Check for
Updates

Improv: Teaching Programming at Scale via Live Coding

Charles H. Chen
UC San Diego
La Jolla, CA, USA
hsc052 @ucsd.edu

ABSTRACT

Computer programming instructors frequently perform live
coding in settings ranging from MOOC lecture videos to on-
line livestreams. However, there is little tool support for this
mode of teaching, so presenters must now either screen-share
or use generic slideshow software. To overcome the limita-
tions of these formats, we propose that programming environ-
ments should directly facilitate live coding for education. We
prototyped this idea by creating Improv, an IDE extension for
preparing and delivering code-based presentations informed
by Mayer’s principles of multimedia learning. Improv lets
instructors synchronize blocks of code and output with slides
and create preset waypoints to guide their presentations. A
case study on 30 educational videos containing 28 hours of
live coding showed that Improv was versatile enough to repli-
cate approximately 96% of the content within those videos. In
addition, a preliminary user study on four teaching assistants
showed that Improv was expressive enough to allow them to
make their own custom presentations in a variety of styles and
improvise by live coding in response to simulated audience
questions. Users mentioned that Improv lowered cognitive
load by minimizing context switching and made it easier to
fix errors on-the-fly than using slide-based presentations.

INTRODUCTION

A popular way to teach computer programming, both online
and in-person, is for the instructor to write snippets of code,
run it, and then explain what their code does. By livestream-
ing or recording these performances, instructors can easily
share technical insights with thousands of viewers on learning
at scale platforms such as MOOCs, YouTube, and webinars.
This sort of live coding now takes place in diverse settings:

o Instructors write code live in front of their classrooms.
Computing education researchers recommend this as a best
practice since students can see their instructors’ thought
processes, watch how mistakes are made and corrected,
and ask clarifying questions at each step [18, 27, 30, 35].

o Similarly, instructors of online courses broadcast their live
programming in webinars (“web seminars”). They also
record these sessions as videos for MOOCs and YouTube.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

L@S ’19, June 24-25, 2019, Chicago, IL, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6804-9/19/06. .. $15.00

DOIL: https://doi.org/10.1145/3330430.3333627

Philip J. Guo
UC San Diego
La Jolla, CA, USA
pg@ucsd.edu

e Programmers write code live on stage during industry con-
ference presentations, which are recorded to share with the
wider professional community. They like doing live demos
to convey a greater sense of authenticity and realism [35].

e Programmers in domains such as game development
livestream their coding sessions on sites such as Twitch.tv
and Livecoding.tv to educate their online fans [21, 31].

Despite the prevalence of live coding for education, current
programming environments (IDEs) provide no support for
this type of activity. Thus, presenters usually end up screen-
sharing and recording their entire desktop displays. This
setup is cumbersome since there are lots of extraneous on-
screen components that are not relevant to the code-related
ideas that the presenter is trying to convey at each moment.
Also, it can be awkward to switch contexts in the middle of
a live demo by moving and flipping between windows on the
desktop. Finally, it is hard to present higher-level concepts
such as topic outlines or algorithm descriptions by sharing
only the contents of one’s code development environment.

An alternative format is for the presenter to copy-and-paste
all of their relevant code and output snippets into pre-made
PowerPoint slides. This format has the advantage of greater
structure and predictability. However, slide presentations can
appear stilted, inauthentic, and not in sync with real working
code. Also, presenters cannot as easily improvise in response
to audience questions.

To overcome the limitations of these existing presentation
formats, we propose that programming environments (IDEs)
should directly facilitate teaching via live coding. To proto-
type this idea, we developed a system called Improv that helps
instructors prepare and deliver code-based presentations en-
tirely from within their IDE. Its design was informed by our
formative studies and by Mayer’s principles of multimedia
learning [25] from educational psychology. Figure 1 shows
an example usage scenario for Improv:

1. The instructor writes and tests their code in any language
normally within the Atom IDE [2]. Improv extends Atom
with shortcuts that allow them to select any piece of code
or terminal output in order to embed a live synced view of
that snippet into PowerPoint-style slides.

2. Improv also extends Atom with an embedded slide presen-

tation editor to drag-and-drop components into each slide.
Supported components include: live code and output selec-
tions from their IDE, text annotations, images, and iframe-
embedded contents from any webpage.

https://doi.org/10.1145/3330430.3333627
Twitch.tv
Livecoding.tv
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3330430.3333627&domain=pdf&date_stamp=2019-06-24

Atom IDE Terminal
maestro-editor-view, ® %
use babel’
@jsx

const etch = require(‘etch’);

export default class Maestr r {
constructor(props, children) {|
this.props = props;
etch.initialize(this);

3

render() {
return (

<di tro_docker">

ro_cur_waypoint” class="maestro_view_port” innerHTML={th

next_waypoint” class="maestro_view_port" innerHTML={t

button_docker">

t" class="maestro_button btn btn-def
</div>

<div id="maestro_button_right">
Extract blocks of code, text, and terminal outputs
from within Atom IDE to embed into your slides.

PowerPoint-style slides

output block

Code block

Code block

Importing Modules Syntax

nandNotFoundEx - const etch = require('etch’) l

NodeJS Basics

>t Modify HTMLFile
ReferenceError: tis not defined _—
> estrawr 4 <divid="maestro_docker">
ReferenceError: estrawr is not defined .;Q <divid="maestro_cur_waypoint" class="ma
4
5

> rawr
ReferenceError: rawr is not defined
>meow

ReferenceErrGF: meow is not defined
*Steve

ReferenceError: steve is not defined

<divid="maestro_next_waypoint" class="m:
<divid="maestro_button_docker"

> console.log("test");
test

>

Add text annotations, images, and embedded '\
webpages into your slides. When you perform I\;/ngage
live coding in Atom, the code and terminal output embed
blocks within slides will update in real time.

Figure 1: Improv augments the Atom IDE with UI affordances for preparing and delivering live coding presentations. The screenshots above show the
Atom IDE (left) and the slide viewer that the audience sees (right). Figure 3 shows Improv’s slide editor, and Figure 4 shows its code waypoints feature.

3. The instructor plans their live demo by creating optional
code waypoints and subgoal labels [14] for what code they
plan to write at each step. These serve as scaffolding during
the presentation so that they can remain on course and so
that the audience also knows what to expect at each step.

