
ar
X

iv
:1

70
4.

08
48

0v
1

 [
cs

.G
T

]
 2

7
A

pr
 2

01
7

Combinatorial Cost Sharing

Shahar Dobzinski Shahar Ovadia∗

July 9, 2018

Abstract

We introduce a combinatorial variant of the cost sharing problem: several services can be
provided to each player and each player values every combination of services differently. A pub-
licly known cost function specifies the cost of providing every possible combination of services. A
combinatorial cost sharing mechanism is a protocol that decides which services each player gets
and at what price. We look for dominant strategy mechanisms that are (economically) efficient
and cover the cost, ideally without overcharging (i.e., budget balanced). Note that unlike the
standard cost sharing setting, combinatorial cost sharing is a multi-parameter domain. This
makes designing dominant strategy mechanisms with good guarantees a challenging task.

We present the Potential Mechanism – a combination of the VCG mechanism and a well-
known tool from the theory of cooperative games: Hart and Mas-Colell’s potential function.
The potential mechanism is a dominant strategy mechanism that always covers the incurred
cost. When the cost function is subadditive the same mechanism is also approximately effi-
cient. Our main technical contribution shows that when the cost function is submodular the
potential mechanism is approximately budget balanced in three settings: supermodular valua-
tions, symmetric cost function and general symmetric valuations, and two players with general
valuations.

1 Introduction

In the cost sharing problem the cost of a public good (e.g., a bridge, a park, or a networking
infrastructure) has to be partitioned among the players. The challenge is to decide whether to
provision the public good, and if so, which players will receive usage permissions and for what
prices, all while making sure that the payments cover the cost.

The problem was extensively studied in both economics and algorithmic game theory and many
variants were suggested and analyzed (e.g., [17, 19, 21, 23, 2, 3, 8, 18, 16]). However, in almost all
variants only a single good is considered.

In this paper we attempt to fill this lacuna and introduce combinatorial cost sharing, where
multiple goods can be provisioned and both costs and preferences depend on the selected com-
bination of goods. While combinatorial cost sharing is a natural generalization of the basic cost
sharing scenario, from a technical perspective it is radically different as we leave the relatively safe
single parameter world and cross the bridge to the realm of multi parameter mechanism design.
Nevertheless, we will see that good mechanisms for combinatorial cost sharing do exist.

∗Weizmann Institute of Science. The first author is the incumbent of the Lilian and George Lyttle Career De-
velopment Chair. Work supported in part by the I-CORE program of the planning and budgeting committee and
the Israel Science Foundation 4/11 and by EU CIG grant 618128. Emails: shahar.dobzinski@weizmann.ac.il,

shaharov59@gmail.com.

1

http://arxiv.org/abs/1704.08480v1

Simple Cost Sharing

The standard cost sharing setting (from now on, “simple cost sharing”) involves a set N of players
(|N | = n), where the value of player i is vi if player i receives a usage permission and 0 otherwise.
A known cost function C : 2N → R

+ specifies the cost of serving each subset of the players. A
(direct) mechanism for this problem receives as input the valuations of the players and outputs
the set of served players and the payment pi of every player i. It is standard to assume that the
mechanism is individually rational (for every i, pi ≤ vi), that pi ≥ 0 (no positive transfers) and
moreover pi = 0 if player i is not served.

Work on cost sharing in the AGT community mostly focuses on incentive compatible mech-
anisms, either dominant strategy or groupstrategyproof, that at the very least always cover the
cost. That is, in an instance where the mechanism serves the set ALG of players, C(ALG) ≤ Σipi.
Ideally, we will also not overcharge the players, at least not by much: a mechanism is β-budget
balanced if in every instance C(ALG) ≤ Σipi ≤ β · C(ALG).

We look for mechanisms that are economically efficient. Economic efficiency can be interpreted
in several ways, with the social welfare being the standard definition: SW (S) = Σi∈Svi − C(S).
Unfortunately, Feigenbaum et al. [10] show that no dominant strategy and budget balanced mech-
anism provides a finite approximation to the social welfare, and this result holds even if we only
require the mechanism to cover the cost1.

To overcome this, Roughgarden and Sundararajan [23] suggest an alternative quantification of
efficiency. First, one can use additive approximations, i.e., if OPT is the allocation that maximizes
the welfare, then in every instance SW (OPT) − SW (ALG) ≤ α · C(OPT), for some reasonable
α > 0. This benchmark allows the designer to shift the focus from instances with “low” welfare
– which are the raison d’etre of the impossibilities – to instances in which using a cost sharing
mechanism should yield a noticeable improvement in the efficiency.

A related notion discussed in [23] is minimizing the social cost, π(S) = C(S)+Σi/∈Svi, which is
the construction cost plus the “lost value” from not serving some of the players. Interestingly, the
social cost and the social welfare induce the same order on the allocations (i.e., if SW (S) ≥ SW (T)
then π(S) ≤ π(T)). Moreover, additive approximations to the social welfare imply multiplicative
guarantees on the social cost: SW (OPT) − SW (ALG) ≤ α · C(OPT) implies π(ALG) ≤ (α +
1) · π(OPT). Following [23], many papers study social cost minimization in various settings (e.g.,
[7, 18, 2, 3, 5, 14]. For the sake of compatibility with the literature, we state our results in terms of
approximation to the social cost, but in fact we prove essentially the same guarantees with respect
to the stronger notion of additive approximation.

The cost sharing literature is rich in beautiful results, but the jewel in the crown is probably the
Shapley value mechanism [21], which is a groupstrategyproof mechanism that exactly shares the
cost whenever C is a submodular function [21]. Roughgarden and Sundararajan [23] show that it
gives an approximation ratio of Hn = Σn

i=1
1
n to the social cost. It is known that the approximation

ratio of any mechanism that always covers the cost is Ω(log n) and that this is true even if we relax
the incentive compatibility requirement to strategyproofness [9]2.

1This impossibility is typical for mixed sign objectives, like the social welfare. The simple proof is instructive:
consider two players, each with vi = 1. The cost of serving any non-empty set is 1. The social welfare of the optimal
allocation (which is to serve both players) is 1, whereas the social welfare of any other allocation is 0. Therefore, in
any mechanism that provides a finite approximation to the welfare both players are served. To cover the cost, one
of the players, without loss of generality player 1, must pay p > 0. Consider now an instance with v1 = p

2
> 0 and

v2 = 1. The mechanism is incentive compatible so player 1 is not served. Hence, no matter whether the mechanism
serves player 2 or none of the players, the social welfare is 0. However, the optimal social welfare is v1 > 0.

2This impossibility of [9] is stated for budget balanced mechanisms, but the proof applies even to cost recovering
mechanisms.

2

The Model

The main purpose of this paper is to go beyond the single good setting. Toward this end, we
introduce combinatorial cost sharing. We present two formulations of combinatorial cost sharing.
The first is a more direct formulation which might help the reader to digest the setting more easily.
The second formulation – which is the one that is studied throughout the paper – is equivalent
in power but is notationally more involved. We use it since it makes the technical proofs more
readable.

