CNN inferences. It is

complementary to those offline model compression techniques, as

Section 4.5 has empirically shown.

LSH, as a cluster method, has been used in prior CNN stud-

ies [27, 28, 31] as a algorithm level optimization. But their purposes

differ from ours. For example, in the Scalable and Sustainable Deep

Learning work [28], the authors apply LSH to both the weight vec-

tor and the input vector, trying to find collisions between a pair of

weight and input vectors, which are regarded as a weight-input pair

that may give the largest activation. In our work, we use LSH for

efficiently detecting similarities among neuron vectors to expose

reuse opportunities.

There are a bunch of work on hardware DNN accelerators. Scapel

[35] takes advantage of both the CNN sparsity and the hardware

parallelism by customizing the DNN pruning to the underlying

hardware with SIMD-aware weight and node pruning. EIE [13]

uses an energy-efficient engine designed specifically to compressed

CNN model. It performs well by leveraging the sparsity of both

weight and input, fetching the small model from SRAM instead of

DRAM, and taking advantage of weight sharing and quantization.

DaDianNao [4] presents a multi-chip machine learning architecture

which achieves large speedups and significant energy savings. It ex-

plores the intra-layer parallelism in a CNN with a tiled architecture

and on-chip eDRAM. FPGA based accelerators [1, 19, 22, 24, 25, 36]

also show great potential on accelerating DNN inference. However,

all these work obtain speedups with special purpose hardware sup-

port. On the contrast, deep reuse is a pure software solution and it

doesn’t rely on any specific hardware design.

As the neural networks go deeper and larger, some recent stud-

ies focus on optimizing the DNN memory usage. Gao et al. [11]

proposes Spotlight, a reinforcement learning algorithm, to find an

optimal device placement for training DNNs on a mixture of GPU

and CPU devices. The dynamic GPU memory scheduling runtime

SuperNeuron [32] enables the network training far beyond the

GPU DRAM capacity by reducing the network-wide peak memory

usage with liveness analysis, unified Tensor Pool and Cost-Aware

Recomputation. Other work, such as AccUDNN [12] and TFLMS

[18], try to speedup the training of very deep DNN by offloading

some data to host memory with either a memory optimizer or a

revised computation graph. All these work help relieve the pressure

on GPU memory caused by large models.

There are some studies on how to train a deep neural network ef-

ficiently with the use of distributed environments [6, 8, 20]. Pittman

and others [23] create a flexible framework for ensemble DNN train-

ing on clusters. Google’s DistBelief [8] is a software framework that

can accelerate the training of a single large network by scaling it to

over thousands of machines. Li et al. [20] propose a distribute frame-

work to distribute both the data and workloads over a number of

worker nodes and use the server node to maintain a set of globally

shared parameters. The framework provides flexible consistency,

elastic scalability and fault tolerance Another recent work [6] imple-

ments a data-parallel algorithm that is designed specifically to scale

well on a large number of loosely connected processors and tests

the implementation on the IBM Blue Gene/Q cluster. Comparing to

these frameworks, deep reuse aims on accelerating CNN on a single

machine without using extra resources.

This current work focuses on CNN inferences. Our follow-up

study, published recently [21], shows that deep reuse can be ex-

tended with adaptivity to substantially accelerate CNN training as

well.

6 CONCLUSION
This paper has presented deep reuse as a technique to reduce com-

putation cost of CNN inference. Experiments show that massive

447

similarities exist among neuron vectors within and across CNN

inferences. Deep reuse is designed to efficiently discover such simi-

larities on the fly and turn them into reuse benefits for CNN infer-

ences. It produces up to 3.19X speedups without accuracy loss at

a convolutional layer, and up to 4.32X speedups when allowing a

3% accuracy loss. It speeds up the full network by up to 2X with

virtually no (<0.0005) accuracy loss. Deep reuse features the use of
an efficient clustering algorithm, a capability to harness deep reuse

opportunities in three levels of scopes, a flexibility in accommodat-

ing various neuron vector granularities, and a compatibility with

common model compression and other existing optimizations. It

shows the promise to serve as a ready-to-use general method for

accelerating CNN inferences.

ACKNOWLEDGMENT
This material is based upon work supported by the National Sci-

ence Foundation (NSF) under Grant No. CCF-1525609, CNS-1717425,

CCF-1703487. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors and

do not necessarily reflect the views of NSF.

REFERENCES
[1] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer

CNN Accelerators. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture.

[2] Alexandr Andoni and Piotr Indyk. 2006. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on. 459–468.

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig

Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In Proceedings
of the 28th International Conference on Neural Information Processing Systems -
Volume 1. MIT Press, Cambridge, MA, USA, 1225–1233.

[4] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,

Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A

Machine-Learning Supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture.

[5] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. 2017. Towards the Limit of

Network Quantization. In 5th International Conference on Learning Representa-
tions.

[6] I. Chung, T. N. Sainath, B. Ramabhadran, M. Picheny, J. Gunnels, V. Austel, U.

Chauhari, and B. Kingsbury. 2017. Parallel Deep Neural Network Training for

Big Data on Blue Gene/Q. IEEE Transactions on Parallel and Distributed Systems
(2017).

[7] MayurDatar, Nicole Immorlica, Piotr Indyk, and Vahab S.Mirrokni. 2004. Locality-

sensitive Hashing Scheme Based on P-stable Distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry. ACM, New York, NY,

USA, 253–262.