4. When the instructor presents live, the audience always sees
a fullscreen view of the slides instead of the entire com-
puter desktop (right part of Figure 1). As they write and
run code within Atom, their audience sees the embedded
code and output snippets update in real time on slides.

5. If they need to improvise in response to audience questions,
they can edit code and slides on-the-fly in the middle of a
talk, and the audience sees all updates in real time. They
can also snapshot their code so that they can quickly restore
it and get back on track after they are done improvising.

Instructors can use Improv either in a traditional in-person
lecture setting or in a learning at scale setting by livestream-
ing or video-recording their hybrid code+slide presentations.
Since it is web-based, remote viewers can connect to the
Improv server to see the instructor’s live demonstration and
copy-paste code snippets into their own IDEs to follow along.

To evaluate the versatility and expressiveness of Improv, we
ran a pair of complementary studies. We first performed a
case study on 30 videos containing 28 collective hours of live
coding presentations in settings ranging from university lec-
tures to online livestreams. We found that Improv was versa-
tile enough to be used to present approximately 96% of the
content within those videos. We then performed a prelim-
inary user study by letting four first-time users prepare and
deliver 10-minute coding tutorial presentations using Improv.
We found that Improv was expressive enough to allow them
to create their own custom presentations in a variety of styles
and improvise by live coding in response to simulated au-
dience questions. Users said that Improv lowered cognitive
load by minimizing context switching and made it easier to
fix errors and improvise than using slide-based presentations.

This paper’s contributions to Learning at Scale are:

o A formative study of 20 educational videos to characterize
the diverse settings in which people perform live coding.

o The idea that existing IDEs should add integrated support
for teaching programming via live coding.

e A prototype of this idea in the Improv system. Improv in-
troduces new Ul affordances, informed by Mayer’s princi-
ples of multimedia learning [25], that help instructors pre-
pare and deliver code-based presentations within their IDE.
We evaluated Improv with a case study on 30 videos and a
preliminary user study on four teaching assistants.

RELATED WORK

Researchers have mostly studied live coding in educational
settings [30]. As a pedagogical best practice they recommend
having an instructor write and explain code live in the class-
room or on video. Benefits include: making the instructor’s
step-by-step thought processes explicit [18, 27], enabling in-
structors to respond to “what-if?” questions from students by
editing their code on-the-fly [35], forcing instructors to incre-
mentally build up code and narrate aloud rather than show-
ing large blocks of code at once [35], revealing sources of
common coding mistakes [18], making the instructor more
relatable since students can see that they make mistakes as
well [12], and holding students’ attention better since live
coding is more dynamic than static PowerPoint slides [32].

Live coding is currently done by sharing the presenter’s
screen with their audience (via a projector or online video
stream) as they write and run code in text editors, termi-
nals, IDEs, or, more recently, computational notebooks (e.g.,
Jupyter [22], Codestrates [29]). Live streamers sometimes
use video mixing software such as OBS [6] to broadcast only
selected parts of their monitors, manage multi-monitor se-
tups, and display custom banners on their streams [21]. Since
computational notebooks mix narrative text and code, some
presenters manually scroll through them as a way of narrating
their code-based live demos. Users have restyled the CSS of

Jupyter notebooks to make them look more like PowerPoint
slides [11]. Similar restylings can theoretically be done on
Codestrates notebooks [29] as well. IDEs such as Cloud9 [3],
Visual Studio [8], CodePilot [33], and Codechella [20] sup-
port real-time multi-user code editing akin to Google Docs;
this feature can be used as a form of “IDE screensharing”
when giving talks. However, none of these tools were de-
signed with structured presentation planning and delivery as
their use case. In contrast, Improv integrates a slide-based
presentation system and live coding environment into a pro-
grammer’s workflow within an IDE. The next section (For-
mative Study and Design Goals) will highlight limitations of
current systems and how they inspired the design of Improv.

More broadly, Improv contributes to the long lineage of HCI
research in presentation systems by being the first, to our
knowledge, to be designed specifically for live coding pre-
sentations. One major class of work here extends Microsoft
PowerPoint: TurningPoint [28] implements six narrative tem-
plates derived from guides of best practices centered on story-
telling techniques; users fill in the templates, and the system
automatically generates starter slides. StyleSnap and Flash-
Format help authors edit a large collection of PowerPoint
slides to maintain consistent visual style across similar ele-
ments [16]. HyperSlides [17] helps authors plan hierarchi-
cal and non-linear navigation paths using a markup language.
In contrast to slide-based presentation systems, tools such as
Pad++ [13], CounterPoint [19], and Fly [23] use a canvas
metaphor where presenters lay out elements in arbitrary loca-
tions on a zoomable plane. However, all of the above systems
are meant for general-purpose presentations, whereas Improv
is specialized for code-related demos that mix live program-
ming and traditional slides. Improv improves upon general-
purpose presentation systems by adding novel interactions for
interfacing with a programmer’s workflow within an IDE.

FORMATIVE STUDY AND DESIGN GOALS

To understand how educators currently perform live coding
and to inform the design of Improv, we ran a formative study
by watching 20 programming videos (Table 1). Although no
small sample can be universally representative, we strove for
diversity in venues, modalities, and programming languages;
Figure 2 shows selected screenshots from these videos. These
code-based presentations were recorded in university lecture
halls, at software industry conferences, from livestreams on
Twitch.tv, and from screencast tutorials on YouTube. Here
are our most salient observations from watching these videos:

Context switching and visual noise: In Table 1, the “Fea-
tures” column shows that most presentations featured more
than one medium (e.g., IDE, web browser, and slides). Pre-
senters frequently switched between app windows; even
when the web browser was the active window (e.g., Fig-
ure 2a), they often switched between browser tabs. Some ar-
ranged their windows in split-screen views (Figure 2c and e)
while others left their desktops messy with overlapping win-
dows and visual noise in taskbar and dock icons (Figure 2f).