A First Attempt. As in simple cost sharing, there is a set N which consists of n players, but
now there is a set M of public goods (for example, a pool, a gym, etc.). The mechanism has to
decide which goods to construct and if a good is constructed, which subset of the players will be
allowed to use it. Players might have complicated preferences over the goods in M (e.g., a combined
membership for the pool and the gym might be more valuable than the sum of the values of each
membership alone), thus the private valuation of player i is vi : 2

M → R. Note that this assumes
that there are no externalities in the sense that value of each player is determined only by the goods
he is served (in particular, the value does not depend on the other players who use these services).

Let C ′ : (2N)m → R be a known function that specifies the cost of every possible combination
of services. For example, C(S1, . . . , Sn) is the cost of serving the first good in M to the players in
S1 while serving the second good in M to the players in S2, and so on. We stress that we do not
make any assumptions on S1, . . . , Sn and in particular these sets are typically not disjoint.

The Main Formulation. The issue with the first formulation is that we often would like to
assume that the cost function belongs to some standard class, e.g., C ′ is submodular or subadditive.
However, as defined C ′ is not even a set function (its domain is (2N)m). We thus use a different
formulation that is equivalent in power. Define – for notational convenience – for each player i a set
Mi with Mi ∩Mi′ = ∅ for i 6= i′, where each j ∈ Mi represents a permission to consume a different
good. For example, if M is the set of public goods that can be constructed, we define for each player
i a set Mi, |Mi| = |M |, and think about the j’th item in Mi as permission for player i to use the
j’th public good in G. In particular player i is never interested in items from Mi′ , for i 6= i′. The
private valuation of player i is vi : 2

Mi → R. The cost function C : 2M1 × · · · × 2Mn → R specifies
the cost of every possible combination of services. Note that it is straightforward to express every
cost function in the first formulation as a cost function in the main formulation. In particular, C is
now a set function (the set of items is M1 ∪ · · · ∪Mn – recall that Mi ∩Mj for i 6= j), so standard
notions such as subadditivity and submodularity are defined in the usual sense.

Other Requirements. Due to the combinatorial richness of our domain, we are not able to de-
velop good groupstrategyproof mechanisms. Instead, we focus on dominant strategy ones. Following
the literature, we focus on mechanisms that satisfy individual rationality, no positive transfers and
always cover the cost or maybe are even β-budget balanced, for some reasonable β. We naturally
extend the social cost definition of [23] to multiple goods: π(~S) = C(~S) +

∑

i∈N [vi(Mi)− vi(Si)].
I.e., we still want to minimize the construction cost plus the lost value. We note that the extended
definition preserves the properties discussed above, e.g., additive approximations to the welfare
lead to multiplicative approximations to the social cost. We refer the reader to the preliminaries
section for exact definitions.

3

Cost Recovering Mechanisms and the Potential Mechanism

The simple cost sharing domain is a single parameter one, where the private information of every
player consists of one number. Thus, to design a dominant strategy mechanism one can focus on the
quite powerful family of monotone algorithms. In fact, the literature contains powerful techniques
for designing groupstrategyproof mechanisms, for various notions of groupstrategyproofness (e.g.,
the Moulin family of mechanisms [19] and acyclic mechanisms [18]).

In contrast, the combinatorial cost sharing domain is a multi-parameter one. The difficulty of
designing useful mechanisms for multi-parameter domains is well known. The root of evil is the lack
of general design techniques except the VCG family. For example, if the domain is unrestricted,
then the only possible dominant strategy mechanisms are affine maximizers [22], a slight variation
of VCG mechanisms. In general, more restricted domains as ours do exhibit non VCG mechanisms,
but the VCG family remains the main tool at our disposal.

However, while VCG is effective for welfare maximization, in cost sharing settings we also need
to cover the construction cost. Unfortunately, conventional wisdom has it that the revenue of the
VCG mechanism is uncontrollable and tends to be low3 [1]. The main technical contribution of this
paper challenges this – we do manage to “tame” the VCG beast and obtain VCG based mechanisms
that are approximately budget balanced.

For simplicity, we start our journey by constructing VCG based mechanisms that always cover
the cost for simple cost sharing, so the valuation of each player i can be described by a single
number: vi if served and 0 otherwise. In general, affine maximizers can have both (multiplicative)
player weights and (additive) allocations weights. The former does not seem to be very useful, so
we focus on affine maximizers of the form:

argmax
S⊆N

∑

i∈S

vi −H(S) (1)

where H : 2N → R is a function that does not depend on the vi’s. If S is the allocation that
maximizes (1) for the valuation profile v, then the payment of player i is:

pi =
∑

j∈S−i

vj −H(S−i)−





∑

j∈S−{i}

vj −H(S)



 (2)

where S−i is the allocation that maximizes (1) when the valuation of player i is identically 0.
When H is the cost function C, we get a welfare maximizing mechanism. However, it is common

for this mechanism to run a deficit, e.g., in the special case of excludable public good (C(S) = 1
for every S 6= ∅), if vi > 1 for every player i, the revenue is 0.

Thus, to cover the incurred cost we need some other function H 6= C. Notice that from the
definition of S−i that

∑

j∈S−i
vj −H(S−i) ≥

∑

j∈S−{i} vj −H(S −{i}). Hence, the payment of the
i’th player pi is at least H(S) − H(S − {i}). A function H with the property that for every set
S ⊆ N it holds that

∑

i∈S H(S)−H(S −{i}) ≥ C(S) will lead to a dominant-strategy mechanism
for simple cost sharing that always collects payments that cover the incurred cost. For example, in
the special case of excludable public good, we can choose H(S) = H|S|, so if a set S is selected the

marginal cost to H of each player i ∈ S is at least H(S)−H(S −{i}) = 1
|S| and the total payment

is at least 1 (this special case was analyzed by Blumrosen and Dobzinski [4]).

3Some papers attempt to control the revenue of VCG in simpler auction settings by rebating the players, e.g.,
[20, 13, 6]. Also relevant is the work of Blumrosen and Dobzinski [4] which is the closest in spirit to ours (and in fact
is the inspiration to our work). One of their results essentially provide a cost-recovering VCG based mechanism for
the excludable public good problem. Their mechanism can be derived as a special case of our constructions.

4

Interestingly, for every cost function C the potential function of Hart and Mas-Colell [15] satisfies
these properties. Given a cooperative game with a set N of players and a cost function C, the
potential function is the unique function for which the sum of marginal contributions of every
coalition equals its cost, i.e., for every S ⊆ N ,

∑

i∈S PC(S)− PC(S − {i}) = C(S).
The potential function has several interesting properties, e.g., the marginal contribution PC(i|S)

coincides with the Shapley value of player i in the coalition S∪{i}. In addition, it is also known that
the worst-case welfare loss of the Shapley mechanism for simple cost sharing is given by PC(OPT)
[21].

We generalize and adapt the potential function to our needs: the potential function as defined in
[15] considers cooperative games, i.e., the cost function defined on subsets of N . Our generalization
considers allocations. Specifically, we define the marginal contribution of player i to the allocation
(S1, ..., Sn) by PC(S1, ..., Si−1, Si, Si+1, ..., Sn)− PC(S1, ..., Si−1, ∅, Si+1, ..., Sn).