[8] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.

Le, Mark Z. Mao, MarcâĂŹAurelio Ranzato, Andrew Senior, Paul Tucker, Ke

Yang, and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In NIPS.
[9] L. Du, Y. Du, Y. Li, J. Su, Y. Kuan, C. Liu, and M. F. Chang. 2018. A Reconfig-

urable Streaming Deep Convolutional Neural Network Accelerator for Internet

of Things. IEEE Transactions on Circuits and Systems I: Regular Papers (2018).
[10] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet Kohli. 2016.

PerforatedCNNs: Acceleration through elimination of redundant convolutions.

In Advances in Neural Information Processing Systems. 947–955.
[11] Yuanxiang Gao, Li Chen, and Baochun Li. 2018. Spotlight: Optimizing Device

Placement for Training Deep Neural Networks. In Proceedings of the 35th Inter-
national Conference on Machine Learning.

[12] Jinrong Guo, Wantao Liu, Wang Wang, Qu Lu, Songlin Hu, Jizhong Han, and

Ruixuan Li. [n. d.]. AccUDNN: A GPU Memory Efficient Accelerator for Training

Ultra-deep Deep Neural Networks. journal=arXiv preprint arXiv:1901:06773, year
= 2019 ([n. d.]).

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,

and William J Dally. 2016. EIE: efficient inference engine on compressed deep

neural network. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on.

[14] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).
[15] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. 2016. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016).
[16] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards

removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-

fication with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1.
Curran Associates Inc., USA, 1097–1105.

[18] Tung D. Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. [n. d.].

TFLMS: Large Model Support in TensorFlow by Graph Rewriting. journal=arXiv
preprint arXiv:1807.02037, year = 2018 ([n. d.]).

[19] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. 2016.

A high performance FPGA-based accelerator for large-scale convolutional neural

networks. In 2016 26th International Conference on Field Programmable Logic and
Applications (FPL).

[20] Mu Li. 2014. Scaling Distributed Machine Learning with the Parameter Server.

In Proceedings of the 2014 International Conference on Big Data Science and Com-
puting.

[21] Lin Ning, Hui Guan, and Xipeng Shen. 2019. Adaptive Deep Reuse: Accelerating

CNN Training on the Fly. In Proceedings of the 35th IEEE International Conference
on Data Engineering.

[22] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal. 2013. Memory-centric

accelerator design for Convolutional Neural Networks. In 2013 IEEE 31st Interna-
tional Conference on Computer Design (ICCD).

[23] Randall Pittman, Hui Guan, Xipeng Shen, Seung-Hwan Lim, and Robert M. Patton.

2018. Exploring Flexible Communications for Streamlining DNN Ensemble Train-

ing Pipelines. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis.

[24] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H.

Esmaeilzadeh. 2016. From high-level deep neural models to FPGAs. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[25] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Maximizing CNN

Accelerator Efficiency Through Resource Partitioning. In Proceedings of the 44th
Annual International Symposium on Computer Architecture.

[26] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks

for large-scale image recognition. In 3rd International Conference on Learning
Representations.

[27] Ryan. Spring and Anshumali Shrivastava. 2017. A New Unbiased and Efficient

Class of LSH-Based Samplers and Estimators for Partition Function Computation

in Log-Linear Models. arXiv preprint arXiv:1703.05160 (2017).
[28] Ryan Spring and Anshumali Shrivastava. 2017. Scalable and Sustainable Deep

Learning via Randomized Hashing. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, Halifax,

NS, Canada, 445–454.

[29] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma

Vrudhula, Jae-sun Seo, and Yu Cao. 2016. Throughput-Optimized OpenCL-based

FPGAAccelerator for Large-Scale Convolutional Neural Networks. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. New York, NY, USA.

[30] Kengo Terasawa and Yuzuru Tanaka. 2007. Spherical lsh for approximate nearest

neighbor search on unit hypersphere. In Workshop on Algorithms and Data
Structures. 27–38.

[31] Sudheendra Vijayanarasimhan, Jonathon Shlens, Rajat Monga, and Jay Yagnik.

2014. Deep Networks With Large Output Spaces. arXiv preprint arXiv:1412.7479
(2014).

[32] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,

Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU Memory

Management for Training Deep Neural Networks. (2018).

[33] Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao. 2017. Beyond Filters: Com-

pact Feature Map for Portable Deep Model. In Proceedings of the 34th International
Conference on Machine Learning. Sydney, Australia.

[34] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.

Quantized Convolutional Neural Networks forMobile Devices. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA.

[35] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,

and Scott Mahlke. 2017. Scalpel: Customizing DNN Pruning to the Underlying

Hardware Parallelism. In Proceedings of the 44th Annual International Symposium
on Computer Architecture.

[36] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.

2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural

Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays.

[37] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard. 2017. Adaptive

Quantization for Deep Neural Network. ArXiv e-prints (dec 2017).

448

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Deep Reuse for CNN
	3.1 Basic Idea and Key Conditions
	3.2 Design of Deep Reuse
	3.3 Properties of Deep Reuse

	4 Experimental Results
	4.1 Single Layer Speedup
	4.2 End-to-End Speedup and Runtime Overhead
	4.3 Insights on Clustering Scope, Granularity and Similarity Distance
	4.4 Comparison with Perforated CNN
	4.5 Results on Compressed Models
	4.6 Speedup on Mobile Devices

	5 Related Work
	6 Conclusion
	References