Presenters usually opened all relevant windows and applica-
tion tabs before their talk began and flipped through them
during their talk. For instance, Figure 2a shows 8 open web

URL Video Title (abbreviated) Language Features

University Classroom Lectures
xhgysn Harvard CS50: Web Development Tech HTML/CSS E,S,TW

Bjirza Haverford College CMSC245: Pointers C++ E,S,T
Code-Based Conference Presentations

178Be Tricky JS Interview Questions JS S

xsxdes Creating Electronic Dance Music JS, Node.js E,S

wtp Python And The Blockchain Python 1.S

mrcLsw Web programming from the beginning Python E,QTW

kiaaax Introduction to Statistical Modeling Python J1.Q, T,W

cbstwy Time Series Analysis Python 1.Q.S

09ysGs PLOTCON 2016: Dash: Shiny for Python ~ Python LQW

roswvo What Does It Take To Be An Expert? Python E,Q.TW

Coding Livestreams on https://twitch.tv
ieikkp Advice for Writing Small Programs in C C LQ,S, T
resBGj Private Data & Getters/Setters (Epic rant!) C++ E,Q
esrkku Building a Website - Live Coding w/ Jesse ~ HTML/CSS E,W

Coding Screencast Tutorial Videos

sipurF Learn PHP in 15 minutes PHP E,S,\W
vipkts Ruby Essentials for Beginners Ruby ET
fyjse C# programming tutorial - Step by Step C# LS
ssLsv Frequency Analysis with FFT JS, p5.js E.QW
weikm Tensorflow for Seq2seq Models Python J

kGxove MongoDB Quickstart with PyCharm Python L,Q,S,W
wpTnuy Python Tutorial for Beginners #1 - Variables Python 1S

Table 1: Corpus of live coding videos for our formative study. URLs
should be prepended with https: //goo.gl/. Feature abbreviations:
E=editor (e.g., Emacs, Vim), I=IDE, J=Jupyter notebook, Q=questions
from audience, S=slide presentation, T=terminal, W=web browser

browser tabs, Figure 2e shows 29 browser tabs and 7 source
code tabs in the IDE, and Figure 2f shows 7 browser tabs
and 4 terminal app tabs. This complexity made it hard for
them to find specific windows on-demand, and they some-
times lost their place when navigating between windows. In
contrast, those who projected full-screen slideshows did not
worry about context switching. However, slideshows lack the
dynamism of live coding performances.

Slides + live coding: Presenters often used pre-made slides
to convey higher-level concepts and then performed live cod-
ing to demonstrate those concepts in practice. As Figure 2b
shows, some slides interspersed (non-runnable) code with
bullet-point descriptions of their properties. After explain-
ing the code snippets on those slides, presenters then had
to context-switch over to their text editor or IDE to edit a
runnable version of that code in a live demo. If they want to
update their presentations, they would need to keep both the
within-slides and within-IDE versions of their code in sync.

Highlighting code and outputs: While live coding, presen-
ters often selected text ranges in the editor to highlight a piece
of relevant code as they explained its purpose (Figure 2d).
They also switched to terminal windows to show textual out-
put for command-line-based programs, or a browser to show
visual output for web applications and interactive data vi-
sualizations. Some presenters used Jupyter notebooks to
show both code and output together (Figure 2a); they scrolled
through the notebooks to highlight relevant parts.

Typos, commented-out code blocks, and copy-and-paste:
One big risk of live coding is that the presenter may make
mistakes. To reduce this risk, some presenters placed pre-

Twitch.tv
https://goo.gl/

undefined

« variable declared but no defined value (not

initialized)

* object/array exists but nothing at that key/index
o function exists but doesn't return anything

o falsy

Hello Plotcon

Pern lmmﬁ
(d) Pointing to text editor in lecture wrL: xngysn)

[\

Microsoft

(c) Web browser & editor split-screen (urL: Forwvo)

& rermna

b s enas

Bi@ s

o 1 [rernen
W -EAs000BEe (8

(e) Web app and IDE split-screen wre:o9yscsy (f) Many tabs & overlapped windows urL: kiaaax)

Figure 2: Screenshots from videos in Table 1 that show the diversity of modalities in live coding presentations. (Prepend https://goo.gl/ to URLs.)

made commented-out blocks of code to use as references
while they were live coding. Others copied-and-pasted snip-
pets from auxiliary files into their code to avoid manually typ-
ing everything from scratch. However, doing so detracts from
the authenticity of a fully-live performance. Ideally a presen-
tation system would let presenters write code live and provide
a safety net to fall back on in case they made mistakes.

Improvising in response to live questions: One major benefit
of live coding is the ability to improvise in response to ques-
tions (the “Q” feature in Table 1). The audience asked ques-
tions verbally during class lectures and conference talks and
via text chat in Twitch.tv livestreams. The presenter would
modify their code and re-run it to demonstrate their answers.
Afterward they need to remember what they were working on
before the question and restore their original code.

Based on both these firsthand observations and by consulting
Mayer’s principles of multimedia learning [25], we developed
the following design goals for our Improv system:

e D1: Minimize context switching and visual noise to help
both the presenter and audience focus better

D2: Integrate presentation slides with live runnable code

D3: Support highlighting of code and outputs within slides
e D4: Minimize the risk of errors while live coding

o DS: Enable improvising and quickly restoring prior context

IMPROV SYSTEM DESIGN AND IMPLEMENTATION
Improv integrates into a programmer’s existing workflow
within an IDE so they can minimize context switching (De-
sign Goal D1). It is implemented with standard web technolo-
gies as an add-on for Atom, an extensible IDE [2]. Improv’s
slide viewer uses Reveal.js [7] to display web-based slides
and Meteor.js [4] to perform real-time syncing.

Improv contains a set of novel interaction techniques for ex-
tracting code, creating and presenting slides, and adding in-
structional scaffolding via code waypoints and subgoal labels.

Extracting Code Blocks and Terminal Outputs from Atom
A programmer starts using Improv by creating a code project
in any language within the Atom IDE and testing to make sure
their code works as intended. Then they select blocks of code
from their source files to include in their presentation slides.

When the user selects a piece of text in either a code edi-
tor buffer or a terminal pane within Atom (which shows live-
updated contents of a shell, REPL, or compiler output), they
can use a keyboard shortcut to extract that selection into a
code block. They can also select the entire file to extract as
a single block. (We call this a code block for simplicity, al-
though the user can extract any part of any Atom text buffer.)

Each selection gets colored in light blue within Atom (left
half of Figure 1). When the user makes later edits within its
range, the highlighted area will grow or shrink accordingly.
These ranges get properly preserved even if new text is in-
serted above or below the selections. If the user erases every-
thing within the selection (or its enclosing file gets deleted),
then its corresponding code block gets deleted too. Users can
select and extract any number of code blocks across any files
in Atom. Each block is put into a storage bin in the presenta-
tion editor (Figure 3d), which can be dragged onto slides.