We set the function H as in (1) to be our generalization of the potential function, and name the
new mechanism, a VCG mechanism using the potential function, the Potential Mechanism. Notice
that this gives a dominant strategy cost-recovering mechanism for every cost function C. We are
also able to prove efficiency guarantees if the cost function C is subadditive. Combined together,
we get the following general result:

Theorem: Let C be a subadditive cost function. Then, the Potential mechanism always recovers
the cost and provides an approximation ratio of 2Hn to the social cost. If C is submodular (or even
XOS) the approximation ratio improves to Hn.

Again, the approximation ratio is essentially tight due to the impossibility of [9]. For simple cost
sharing, there is a dominant-strategy cost recovering mechanism that provides an approximation
ratio of Hn for any cost function, by running the Shapley value mechanism “on top” of the VCG
mechanism [25]. Other works that focus on cost recovering mechanisms are [12, 11]. In particular,
[12] handles some multi-parameter domains. However, their results are obtained via a reduction to
the single parameter setting, e.g., by assuming additive valuations or considering “all or nothing”
solutions. This approach leads to poor approximation ratios – linear in the number of goods.

The Main Result

The main technical effort of this work is in identifying three settings in which the potential mech-
anism is not only efficient and cost recovering, but also budget balanced.

Theorem: Let C be a submodular cost function. The Potential Mechanism is Hn-budget-balanced
and provides an approximation ratio of Hn to the social cost in each of the following settings:

• Supermodular valuations.

• General symmetric valuations and player-wise symmetric cost function4.

• Two players (n = 2) with general valuations.

Some results were already known for some special cases of the symmetric setting, but even then
submodular valuations are required: Mehta et al. [18] consider non-metric fault-tolerant uncapac-
itated facility location. Bleischwitz and Schoppmann [3] study metric fault tolerant uncapacitated
facility location. The mechanisms of Mehta et al. and of Bleischwitz and Schoppmann are actually
generalizations of Moulin mechanisms [19, 21] and rely in their core on pushing single parameter

4A valuation is symmetric if vi(S) = vi(T) whenever |S| = |T |. A cost function is player-symmetric if C(~S) = C(~T)
whenever |Si| = |Ti| for all i.

5

cost sharing techniques to their limit. In contrast, in the symmetric setting our mechanism does
not make any assumption on the valuations, except monotonicity.

Limitations and Impossibilities

Our results are tight in several aspects. First, even for excludable public good there is an instance
in which the approximation ratio of the potential mechanism is Θ(log n) and the mechanism is
Θ(log n) budget balanced. Actually, this is true for every VCG-based mechanism that uses a
symmetric function5 (i.e., for ~S, ~T with |~S| = |~T |, H(~S) = H(~T)):

Theorem: Let A be a symmetric VCG-based mechanism for the excludable public good problem
(i.e., a mechanism that maximizes

∑

i vi(Si) −H(~S) for some symmetric H) which always covers
the incurred cost. Suppose that A provides an approximation ratio of n1−ǫ to the social cost, for
some ǫ > 0. Then, there is an instance in which both the approximation ratio is Ω(log n) and the
sum of payments collected by the mechanism is Ω(log n) times the incurred cost.

Next we show that one cannot forgo the assumption of a restricted cost function since there is a
(non-subadditive) cost function for which the approximation ratio of the potential mechanism is
Ω(n). Moreover, the potential mechanism is Ω(n)-budget-balanced for a submodular cost function
and unit demand valuations (a simple case of submodular valuations). A full mapping of the families
for which the potential mechanism provides good approximation ratios is an open problem.

We also show that while one have many possible choices for the function H in (1), the choice
to use the potential function is not arbitrary: consider a cost-recovering VCG based mechanism
∑

i vi(Si)−H(~S) where H is normalized. Then, H(~S) ≥ PC(~S) for every ~S.

Open Questions

Our work leaves many exciting questions open. We discuss some of them now.

Computational Issues. In this work we focused on proving the existence of mechanisms with
good guarantees. An interesting question is to understand whether there are mechanisms with
good guarantees that are computationally efficient. We do not know the answer in general, but we
do note that in the case of supermodular valuations and a submodular cost function the potential
mechanism is computationally efficient whenever the value of the potential function is easy to
compute. To see this, we point out that one of our results states that the potential function
of a submodular cost function is submodular as well. Therefore, maximizing

∑

i vi(Si) − PC(~S)
reduces to the problem of maximizing a supermodular function, which is equivalent to minimizing
submodular function. Minimizing a submodular function can be done in polynomial time [24]
assuming oracle access to the potential function.

Now observe that the potential function is easy to evaluate given the Shapley values (since the
marginals of the potential function correspond to Shapley values). We conclude that in this case
the potential mechanism is easy to compute whenever computing Shapley values is easy.

The Performance of the Potential Mechanism. We identified three settings in which the
potential mechanism is Hn-budget-balanced and provides an approximation ratio of Hn to the
social cost. When the cost function is subadditive, the social cost approximation is 2Hn, but it
is not clear whether we get budget balance for some interesting classes of valuations. A first step

5Note that the potential mechanism is symmetric when C is symmetric, and in particular is symmetric for exclud-
able public good.

6

in this direction will be to determine the overcharging of the potential mechanism for simple cost
sharing when the cost function is subadditive.

Other Mechanisms for Combinatorial Cost Sharing. The potential mechanism is a VCG-
based mechanism. Are there non VCG-based mechanisms with good guarantees, especially for
settings in which the potential mechanism fails to deliver, e.g., submodular cost and valuation
functions?

The Power of GSP vs. Strategyproof Mechanisms. We know very little about groupstrat-
egyproof mechanisms for combinatorial cost sharing. We provide a mechanism that guarantees a
poor approximation ratio of Ω(n) (see Section 7). Are there better groupstrategyproof mechanisms?

Impossibilities for Combinatorial Cost Sharing. The potential mechanism provides an ap-
proximation ratio of Hn to the social cost and is Hn-budget-balanced for supermodular valuations
and submodular cost functions. Is there a strategyproof combinatorial cost-sharing mechanism for
submodular cost function and supermodular valuation functions which is β-budget-balanced and
provides approximation ratio of ρ to the social cost, where β, ρ < Hn?

In particular, the only unrestricted impossibility result that applies to combinatorial cost sharing
is the Ω(log n) bound to the social cost of [9] which is proved for the restricted case of excludable
public good. It seems that completely new ideas are needed to prove the optimality of the potential
mechanism in richer combinatorial settings.

2 Preliminaries

In combinatorial cost sharing we have a set N of n players and M =
⋃n

i=1Mi a set of services,
where for every i 6= j: Mi ∩Mj = ∅. Every player i ∈ N has a valuation function vi : 2

Mi → R
+.

There is a cost function C : 2M1× . . .×2Mn → R
+ that specifies the cost of every possible allocation

of services. The output is (~S, ~p) where Si ⊆ Mi is the allocation of services to player i, and pi ≥ 0
is player i’s payment.

We assume that the cost function and the valuations are monotone (i.e., S ⊆ T implies C(S) ≤
C(T) and vi(S) ≤ vi(T)) and normalized (i.e., C(∅) = 0 and vi(∅) = 0).

We note that since the Mi’s are disjoint then 2M = 2M1 × . . . × 2Mn . Thus, we sometimes
refer to functions from 2M1 × . . . × 2Mn as functions from 2M , e.g., C(S1, . . . , Sn) will be denoted
C (
⋃n

i=1 Si), where Si ⊆ Mi for each 1 ≤ i ≤ n. In addition, For a vector of pairwise disjoint sets
~S = (S1, . . . , Sn) and a set T ⊆ Mi we let ~S−T be the vector (S1, ..., Si−1, Si−T, Si+1, ..., Sn). We
similarly define the usual set operations (e.g., union) between two vectors of disjoint sets ~S, ~T as
applying this operation on all pairs of the form (Si, Ti).

Note that simple cost sharing is a special case of combinatorial cost sharing: set |Mi| = 1 for
every player i. In this case |M | = |N | and we may think of S ⊆ N as a set of served players: i ∈ S
if Si 6= ∅. An important special case of simple cost sharing is excludable public good : C(~S) = 1 for
every ~S 6= (∅, ..., ∅) and C(∅) = 0.

A (direct) combinatorial cost sharing mechanism takes the valuations of the players and out-
puts an allocation of services and prices. In this paper we consider only mechanisms that satisfy
individual rationality (IR), if the mechanism charges player i an amount pi, then pi ≤ vi(Si). A
second requirement is no positive transfers (NPT), meaning that pi ≥ 0. We now discuss other
desired properties of mechanisms.

7

Incentive Compatibility The focus of most this paper is in dominant-strategy mechanisms: a
combinatorial cost-sharing mechanism is strategyproof or truthful (in dominant strategies), if for
every player i with valuation function vi and for every other valuation function v′i it holds that

vi(Si)−pi ≥ vi(S
′
i)−p′i where (

~S, ~p) and (~S′, ~p′) are the outputs of the mechanism for ~v and (v′i, ~v−i),
respectively. Groupstrategyproofness will be defined when needed, in Section 7.

Budget Balance. A cost-sharing mechanism is budget-balanced if the payments charged from the
players cover exactly the incurred cost, i.e. if the mechanism’s output is (~S, ~p) then

∑

i∈N pi = C(~S).
This notion can be relaxed: a cost-sharing mechanism is β-budget-balanced (for β ≥ 1) if for
every valuation profile and every cost function the mechanism outputs a services allocation ~S and
payments vector ~p such that C(~S) ≤

∑

i∈N pi ≤ β · C(~S).

Economic Efficiency. Roughgarden and Sundararajan [23] suggested to quantify the inefficiency
of cost-sharing mechanisms by the notion of social cost, denoted π(S), which is the incurred cost
of the mechanism plus the excluded values. We extend the definition of the social cost to the
combinatorial setting:

π(~S) = C(~S) +
∑

i∈N

[vi(Mi)− vi(Si)]

A cost sharing mechanism is a ρ-approximation to the social cost if for every valuation profile

the social cost of its outcome ~S is at most ρ ≥ 1 times that of the allocation
−−−→
OPT that minimizes

the social cost: π(~S) ≤ ρ · π(
−−−→
OPT).

Cost and Valuation Functions

A function C : 2M → R
+ is submodular if for every two sets S, T ⊆ M , C(S) + C(T) ≥ C(S ∪

T) + C(S ∩ T). Equivalently, a function C is submodular if for every two sets T ⊆ S ⊆ M and
an element x ∈ M − S it holds that C(T ∪ {x})− C(T) ≥ C(S ∪ {x})− C(S). A cost function C
is subadditive if for every S, T ⊆ M , C(S) + C(T) ≥ C(S ∪ T). A cost function C is player-wise
symmetric if for every two allocations ~S, ~T ∈ 2M1 × · · · × 2Mn with |Si| = |Ti| for every i ∈ N in
holds that C(~T) = C(~S).

v is supermodular if for every two sets S, T ⊆ Mi, it holds that v(S)+v(T) ≤ v(S∪T)+v(S∩T).
Equivalently, for every two sets T ⊆ S and an element x ∈ M −S it holds that v(T ∪{x})−v(T) ≤
v(S ∪ {x}) − v(S). A function v : 2M → R is symmetric if for every two sets S, T ⊆ Mi with
|S| = |T | it holds that v(S) = v(T). v is additive if for every S it holds that v(S) =

∑

j∈S v({j}).
v is XOS if there exists additive valuations a1, . . . , at such that for every S, v(S) = maxr ar(S).
The class of submodular valuations is contained in the class of XOS valuations which is contained
in the class of subadditive valuations, and these containments are strict.

3 The Potential Function and its Properties

The potential mechanism is an affine maximizer whose output allocation is defined by:

arg max
~S=(S1,...,Sn)

∑

i

vi(Si)−H(~S)

where H : 2M1 × · · · × 2Mn → R is a publicly known function. In this section we describe the
function H we use and its properties.

The function H we use is an adaptation of the Potential Function of Hart and Mas-Colell
[15]. Given a cooperative game with N players and cost function C, Hart and Mas-Colell define a

8

potential function to be a normalized function in which the sum of discrete gradients of any set of
players N ′ equals the cost C(N ′). We naturally extend this definition:

Definition 3.1 (potential function for combinatorial cost sharing) Given a normalized cost
function C : 2M1 × · · · × 2Mn → R

+ we define a potential function PC : 2M1 × · · · × 2Mn → R
+ to

be any normalized function with the following property:

• For every allocation ~S = (S1, ..., Sn) such that Si ⊆ Mi, the sum of discrete gradients of the

function is exactly the cost:
∑

i∈N

[

PC

(

~S
)

− PC

(

~S − Si

)]

= C
(

~S
)

.

Notice that for simple cost sharing the definitions of [15] and ours coincide. The proof of the next
proposition essentially follows from [15]. We bring it in Appendix A.1 for completeness.

Proposition 3.2 For every normalized cost function C there is a unique potential function PC .
Moreover, it holds that PC(~S) =

∑

I⊆N
C(∪i∈ISi)

|I|·(n
|I|)

.

Following [15], there are a couple of useful observations related to the potential function. First, by
rearranging:

PC(~S) =
∑

I⊆N

C (∪i∈ISi)

|I| ·
(n
|I|

) =

n
∑

l=1

∑

I⊆N,|I|=l

C (∪i∈ISi)

|I| ·
(n
|I|

)

Let D(~S, l) =
∑

I⊆N,|I|=l
C(∪i∈ISi)

|I|·(n
|I|)

. Notice the D(~S, l) is the expected density (cost divided by the

number of players) of a set I of players that is chosen uniformly at random among all sets of size
l, when each player i ∈ I is served Si and player i /∈ I is not served at all. Thus, PC(~S) equals the
sum of expected densities of sets of size 1, . . . , n.

A second observation (again, following [15]) is that the marginal utility PC(~S) − PC(~S − Si)
equals the Shapley value of player i in the cooperative game with N players and cost function C ′,
where the cost of serving a set T is C ′(T) = C(∪i∈TSi).

We now use these observations to prove several useful properties of our potential function.

Claim 3.3 Let C be a monotone cost function. The potential function PC is monotone as well.
Furthermore, if C is submodular then PC is submodular as well.