Slide Presentation Editor

Improv augments Atom with a simple slide presentation edi-
tor situated in a new tab within the IDE. Figure 3 shows the
UI of the slide presentation editor, which mimics a simplified
version of PowerPoint or Keynote. The user can create, re-
order, and delete slides. Within each slide, they can add text
and images with direct manipulation. We implemented only

https://goo.gl/

NodeJS Basics

Importing Modules Syntax d) &

Code Blocks Webpages Terminal/Textbaoxes

<div id="maestro_docker">

) |1 const etch = require('etch’)

c)

2 <div id="maestro_cur_waypoint" class="maestro_view_port"

E]
4 <div id="maestro_next_waypoint" class="msestro_view_port”
5

Modify HTML File

Windows PowerShell

<div id="maestro_button_docker™

Copyright (C) Microsoft Corporation. All rights reserved. <div id="maestro_docker">

[LIENRTET

PS C:\Users\Charles\atom\packages\maestro-editor> Is

<div id="maestro_cur_waypoint" class="mas¢

<div id="maestro_next_waypoint" class="mg
<div id="maestro_button_docker"

constructor(preps, children) {
this.props = props;
etch.initialize(this)

Directory: C:\Users\Charles\.atom\packages\maestro-
editor

Mode LastWriteTime Length Name

ods js Tutorials

keymaps

const etch = require('etch')

————— lib

Figure 3: Improv’s slide editor is a pane within the Atom IDE. Here it shows two code blocks (a & b) and a terminal output block (c) that were extracted
from Atom in Figure 1. d) Extracted blocks are first put in a storage bin. The presenter can drag-and-drop these blocks, webpage embeds, and other
elements onto slides; they can also add/remove/reorder slides. The slide viewer that the audience sees (right of Figure 1) is synchronized with this editor.

basic slide editor functionality and did not replicate more ad-
vanced features such as animated transitions or style guides.
Improv’s editor supports two novel types of slide elements
specialized for our use case of live coding performances:

Code block elements: All code blocks extracted from Atom
appear in a storage bin area at the right of the slide editor
(Figure 3d). The user can drag and drop these blocks onto
any slide just like how they can insert text and images. This
way, a single code block can appear on multiple slides. Code
blocks in slides are synced in real time with their correspond-
ing selected regions in the IDE. Thus, when the user edits that
code, it will also update on the slide(s). When the user’s code
runs and produces output, any embedded terminal blocks also
update live (Figure 3c). This feature allows presenters to cre-
ate slides that mix text and runnable code (Design Goal D2).

Even if the presenter does not want to perform live coding
and simply wants to deliver a standard slideshow presenta-
tion, this live code block feature is still beneficial for two rea-
sons: 1) It avoids having to keep two copies of code in sync
between the IDE and slides, 2) It helps ensure that code which
appears on slides actually compiles and runs, since it is real
working code that can be executed and tested within the IDE.
Otherwise it is easy for subtle typos and bugs to creep into
code-based slides, which causes learner frustration [26].

Webpage iframe elements: The editor also allows the user to
live-embed any webpage as an iframe into their slides. This is
important because many of the live coding videos we watched
featured presenters navigating through webpages such as API
documentation, data visualizations, and Jupyter notebooks.
The user can scroll to any portion of the webpage to start
showing that part during the presentation, which is convenient
for long webpages such as API docs or Jupyter notebooks.

These features give presenters both the organizational ben-
efits of pre-made slides and the dynamism of live code and
webpages. To demonstrate the utility of embedded code and
webpage elements, here is a zoomed-in view of the top part
of the video in Figure 2e from our formative study corpus:

1

Hello Plotcon)

id="my-graph"

This presenter has 29 web browser tabs open (left half) and
7 source code tabs open in their IDE (right half), which
they had to juggle throughout their talk. They had so many
open browser tabs that they could not even see the tab titles.
Throughout the talk, they also had to constantly scroll to dif-
ferent parts of webpages and source code files to find the right
parts to discuss. If they had used Improv, they would have
been able to selectively embed the desired portions of web-
pages and source code files into a series of slides with a logi-
cal ordering and accompanying slide titles for exposition.

Slide Viewer: Presentation Delivery and Live Coding
After the user creates a code-based presentation within Atom,
they can also deliver their presentation entirely within Atom.

To do so, they first open a new web browser window and point
it to a localhost URL for the slide viewer app. This viewer is
a webpage that synchronizes its contents in real time with the
currently-active slide displayed in Atom’s slide editor. Then
they connect their laptop to a projector and move the slide
viewer window to the projected screen in full-screen mode.
This way, the presenter still sees their own Atom IDE (and
everything else on their desktop) while the audience sees only
the viewer app on the projected screen. This minimizes visual
noise (Design Goal D1) since the audience no longer sees the
entire contents of the presenter’s desktop. It also conforms
to Mayer’s coherence principle of multimedia learning [25],
which posits that people learn better when extraneous visual
elements are excluded from view to minimize distractions.

Alternatively, the presenter can host the slide viewer web app
on a public IP address. This way, audience members (either
in the room or remotely on the internet) can connect to that IP
to watch the presentation live from their own web browsers.
They can also copy-and-paste the code shown in the presen-
tation to experiment with it locally in their own IDEs.

Since the contents of Improv’s slide editor are always in sync
with the slide viewer, there is no distinction between presen-
tation editing and delivery modes. The audience always sees
the currently-active slide in the editor. To deliver a presen-
tation, the presenter simply flips through their slides in se-
quence in the editor. If they want to create new slides or mod-
ify the contents of existing slides on-the-fly, the audience will
see those changes immediately. In addition, besides showing
traditional slideshows, Improv’s slide viewer also has support
for webpage iframes, code blocks, and live coding:

Presenting webpage iframe elements: Since webpages are
embedded as iframes, when the presenter scrolls through each
iframe in the slide editor, Improv synchronizes its current
scroll position with the viewer app so that the audience sees
that same scrolling happening. This way, the presenter can
walk through each page’s contents by scrolling and narrating.
The viewport sizes of the editor and viewer iframes are iden-
tical, so webpages render identically in both when scrolling.

Presenting code block elements: Likewise, the presenter
can scroll through code blocks in the slide editor, and the au-
dience again sees a synchronized view. This is effective for
explaining pre-written static blocks of code, but what happens
when the presenter wants to write code live?