Proof: Observe that PC(·) is a sum of functions C (∪i∈ISi), each multiplied by a constant 1
|I|·(n

|I|)
.

Each of these functions is monotone because C is monotone. Since a sum of monotone functions is
monotone as well, we conclude that PC is monotone.

The second part of the claim is almost identical, by replacing “monotone” with “submodular”
in the previous paragraph.

Next we prove that for every submodular cost function C and ~S, Hn · C(~S) ≥ PC(~S) ≥ C(~S).
We also prove a similar bound for subadditive cost functions.

Proposition 3.4 Let C be an XOS (in particular, submodular) cost function. Then, for every ~S,

PC(~S) ≥ C(~S). If C is subadditive then for every ~S, PC(~S) ≥
C(~S)
2 .

Proof: We will need the following folklore claim:

Claim 3.5 Let C ′ : 2N → R be a monotone function. Choose a set T of size l uniformly at random
among all such sets. Then:

1. If C ′ is XOS then n
l · E[C ′(T)] ≥ C ′(N).

9

2. If C ′ is subadditive then ⌈nl ⌉ · E[C ′(T)] ≥ C ′(N).

Proof: (of Claim 3.5)

1. By the definition of an XOS valuation, there is some additive valuation a such that a(N) =
C ′(N). Moreover, for every S, C ′(S) ≥ a(S). Consider choosing at random a set T of size l.
Each element j is selected with probability l

N . Let Aj be the random variable that gets the
value a({j}) if j is selected and 0 otherwise. Observe that:

E[C ′(T)] ≥ E[a(T)] = Σj∈NAj = Σj∈N
l

n
· a({j}) =

l

n
· C ′(N)

2. Let t = ⌊nl ⌋. Choose t disjoint sets T1, . . . , Tt each of size l, uniformly at random. If n does not
divide l, construct an additional set Tt+1 from taking N −∪jTj in addition to l− |N −∪jTj |
items that are chosen uniformly at random. Now choose a set R by choosing one of the sets

T1, . . . , T⌈n
l
⌉ uniformly at random. Notice that by subadditivity Σ

⌈n
l
⌉

i=1C
′(Ti) ≥ C ′(N). Thus,

E[R] ≥ 1
⌈n

l
⌉ ·C

′(N). The proposition follows since R is a set of size l which is chosen uniformly

at random.

We can now prove Proposition 3.4. Fix ~S = (S1, . . . , Sn). Obtain a function C ′ : 2N → R by
C ′(I) = C(∪i∈ISi). Observe that if C is subadditive (XOS) then C ′ is subadditive (XOS). For
every l, let D′(l) = D(~S, l) denote the expected density of a set of size l in C ′. Notice that by
Claim 3.5 for XOS functions we have that D′(l) ≥ l

n · C ′(N). Now, if C ′ is XOS, then:

PC(~S) = Σn
l=1D

′(l) ≥ Σn
l=1

l
n · C ′(N)

l
= Σn

l=1

C ′(N)

n
= C ′(N)

The proof is similar if C ′ is subadditive:

PC(~S) = Σn
l=1D

′(l) ≥ Σn
l=1

C ′(N)

⌈nl ⌉ · l
≥

C ′(N)

2

Claim 3.6 Let C be a monotone cost function. Then, for every ~S, PC(~S) ≤ Hn · C(~S).

Proof: C is monotone, so for every ~S and l we have the following bound on the average density

of a random set of size l: D(~S, l) ≤ C(~S)
l . Thus, PC(~S) = Σn

l=1D(~S, l) ≤ Σn
l=1C(~S) · 1

l = C(~S) · Hn.

4 The Main Result: The Potential Mechanism

In this section we present our main result, the Potential Mechanism. Specifically, given a cost
function C : 2M1 × . . .× 2Mn → R

+ and its potential function PC , define the Potential Mechanism
be the following affine maximizer:

−−−→
ALG = arg max

~S=(S1,...,Sn)

∑

i∈N

vi(Si)− PC(~S) (3)

10

We charge player i his VCG payment which is given by the formula:

pi =





∑

j∈N

vj(ALG
−i
j)− PC(

−−−−→
ALG−i)



−





∑

j∈N\{i}

vj(ALGj)− PC(
−−−→
ALG)





where
−−−−→
ALG−i = (ALG−i

1 , . . . , ALG−i
i−1, ∅, ALG

−i
i+1, . . . , ALG

−i
n) is the allocation that maximizes (3)

with the additional constraint ALG−i
i = ∅. Note that there might be several allocations that

maximize (3), hence the mechanism is defined up to the implementation of a tie breaking rule.

Theorem 4.1 For every valuation profile and cost function C the Potential Mechanism is strat-
egyproof, individually rational, always covers the incurred cost and satisfies no positive transfers.
Moreover:

1. When C is subadditive the mechanism provides an approximation ratio of 2Hn to the social
cost. When C is XOS (in particular, submodular) the mechanism provides an approximation
ratio of Hn to the social cost.

2. When C is submodular the mechanism is Hn-budget-balanced in each of the following settings:

(a) The valuation functions are supermodular.

(b) The valuation functions are symmetric and the cost function C is player-wise symmetric.

(c) There are two players.

Notice that the potential mechanism exhibits a “one size fits all” property: the performance guaran-
tees improve as the more restricted the functions are although the mechanism is defined identically
for all cost and valuation functions.

We note that strategyproofness, individual rationality, and no positive transfers of the potential
mechanism follow directly from the properties of the VCG mechanism. The rest of the section
is devoted to proving that the mechanism always recovers the cost and is approximately efficient
and budget balanced in certain settings and in Section 6 we discuss some of the limitations of the
potential mechanism.

The Potential Mechanism: Cost Recovering and Efficiency

Lemma 4.2 The potential mechanism always covers the incurred cost, i.e. for every outcome
(−−−→
ALG, ~p

)

, it holds that
∑

pi ≥ C(
−−−→
ALG).

Proof: The payment of player i is given by:

pi =





∑

j∈N

vj(ALG
−i
j)− PC

(

−−−−→
ALG−i

)



−





∑

j∈N\{i}

vj(ALGj)− PC(
−−−→
ALG)





Notice that
∑

j∈N vj(ALG
−i
j)− PC

(−−−−→
ALG−i

)

≥
∑

j∈N\{i} vj(ALGj)−PC(
−−−→
ALG−ALGi) since

−−−→
ALG−ALGi is one of the alternatives that are considered for ALG−i, therefore

pi ≥





∑

j∈N\{i}

vj(ALGj)− PC(
−−−→
ALG−ALGi)



−





∑

j∈N\{i}

vj(ALGj)− PC(
−−−→
ALG)





= PC(
−−−→
ALG)− PC(

−−−→
ALG−ALGi)

11

summing over all players, we get

∑

i∈N

pi ≥
∑

i∈N

PC(
−−−→
ALG)− PC(

−−−→
ALG−ALGi) = C(

−−−→
ALG)

where the last equality is by the definition of the potential function.

Next we prove the efficiency guarantees of the mechanism. For completeness we prove guarantees
for both the social cost and additive approximations, although the latter implies the former [23].

Lemma 4.3 Let C be a subadditive cost function. Then the approximation ratio of the Potential
Mechanism to the social cost is 2Hn. If C is XOS then the approximation ratio improves to Hn.

Similarly, SW (
−−−→
OPT)−SW (

−−−→
ALG) ≤ (Hn−1)·C(

−−−→
OPT) if C is XOS and SW (

−−−→
OPT)−SW (

−−−→
ALG) ≤

(2Hn − 1) · C(
−−−→
OPT) if C is subadditive.

Proof: We first prove the social cost guarantee for submodular C:

π(
−−−→
ALG) =

∑

i∈N

[vi(Mi)− vi(ALGi)] + C(
−−−→
ALG)

≤
∑

i∈N

[vi(Mi)− vi(ALGi)] + PC(
−−−→
ALG)

≤
∑

i∈N

[vi(Mi)− vi(OPTi)] + PC(
−−−→
OPT) ≤ Hn · π(

−−−→
OPT)

The first inequality is due to the first part of Proposition 3.4: for every XOS cost func-

tion C, C(
−−−→
ALG) ≤ PC(

−−−→
ALG). The second inequality holds since

−−−→
ALG maximizes (3), therefore

∑

i∈N vi(OPTi)−PC(
−−−→
OPT) ≤

∑

i∈N vi(ALGi)−PC(
−−−→
ALG). The last inequality is due to Proposi-

tion 3.6 which states that PC(
−−−→
OPT) ≤ Hn · C(

−−−→
OPT). The proof for subadditive C is very similar

except that we use the second part of Proposition 3.4.
The proof for the additive approximation guarantee is similar (using the same propositions):

SW (
−−−→
OPT)− SW (

−−−→
ALG) =

∑

i∈N

vi(OPTi)− C(
−−−→
OPT)−

[

∑

i∈N

vi(ALGi)− C(
−−−→
ALG)

]

≤
∑

i∈N

vi(OPTi)− C(
−−−→
OPT)−

[

∑

i∈N

vi(ALGi)− PC(
−−−→
ALG)

]

≤
∑

i∈N

vi(OPTi)− C(
−−−→
OPT)−

[

∑

i∈N

vi(OPTi)− PC(
−−−→
OPT)

]

= PC(
−−−→
OPT)− C(

−−−→
OPT) ≤ (Hn − 1) · C(

−−−→
OPT)

Interestingly, up until now we have not used the property that the Mi’s are disjoint. That is,
consider the usual setting of a combinatorial auction with n players and a set of M items. Let C
be a function that specifies the cost of every allocation. The same proofs imply that the potential
mechanism always recovers the cost in this general setting. Furthermore, if C is subadditive then
the output is approximately efficient.

12

The Potential Mechanism: Budget Balance

Most of the technical difficulty in the proof of Theorem 4.1 is showing that the mechanism is
Hn-budget-balanced. We have already shown that the potential mechanism always cover the cost
(Lemma 4.2). We remain with showing that the sum of payments of the mechanism is bounded
from above by Hn times the incurred cost.

Lemma 4.4 In each one of the settings (2a), (2b) and (2c) of theorem 4.1 the following holds: for

every outcome of the mechanism (
−−−→
ALG, ~p) we have that

∑

i∈N pi ≤ Hk · C(
−−−→
ALG).

Recall that the potential mechanism is defined up to a tie-breaking rule. For supermodular
valuations and n = 2 the proofs below work directly for any tie breaking rule. For the symmetric
setting, we start with an arbitrary tie-breaking rule and modify it. We prove budget balance for
the modified tie-breaking rule and see that this implies budget balance for the original tie breaking
rule. The modified rule is defined as follows: for every player i define an arbitrary order on Mi

and denote its elements as Mi =
{

1i, . . . , |Mi|
i
}

. If player i gets s items in the original rule then
allocate player i items {1i, . . . , si}. Notice that due to symmetry all costs and values remain the
same, so this new allocation still maximizes the affine maximizer. Finally, observe that since that
player i is always indifferent between the bundles he receives in the original and modified rules, we
may assume that the price of these bundles is identical as well, so his payment remains the same.
Hence, budget balance for the modified rule implies budget balance for the original rule as well.

In order to prove lemma 4.4 we use the following claim:

Claim 4.5 In each one of settings (2a), (2b) and (2c) of theorem 4.1:

n
∑

i=1





∑

j∈N

vj(ALG
−i
j)− PC(

−−−−→
ALG−i)



 ≤ (n− 1) ·





n
∑

j=1

vj(ALGj)− PC(
−−−→
ALG)



 (4)

Before providing the proof of claim 4.5 in subsection 4.1, we show how it implies lemma 4.4.
Proof: (of lemma 4.4) Consider the sum of the payments:

n
∑

i=1

pi =
n
∑

i=1









∑

j∈N

vj(ALG
−i
j)− PC(

−−−−→
ALG−i)



 −





∑

j∈N\{i}

vj(ALGj)− PC(
−−−→
ALG)









by claim 4.5 the RHS is bounded from above by:

(n− 1) ·





n
∑

j=1

vj(ALGj)− PC(
−−−→
ALG)



 −
n
∑

i=1





∑

j∈N\{i}

vj(ALGj)− PC(
−−−→
ALG)





re-arranging, we observe that
∑n

i=1

∑

j∈N\{i} vj(ALGj) = (n− 1) ·
∑n

j=1 vj(ALGj). Therefore the
above equals to:

(n − 1) ·





n
∑

j=1

vj(ALGj)− PC(
−−−→
ALG)



− (n− 1) ·





n
∑

j=1

vj(ALGj)



+ n · PC(
−−−→
ALG) = PC(

−−−→
ALG)

By proposition 3.6 we get that PC(
−−−→
ALG) ≤ Hn · C(

−−−→
ALG). Hence,

∑n
i=1 pi ≤ Hn · C(

−−−→
ALG).

13

4.1 Proof of Claim 4.5

The proof consists of several steps: Claim 4.7 shows a lower bound on
∑n

i=1 PC(
−−−−→
ALG−i), Claim

4.8 gives an upper bound on
∑n

i=1

∑

j∈N vj(ALG
−i
j) for supermodular valuations and n = 2, and

claim 4.9 gives a similar bound for the symmetric setting. The following technical claim will be
used:

Claim 4.6 Let H : 2M → R be a normalized function, and consider
{

T i
}n

i=1
such that for every i,

T i ∈ 2M and
⋂n

i=1 T
i = ∅. Suppose that either (1) H is supermodular or (2) for every 1 ≤ i, j ≤ n,

T i ∪ T j ∈
{

T i, T j
}

. Then it holds that
∑n

i=1 H(T i) ≤
∑n−1

i=1 H
(

T i+1 ∪
(

⋂i
ℓ=1 T

ℓ
))

.