Live coding: To perform live coding anytime during a pre-
sentation, the presenter clicks a button atop an embedded
code block in the slide editor to jump to the portion of the
original source file in the Atom IDE where that code was
extracted from. They should now see that selection of code
highlighted in yellow, which indicates that it is being pro-
jected on the active slide for the audience to view (Figure 4a).
They can edit that code normally within Atom, and all up-
dates will propagate live to the slide viewer app. In addition,
in the slide viewer that code block auto-scrolls so that its cur-
rent cursor position is vertically centered. This ensures that
currently-edited code is always visible to the audience.

In our example, the contents of the code blocks labeled ‘a’
and ‘b’ in Figure 3 always remain in sync across the Atom
code editor, slide presentation editor, and slide viewer. Simi-
larly, the terminal output block (Figure 3c) is also synced.

While the audience sees only what is on the slides, the pre-
senter can perform live coding within their IDE with full ac-
cess to all of the programming assistance tools they are accus-
tomed to. The presenter can also access other desktop apps,
API documentation, or speaker notes “behind the curtains”
without the audience seeing or getting distracted by them.

If the presenter highlights a selection of text as they are live
coding, that visual highlight will also appear on the slides for
the audience to view (Design Goal D3). This allows the pre-
senter to point out specific pieces of code or terminal output
to explain it in detail.

Improv gives instructors a great deal of flexibility in terms of
how to structure their live coding sessions. For instance:

o To demonstrate how a terminal-based program works (e.g.,
a Python or C program), the presenter can create a slide that
contains a code block alongside a terminal output block.

@ testjs — Atom = m} X
File Edit View Selection Find Packages Help

Figure 4: Improv lets users define waypoints to serve as scaffolding for
live coding sessions. a) The code block that is projected on the current
slide is highlighted in yellow. b) Click to add its state as a new waypoint.
¢) See a preview of the next waypoint, and navigate to other waypoints.

e To show how to build a web application or interactive visu-
alization, the presenter can create a slide with a code block
alongside a webpage iframe pointed to the web application
that is currently under development.

e To teach a classroom lesson on algorithms, the presenter
can embed text and images of the relevant concepts along-
side a live code block that shows its implementation.

e To demonstrate how to use a particular API, the presenter
can embed a webpage of the API docs next to a code block.

One recommended way to organize slides is to have each slide
hold one part of the overall live demo. This way, presen-
ters can advance through all slides in sequence and perform
live coding on the appropriate parts of their codebase without
fumbling to look for the relevant source files or browser tabs.

Code Waypoints and Subgoal Labels

It can be hard to write code live during a presentation with-
out making mistakes, so the presenters in the formative study
videos we watched often resorted to copying and pasting pre-
written blocks of code from other text buffers into their target
source files. Unfortunately, doing so detracts from the authen-
ticity and natural flow of truly doing live coding. To preserve
such authenticity while also guarding against errors (Design
Goal D4), Improv lets users define a set of code waypoints for
each code block (inspired by navigational waypoints [9]).

After the user extracts a code block in the IDE by making a
text selection, they can optionally open an inline pane to add
waypoints for that given block (Figure 4). Each waypoint is
a manually-defined version of the code in that block. It is up
to the user to fill out the contents of each version, but one
heuristic is to have each version represent a new concept or
step that is being incrementally built up within that block.

The user can also add a subgoal label to each waypoint,
which is a textual annotation that describes the purpose (goal)
of what that waypoint aims to achieve. Subgoal labeling
is a pedagogical best practice whereby the instructor adds a
higher-level conceptual description for each group of steps in
a tutorial; it has been shown to help improve learner compre-
hension in a variety of STEM domains [14, 24, 34].

Live coding with waypoints: If waypoints are set on a given
code block, then when the presenter is live coding in there,

they see not only their current code but also the waypoint’s
code in a separate pane (Figure 4c). This pane serves as a
“teleprompter” that gives them a visual indicator of what code
they ought to be writing at the moment to reach that waypoint.
It is also similar to how DemoWiz [15] cues the presenter by
showing previews of upcoming events on screencast videos.

In addition, the waypoint’s subgoal label is always displayed
above the code block in the slide viewer app so that the au-
dience can see the purpose of the current step that is be-
ing demonstrated by the presenter. This feature abides by
Mayer’s segmenting and signaling principles of multimedia
learning [25], which posits that people learn better when pre-
sentations are divided into logical segments with cues that
signal what to expect from each segment.

Once the presenter has written enough code in the current
block so that it exactly matches the expected contents of the
current waypoint, Improv automatically moves onto display-
ing the next waypoint. The presenter can always deviate from
the waypoint if they want to improvise or format their code in
a different way. In those cases, their end state will not be an
exact string match, so they can manually move onto the next
(or previous) waypoint with navigation controls.

If the presenter gets stuck or lost while live coding, they can
click the “next waypoint” button in the waypoint pane to copy
the contents of the current waypoint into their code block and
move onto the next waypoint. Although this action breaks the
authenticity of live coding, it is convenient for getting the pre-
senter out of a jam and ensuring that they still have working
code (assuming that their pre-written waypoint code works
and that they have not broken any code outside of that block).

For example, Figure 4 shows the waypoint pane in Atom.
As the presenter is in the middle of writing the body of the
deactivate () method in the yellow code block, they can
see the next waypoint they are supposed to reach in order to
complete the current segment of their demo (Figure 4c).

Impromptu waypoints: Finally, when the presenter gets a
question from the audience or otherwise wants to improvise,
they can click the “Add as Waypoint” button on a code block
to save a snapshot of its current contents as a new waypoint.
This way, they can freely modify their code to address the
given question and quickly restore their original code after-
ward to return to their main presentation (Design Goal D5).

EVALUATION
To assess Improv’s versatility and expressiveness, we ran a
pair of studies to investigate the following questions:

o Is Improv versatile enough to be used to prepare and de-
liver a diverse variety of realistic code-based presentations?

o Is Improv expressive enough to let first-time users create
presentations of their own original design?

Case Study of Coding Presentation Videos
To assess the versatility of Improv, we performed a case study
on 30 programming tutorial videos from YouTube.