Proof: If H is supermodular, then beginning with the first two summands of the LHS of the
claim, by supermodularity of H:

H(T 1) +H(T 2) ≤ H(T 1 ∪ T 2) +H(T 1 ∩ T 2)

shifting our focus to H(T 1 ∩ T 2) and the third summand H(T 3) yields

H(T 1 ∩ T 2) +H(T 3) ≤ H
((

T 1 ∩ T 2
)

∪ T 3
)

+H
(

T 1 ∩ T 2 ∩ T 3
)

iterating the above for n times shows

H
(

T 1 ∩ . . . ∩ T n−1
)

+H(T n) ≤ H

((

n−1
⋂

i=1

T i

)

∪ T n

)

+H

(

n
⋂

i=1

T i

)

by combining everything we get

n
∑

i=1

H(T i) ≤
n−1
∑

i=1

H

(

T i+1 ∪

(

i
⋂

ℓ=1

T ℓ

))

+H

(

n
⋂

i=1

T i

)

since
⋂n

i=1 T
i = ∅ and H (∅) = 0, the claim follows.

If T i ∪ T j ∈ {T i, T j} for every 1 ≤ i, j ≤ n, then without loss of generality when T i ∪ T j = T j

we have that T i ∩ T j = T i. Thus, a similar proof can be applied on
{

T i
}

i∈N
with strict equality.

The next claim bounds the sum of the PC ’s as they appear in Claim 4.5.

Claim 4.7 Suppose that the cost function C is submodular and normalized, then

−
n
∑

i=1

PC(
−−−−→
ALG−i) ≤ −

n−1
∑

i=1

PC

(−−−−−−−→
ALG−[i+1]

⋃

(

∩i
ℓ=1

−−−−→
ALG−ℓ

))

Proof: Since C is submodular, by Proposition 3.3 it holds that PC is submodular as well. Hence,

−PC is supermodular and we can apply Claim 4.6 with −PC and
{−−−−→
ALG−i

}n

i=1
(observe that for

every i, ALG−i
i = ∅ hence

⋂n
i=1

−−−−→
ALG−i = ∅).

The next two claims bound the sum of valuations
∑n

i=1

∑n
j=1 vj(ALG

−i
j). Each of the claims

refers to different settings of Theorem 4.1.

Claim 4.8 Suppose that each vi is supermodular or that n = 2. Then

n
∑

i=1

n
∑

j=1

vj(ALG
−i
j) ≤

n−1
∑

i=1

n
∑

j=1

vj

(

ALG
−[i+1]
j

⋃

(

∩i
ℓ=1ALG

−ℓ
j

))

14

Proof: Define V : 2M1 × · · · × 2Mn → R by V (~T) =
∑n

j=1 vj(Tj). It is easy to see that V is

normalized. Also, since ALG−i
i = ∅, it holds that

⋂n
i=1

−−−−→
ALG−i = ∅. Observe that if the vi’s are

supermodular then V is supermodular as well. Applying claim 4.6 with V and
{−−−−→
ALG−i

}n

i=1
:

n
∑

i=1

V (
−−−−→
ALG−i) ≤

n−1
∑

i=1

V

(−−−−−−−→
ALG−[i+1]

⋃

(

∩i
ℓ=1

−−−−→
ALG−ℓ

))

=

n−1
∑

i=1

n
∑

j=1

vj

(−−−−−−−→
ALG

−[i+1]
j

⋃

(

∩i
ℓ=1

−−−−→
ALG−ℓ

j

))

For n = 2 we have that:

2
∑

i=1

V (
−−−−→
ALG−i) = v1(ALG

−2
1) + v2(ALG

−1
2) =

2
∑

j=1

vj

(

ALG−2
j

⋃

ALG−1
j

)

Claim 4.9 Suppose that each vi is symmetric and C is a player-wise symmetric cost function.
Then:

n
∑

i=1

n
∑

j=1

vj(ALG
−i
j) ≤

n−1
∑

i=1

n
∑

j=1

vj

(

ALG
−[i+1]
j

⋃

(

∩i
ℓ=1ALG

−ℓ
j

))

Proof: We prove the claim assuming the tie breaking rule described earlier. Consider the LHS
of the claim and change the order of summation:

n
∑

i=1

n
∑

j=1

vj(ALG
−i
j) =

n
∑

j=1

n
∑

i=1

vj(ALG
−i
j)

Fix player j and consider
∑n

i=1 vj(ALG
−i
j). By the implementation, for every 1 ≤ i ≤ n, ALG−i

j =

{1j , . . . , |ALG−i
j |j}. Therefore, for every 1 ≤ i, k ≤ n it holds that ALG−i

j ∪ALG−k
j ∈

{

ALG−i
j , ALG−k

j

}

.

Moreover, since ALG−j
j = ∅,

⋂n
i=1 ALG

−i
j = ∅. Applying claim 4.6 on vj and

{

ALG−i
j

}n

i=1
:

n
∑

i=1

vj(ALG
−i
j) ≤

n−1
∑

i=1

vj

(

ALG
−[i+1]
j

⋃

(

∩i
ℓ=1ALG

−ℓ
j

))

Summing over all players, we get

n
∑

j=1

n
∑

i=1

vj(ALG
−i
j) ≤

n
∑

j=1

n−1
∑

i=1

vj

(

ALG
−[i+1]
j

⋃

(

∩i
ℓ=1ALG

−ℓ
j

))

Changing the order of summation, the RHS equals to

n−1
∑

i=1

n
∑

j=1

vj

(

ALG
−[i+1]
j

⋃

(

∩i
ℓ=1ALG

−ℓ
j

))

We can now finish the proof of claim 4.5.

15

Proof: (of claim 4.5) By combining claims 4.7, 4.8 and 4.9:

∑n
i=1

[

∑n
j=1 vj(ALG

−i
j)− PC(

−−−−−→
ALG−i)

]

≤
∑n−1

i=1

[

∑n
j=1 vj

(

ALG
−[i+1]
j

⋃

(

∩i
ℓ=1ALG

−ℓ
j

))

− PC

(−−−−−−−→
ALG−[i+1]

⋃

(

∩i
ℓ=1

−−−−→
ALG−ℓ

)

)]

We define n− 1 allocations: for every 1 ≤ i ≤ n− 1 we let
−→
Si =

−−−−−−−→
ALG−[i+1] ∪

(

⋂i
ℓ=1

−−−−→
ALG−ℓ

)

.
−−−→
ALG

maximizes (3) so
∑n

j=1 vj(S
i
j)− PC(

−→
Si) ≤

∑n
j=1 vj(ALGj)− PC(

−−−→
ALG) for every

−→
Si. Hence:

n
∑

i=1





∑

j 6=i

vj(ALG
−i
j)− PC(

−−−−→
ALG−i)



 ≤ (n− 1) ·





n
∑

j=1

vj(ALGj)− PC(
−−−→
ALG)





5 Limitations of VCG-Based Mechanisms

In this section we discuss some limitations of VCG-based mechanisms. We first ask whether our
analysis of the potential mechanism is tight and prove that this is indeed the case. Our result is
in fact more general: no symmetric VCG-based mechanism can do much better. We then show
that the potential function is the “minimal” choice for H(·) in the affine maximizer in a concrete
technical sense.

A word is in place regarding the definition of an affine maximizer. In general an affine maximizer
does not have to maximize over all allocations. This can be implemented by setting H(~S) = ∞
for an allocation ~S that is never selected by the affine maximizer. However, it is more convenient
to work with a function H that is monotone. This can be assumed without loss of generality:
suppose that there is ~S, j ∈ M such that H(~S) > H(~S + {j}). Note that by the monotonicity of
the valuations this implies that the affine maximizer never outputs ~S. To make H monotone, we
can set H(~S) = H(~S + {j}) – we still have that the affine maximizer always gives higher value to
~S + {j} and in case of equality we can assume that ~S is not selected by defining an appropriate tie
breaking rule.