Procedure: We used the 20 videos in our formative study
corpus (Table 1). To guard against “overfitting” on this ini-
tial corpus, we found 10 additional videos using a similar
methodology but after finishing the implementation of Im-
prov. These represent a diverse selection of code-based pre-
sentations that people have delivered to a range of audiences.
We watched each video in detail and hand-classified the time
durations within each one based on what is being displayed on
the screen at those times. Then we estimated the proportion
of time that Improv could plausibly be used as a replacement
for the presentation media that the speaker actually used.

Findings: Figure 5 summarizes our findings. The entire du-
ration of each video is a horizontal bar, and the labeled por-
tions represent time ranges when the presenter was working
within a particular app (e.g., terminal, IDE, slides). The red
portions represent time ranges where Improv cannot be used
to emulate what the presenter was doing at those times (see
details below). The red portions account for 4% of the total
time across all 30 videos, which means that Improv can serve
as a plausible replacement for presenting approximately 96%
of the content in our 28-hour corpus of 30 live coding videos.

Presenters could have used Improv to create nearly all parts
of these presentations, based on the apps being used in them:

e Text Editor (3% of total running time across all 30 videos):
With Improv, they could have extracted a code block to
place on slides and performed live coding within Atom.

e [IDE (6% of total video time): Same as text editor. Note that
presenters did not use advanced IDE features; they used
IDEs only as elaborate text editors for live coding.

o Terminal (6%): Extract a terminal output block to slides.
o Web Browser (9%): Embed a webpage iframe into slides.

e Jupyter Notebooks (20%): Same as web browser. (Note
we put Jupyter into its own category since many presenters
used it as a web-based live programming environment.)

e Slide Presentation (13%): Use Improv’s slide editor.

e Code on Slides (3%): These are slides that primarily show-
case snippets of code. With Improv, they can extract code
blocks so that those snippets update live on their slides.

Presenters also concurrently used two apps in either a split-
screen view or by rapidly flipping back and forth: text editor
+ terminal (11% of total time in all videos), text editor + web
browser (12%), IDE + terminal (9%), IDE + web browser
(4%). Improv can handle all of these cases by placing mul-
tiple components on a single slide: either a code block and a
terminal output block, or a code block and a webpage iframe.

Improv could not plausibly emulate what presenters featured
during 4% of the total time in these 30 videos (4.7% of total
time in the original 20 formative study videos and 2.3% in the
additional 10 we picked). During those times, presenters used
GUI applications, sketching, or physical demonstrations. The
most common modality was the presenter demonstrating spe-
cific features of GUI applications such as the Ableton [1] mu-
sic production software, the Wireshark [10] network analyzer,
or the Windows process manager for showing memory usage

c
s

Wki0BqlzCo

| Iniminan il |
. 8| E

clec
f

S| GekQaFZm7mA

3 £ | 7| dauuxezxgo
o 1 b
o

KscZiyoTms

-

B T 0dgmeTy7X3l

B
| I

f

| 1] exorta ey

WCTTHhehJbU

Ukg_U3Cnuwl

XGmXxpljbvs

fUGiBYSGs

Editor (Text)

IDE

Terminal

Browser

Jupyter Notebook

Slides

Code on Slides

Editor + Terminal

Editor + Browser

IDE + Terminal

IDE + Browser
Improv cannot emulate

[T

0 1

Hours

2 3

Figure 5: Presentation formats in 30 programming videos: 20 were from Table 1; YouTube IDs are next to 10 new videos. Red = Improv cannot emulate.

patterns. Three presenters made digital sketches over their
screens. Finally, one presenter projected an Oculus Rift head-
set [5] display for a virtual reality live coding demonstration.
In the future, we could extend Improv to embed a live view
of the presenter’s computer desktop or external video feeds in
order to support these modalities.

Study Limitations: This is an informal case study on a hand-
picked video corpus. Even though we strove for diversity in
presentation formats and selected 10 additional videos after
finishing Improv’s implementation, we cannot be sure that
these are representative of all code-based presentations. Also,
there is no guarantee that the presenters would actually prefer
replacing their current setups with Improv, or how the audi-
ence would react to seeing Improv versions of these talks.

Preliminary User Study with Teaching Assistants

Our case study demonstrated the potential versatility of Im-
prov across a variety of presentation formats, but we also
wanted to see how expressive it is when put into the hands of
first-time users. To do so, we performed a preliminary study
with 4 computer science teaching assistants at our university.

Procedure: Each participant came to our lab to use Improv
individually for 1 hour. We first gave them a 10-minute tuto-
rial of Improv’s basic features and then instructed them spend
most of the hour using it to create a five to ten-minute code-
related presentation of the sort that they would normally make
for their courses. When they finished creating the presenta-
tion, we had them use Improv to deliver it to the facilitator,

who interrupted with questions to simulate an audience. Fi-
nally, we concluded the session by asking them to reflect on
the advantages and disadvantages of using Improv when com-
pared to presentation tools that they had previously used.

Findings: All four participants were able to use Improv to
successfully prepare and deliver a presentation of their own
original design. These varied widely in subject matter pre-
sented, Improv features used, and presentation styles:

e P1 taught basic JavaScript by demonstrating a simple
command-line calculator with Node.js. When preparing
their talk, they wrote pieces of code in Atom and included
them onto three slides along with explanatory text. They
did not originally intend to perform live coding. However,
as they started presenting their slides and the facilitator in-
terrupted with questions, they used the code waypoints fea-
ture to create impromptu waypoints so that they could per-
form live coding to address questions. Then they returned
to prior waypoints to resume their talk. They also impro-
vised by embedding a terminal onto a slide and live coding
from the Node.js REPL to show additional concepts.

P2 taught the concept of function calls using pseudocode.
Their two slides consisted of images and pseudocode. De-
spite not performing any live coding, they still found it use-
ful to organize pseudocode in text files within Atom and to
selectively extract them onto slides. When the facilitator
pointed out a possible bug in the pseudocode, they were
able to fix it right away by editing that section in the text
file and seeing the update instantly appear on the slides.

e P3 taught array operations in Python. They created three
Python source code files in Atom, one for each concept:
indexing, slicing, and element skipping. They tested their
code separately in each file and then extracted each one to
place on its own slide with a corresponding title. They also
placed a terminal output block at the bottom of all slides.
During their talk, they moved between the three slides and
performed live coding in Atom; when their Python code
executed, it showed up in the terminal block on each slide.

o P4 taught Python variables and print statements. They took
the most dynamic approach out of all four by using only
one slide and having it serve as a fullscreen canvas. They
put a code block, terminal output, and webpage iframe into
that single slide. While preparing the talk, they used the
iframe to look up Python reference documentation rather
than switching to an external web browser since they could
see the reference in the same context as their code. While
delivering the talk, they live coded from within Atom.

Improv supported both the more static slides-based presenta-
tions (P1 and P2) and the more dynamic live coding sessions
(P3 and P4). P1 was even able to switch from slides to live
coding on-demand when the facilitator asked questions.

During post-study debriefing interviews, participants men-
tioned the following advantages of Improv as compared to
existing presentation tools that they had previously used:

o Lower cognitive load when live coding, since they did not
need to repeatedly switch back and forth between different
apps such as IDEs, terminals, browsers, and PowerPoint.

e Relatively easy to fix errors on the fly by adjusting code
or slide content directly from within Atom and having the
audience see those changes immediately.

e P1, P3, and P4 felt that the clearest benefit of Improv was
the ability to write and run code in a real IDE but to have
the audience see that code on an organized set of slides.

e P1 found waypoints useful for improvising. P3 manually
emulated waypoints by having an auxiliary notes file where
they stored code snippets that they copied into their presen-
tation code. When we reminded them about the waypoints
feature at the end, they agreed it would have been useful
but was not sufficiently familiar with it as a first-time user.

o P4 appreciated the flexibility of Improv’s slide format com-
pared to traditional presentation tools: “I think of these
slides more as workspaces. [...] You normally see a slide
as very specific and like a state of mind that is progressing.
But here the slide itself is dynamic. More like a workspace
where you can drop code and dynamic stuff is happening.”

Participants also pointed out their perceived limitations of Im-
prov. Most notably, they mentioned higher cognitive load
during presentation planning, since they had to develop a
mental model of how three separate components synced up
with one another: their own code within Atom, the slide edi-
tor, and the slide viewer. Also, they were surprised that they
could not edit code on the slides to fix minor issues but in-
stead had to edit within the corresponding source code file in
Atom. To support this, we can implement bidirectional sync-
ing between Atom’s code editor and Improv’s slide editor.

In sum, first-time users found Improv expressive enough to
use for preparing simple teaching presentations that mixed
both code and expository content. All four participants re-
ported being interested in using Improv in their own teaching.

Study Limitations: We conducted an informal first-use study
without a control group. Although participants reflected on
the experience of using Improv versus tools they previously
used, we did not perform a formal comparison against exist-
ing tools. Also, due to the short study duration, participants
used Improv to deliver at most a 10-minute presentation, so
we were not able to assess its scalability for preparing, say,
hour-long lectures with dozens of slides. Finally, the facilita-
tor served as a simulated audience, but ideally Improv would
be evaluated in a class setting to gauge real student reactions.

DISCUSSION AND CONCLUSION

Improv explores the design space of educational presentation
tools in between slide-based software (organized but static)
and desktop screensharing (authentic but messy). It melds
the organizational benefits of slide-based presentations with
the authenticity and improvisational flexibility of live cod-
ing. Improv’s code-based slide format gives presenters the
ability to organize their content in accordance with pedagog-
ical best practices such as Mayer’s principles of multimedia
learning [25]: They can display code in large fonts, eliminate
extraneous visual noise from desktop apps, and supplement
code with textual annotations, images, and webpage embeds.

One main limitation, though, is that there are times when pre-
senters want to project their entire computer desktop for the
audience to view instead of presenting slides. This could arise
because they want to demonstrate how to interact with a set
of complex GUI applications. Improv is not well-suited for
those use cases since, by design, it shows only selected code
blocks within a traditional slide presentation. In the future,
we could extend it with a screensharing plug-in that allows it
to embed portions of the presenter’s desktop into slides.

Currently instructors who want to teach programming to a
large audience must rely on ad-hoc setups involving screen
sharing, PowerPoint slides, and flipping between disparate
desktop applications. Our Improv system takes steps toward
making this form of technical pedagogy both more organized
and more fluid. From an educational technology perspective,
Improv’s main contribution to learning at scale is to bring
Mayer’s principles of multimedia learning [25] into the pop-
ular domain of live coding presentations. We hope that by
deploying this system in MOOCs and other online learning
platforms in the future, students will be able to learn better by
watching instructors more fluently combine live coding with
slide-based presentations. They can either connect to the Im-
prov slide viewer web app for a live broadcast or watch pre-
recorded videos of these hybrid code and slide presentations.

ACKNOWLEDGMENTS

Thanks to Darren Chan, Parmit Chilana, Jonathan Edwards,
Ailie Fraser, Andrew Hild, Kandarp Khandwala, Sean Kross
(for Figure 5!), Jeremy Lai, Christine Lee, and Alok Mysore
for their feedback on the research that led to this paper.

REFERENCES

1.

2018. Ableton: Music production with Live and Push.
https://www.ableton.com/en/. (2018).

. 2018. Atom IDE. https://ide.atom.io/. (2018).

3. 2018. AWS Cloud9: A cloud IDE for writing, running, and debugging

10.

12.

13.

14.

16.

17.

18.

19.

20.

code. https://aws.amazon.com/cloud9/?origin=c9io.
(2018).

. 2018. Meteor: Build Apps with JavaScript.

https://www.meteor.com/. (2013).

. 2018. Oculus Rift - Oculus. https://www.oculus.com/rift/.

(2018).

. 2018. Open Broadcaster Software. https://obsproject.com/.

(2018).

. 2018. reveal.js - The HTML Presentation Framework.

https://revealijs.com/. (2018).

. 2018. Visual Studio Live Share: Real-time collaborative development.

https://code.visualstudio.com/
visual-studio-live-share. (2018).

. 2018. Waypoint (Wikipedia).

https://en.wikipedia.org/wiki/Waypoint. (2018).

2018. Wireshark - Go Deep. https://www.wireshark.org/.
(2018).

. Damian Avila. 2017. RISE: Reveal.js - Jupyter/IPython Slideshow

Extension.
https://damianavila.github.io/RISE/index.html.
(2017).

Lecia J. Barker, Kathy Garvin-Doxas, and Eric Roberts. 2005. What
Can Computer Science Learn from a Fine Arts Approach to Teaching?.
In Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’05). ACM, New York, NY, USA,
421-425.

Benjamin B. Bederson and James D. Hollan. 1994. Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface Physics. In
Proceedings of the 7th Annual ACM Symposium on User Interface
Software and Technology (UIST ’94). ACM, New York, NY, USA,
17-26.

Richard Catrambone. 1998. The Subgoal Learning Model: Creating
Better Examples so That Students Can Solve Novel Problems. 127 (12
1998), 355-376.

. Pei-Yu Chi, Bongshin Lee, and Steven M. Drucker. 2014. DemoWiz:

Re-performing Software Demonstrations for a Live Presentation. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI "14). ACM, New York, NY, USA,
1581-1590.

Darren Edge, Sumit Gulwani, Natasa Milic-Frayling, Mohammad
Raza, Reza Adhitya Saputra, Chao Wang, and Koji Yatani. 2015.
Mixed-Initiative Approaches to Global Editing in Slideware. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY, USA,
3503-3512.

Darren Edge, Joan Savage, and Koji Yatani. 2013. HyperSlides:
Dynamic Presentation Prototyping. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 671-680.

Alessio Gaspar and Sarah Langevin. 2007. Restoring ”Coding with
Intention” in Introductory Programming Courses. In Proceedings of the
8th ACM SIGITE Conference on Information Technology Education
(SIGITE *07). ACM, New York, NY, USA, 91-98.

Lance Good and Benjamin B. Bederson. 2002. Zoomable User
Interfaces As a Medium for Slide Show Presentations. Information
Visualization 1, 1 (March 2002), 35-49.

Philip J. Guo, Jeffery White, and Renan Zanelatto. 2015. Codechella:
Multi-user program visualizations for real-time tutoring and
collaborative learning. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC) (VL/HCC
’15). 79-87.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Suz Hinton. 2017. Lessons from my first year of live coding on Twitch.
https://medium. freecodecamp.org/
lessons—-from—my-first-year-of-live-coding-
on-twitch-41a32e2f41cl. (2017).

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damidn Avila,
Safia Abdalla, and Carol Willing. 2016. Jupyter Notebooks — a
publishing format for reproducible computational workflows. In
Positioning and Power in Academic Publishing: Players, Agents and
Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87 — 90.

Leonhard Lichtschlag, Thorsten Karrer, and Jan Borchers. 2009. Fly: A
Tool to Author Planar Presentations. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI "09). ACM,
New York, NY, USA, 547-556.

Lauren E. Margulieux, Mark Guzdial, and Richard Catrambone. 2012.
Subgoal-labeled Instructional Material Improves Performance and
Transfer in Learning to Develop Mobile Applications. In Proceedings
of the Ninth Annual International Conference on International
Computing Education Research (ICER ’12). ACM, New York, NY,
USA, 71-78.

Richard E. Mayer. 2009. Multimedia Learning (2nd ed.). Cambridge
University Press, New York, NY, USA.

Alok Mysore and Philip J. Guo. 2017. Torta: Generating Mixed-Media
GUI and Command-Line App Tutorials Using Operating-System-Wide
Activity Tracing. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology (UIST '17). ACM, New
York, NY, USA, 703-714.

John Paxton. 2002. Live Programming As a Lecture Technique. J.
Comput. Sci. Coll. 18,2 (Dec. 2002), 51-56.

Larissa Pschetz, Koji Yatani, and Darren Edge. 2014. TurningPoint:
Narrative-driven Presentation Planning. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '14). ACM,
New York, NY, USA, 1591-1594.

Roman Rédle, Midas Nouwens, Kristian Antonsen, James R. Eagan,
and Clemens N. Klokmose. 2017. Codestrates: Literate Computing
with Webstrates. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology (UIST '17). ACM, New
York, NY, USA, 715-725.

Adalbert Gerald Soosai Raj, Jignesh M. Patel, Richard Halverson, and
Erica Rosenfeld Halverson. 2018. Role of Live-coding in Learning
Introductory Programming. In Proceedings of the 18th Koli Calling
International Conference on Computing Education Research (Koli
Calling ’18). ACM, New York, NY, USA, Article 13, 8 pages.

Scott Rosenberg. 2015. The Strange Appeal of Watching Coders Code.
Backchannel: WIRED https://www.wired.com/2015/08/
the-strange—-appeal-of-watching—coders—code/.
(2015).

Marc J. Rubin. 2013. The Effectiveness of Live-coding to Teach
Introductory Programming. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 651-656.

Jeremy Warner and Philip J. Guo. 2017. CodePilot: Scaffolding
End-to-End Collaborative Software Development for Novice
Programmers. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA,
1136-1141.

Sarah Weir, Juho Kim, Krzysztof Z. Gajos, and Robert C. Miller. 2015.
Learnersourcing Subgoal Labels for How-to Videos. In Proceedings of
the 18th ACM Conference on Computer Supported Cooperative Work
& Social Computing (CSCW ’15). ACM, New York, NY, USA,
405-416.

Greg Wilson. 2018. How to Teach Programming (and Other Things):
Live Coding.
http://third-bit.com/teaching/live.html. (2018).

https://www.ableton.com/en/
https://ide.atom.io/
https://aws.amazon.com/cloud9/?origin=c9io
https://www.meteor.com/
https://www.oculus.com/rift/
https://obsproject.com/
https://revealjs.com/
https://code.visualstudio.com/visual-studio-live-share
https://code.visualstudio.com/visual-studio-live-share
https://en.wikipedia.org/wiki/Waypoint
https://www.wireshark.org/
https://damianavila.github.io/RISE/index.html
https://medium.freecodecamp.org/lessons-from-my-first-year-of-live-coding-
https://medium.freecodecamp.org/lessons-from-my-first-year-of-live-coding-
on-twitch-41a32e2f41c1
https://www.wired.com/2015/08/the-strange-appeal-of-watching-coders-code/
https://www.wired.com/2015/08/the-strange-appeal-of-watching-coders-code/
http://third-bit.com/teaching/live.html

	Introduction
	Related Work
	Formative Study and Design Goals
	Improv System Design and Implementation
	Extracting Code Blocks and Terminal Outputs from Atom
	Slide Presentation Editor
	Slide Viewer: Presentation Delivery and Live Coding
	Code Waypoints and Subgoal Labels

	Evaluation
	Case Study of Coding Presentation Videos
	Preliminary User Study with Teaching Assistants

	Discussion and Conclusion
	Acknowledgments
	References