A Lower Bound for Symmetric VCG-Based Mechanisms

We show that every VCG-based mechanism that always covers the cost and uses a symmetric
function does not provide better guarantees than the potential mechanism for the excludable public
good problem. Note that the potential mechanism is symmetric in this setting since the potential
function is symmetric if C is symmetric.

Theorem 5.1 Let A be a VCG-based mechanism for the excludable public good problem. I.e. A is
a mechanism that outputs

ALG = argmax
S⊆N

∑

i∈S

vi −H(S) (5)

where H : 2N → R
+ ∪ {∞} is normalized, monotone and symmetric function (i.e. for every two

allocations S, T ⊆ N with |S| = |T | it holds that H(S) = H(T)). Suppose that A always covers

the cost and provides an approximation ratio of ρ < n(1−δ)/2

4 to the social cost, for some constant
0 < δ < 1. Then, there is an instance in which the good is constructed at cost 1, the sum of
payments is at least

(

1−δ
2 · log n− 1

)

and the approximation ratio to the social cost is no better than
(δ · log n− 1).

16

In order to prove the theorem, we need the following claim.

Claim 5.2 Let A be a VCG-based mechanism for the excludable public good problem where H :
2N → R

+ is normalized, monotone and symmetric. Suppose that A always covers the cost and
provides a finite approximation ratio ρ to the social cost. Then, for every S ⊆ N and i ∈ S it holds
that H(S)−H(S − {i}) ≥ 1

|S| .

Proof: Fix a set S ⊆ N and consider the valuation profile in which vi > ρ if i ∈ S and vi = 0
otherwise. Let ALG ⊆ N be the output of the mechanism. Note that S ⊆ ALG, otherwise,
there exists i ∈ S\ALG with value vi > ρ, so the mechanism outputs an allocation with social
cost π(ALG) ≥ vi > ρ, whereas the optimal allocation is OPT = N with social cost π(OPT) =
π(N) = C(N) = 1, a contradiction to the approximation guarantee of A. Therefore

∑

i∈S vi =
∑

i∈ALG vi and by monotonicity of H, H(S) ≤ H(ALG). Furthermore, H(S) ≥ H(ALG) since
ALG maximizes (5), thus H(S) = H(ALG). By the same arguments, for every i ∈ S it holds that
S − {i} ⊆ ALG−i and H(S − {i}) = H(ALG−i). Therefore:

∑

j∈N

pj =
∑

j∈S









∑

i∈ALG−j

vi −H(ALG−j)



−





∑

i∈ALG−{j}

vi −H(ALG)









=
∑

j∈S









∑

i∈S−{j}

vi −H(S − {j})



 −





∑

i∈S−{j}

vi −H(S)









=
∑

j∈S

[H(S)−H(S − {j})]

Since H is symmetric, for every i, j ∈ S it holds that H(S−{i}) = H(S−{j}). Fix a player i ∈ S.
Since the mechanism covers the cost it holds that

∑

j∈S

pj = |S| · [H(S)−H(S − {i})] ≥ C(ALG) = 1

Therefore, H(S)−H(S − {i}) ≥ 1
|S| .

We now turn to proving Theorem 5.1.
Proof: (of theorem 5.1) Note that since the mechanism provides a ρ approximation, H(N) < ∞.
Otherwise, for every i, set vi = 2ρ. The optimal social cost is 1, serve all players, but at least one

player is excluded so π(
−−−→
ALG) ≥ 2ρ, a contradiction. Fix a set S ⊆ N of size n1−δ. We now divide

the analysis, depending on whether there is some set T , with |T | < n(1−δ)/2 such that H(T)
|T | ≤ H(S)

|S| .

Assume that there is a set T with |T | < n(1−δ)/2 such that H(T)
|T | ≤ H(S)

|S| . In this case we get that

H(S) ≥ n(1−δ)/2 ·H(T). By the monotonicity of H and claim 5.2 it holds that H(T) ≥ H({1}) ≥ 1,
therefore H(S) ≥ n(1−δ)/2.

Choose an arbitrary set S′ ⊆ N with S′ = 2 ·n1−δ < n. Consider the following valuation profile:
set vi = 1

4·n(1−δ)/2 if i ∈ S′, and vi = 0 otherwise. Observe that in this profile the mechanism

does not output a set of size more than n1−δ: consider some set S′′ ⊆ S′ with |S′′| ≥ n1−δ. By
monotonicity of H it holds that H(S′′) ≥ H(S) ≥ n(1−δ)/2. Moreover it holds that

∑

i∈S′′ vi ≤

2 · n1−δ · 1
4·n(1−δ)/2 ≤ n(1−δ)/2

2 , hence
∑

i∈S′′ vi −H(S′′) < 0.

Therefore, the mechanism outputs a set of size at most n1−δ, meaning that at least n1−δ players
among S′ with value 1

4·n(1−δ)/2 are not served. We get that the optimal optimal allocation is

π(OPT) = π(N) = 1, but the social cost of the output of the mechanism is at least n(1−δ)/2

4 . Hence

the approximation ratio of the mechanism is no better than n(1−δ)/2

4 .

17

Therefore, from now on assume that for every T with |T | < n(1−δ)/2 it holds that H(T)
|T | > H(S)

|S| .
We construct a valuation profile in which the mechanism does not serve players whose sum of values
is at least δ · log n−1, hence the approximation ratio of the social cost is no better than δ · log n−1.
In addition, in the same profile the total sum of payments that the mechanism collects is at least
1−δ
2 · log n− 1.

Let W be the minimal set that minimizes the density H(W)
|W | among all sets of size at most n1−δ,

i.e., for every W ′ ⊂ W it holds that H(W)
|W | < H(W ′)

|W ′| . Notice that |W | ≥ n(1−δ)/2, since the density

of S, which is of size |S| = n1−δ, is smaller than the density of any set of size at most n(1−δ)/2.

Consider the following instance: for every i ∈ W set vi = H(W)
|W | + ε where ε > 0 is such

that ε < min
{

1
n3 ,minW ′⊂W

{

H(W ′)
|W ′| − H(W)

|W |

}}

. We get that
∑

i∈W vi > H(W), but for every

W ′ ⊂ W , it holds that
∑

i∈W ′ vi = |W ′| ·
[

H(W)
|W | + ε

]

< |W ′| · H(W)
|W | + H(W ′) − |W ′| · H(W)

|W | =

H(W ′). In addition, consider a set L ⊆ N\W , with n − n1−δ players. Without loss of generality,
L =

{

n1−δ + 1, n1−δ + 2, ..., n
}

. For every i ∈ L set vi =
1
i − ε.

We observe that the mechanism outputs ALG = W and that for every i ∈ W , ALG−i = ∅: by

claim 5.2, for any two disjoint sets W ′, L′ ⊆ N , H(W ′ ∪ L′)−H(W ′) ≥
∑|W ′|+|L′|

i=|W ′|+1
1
i , therefore for

every subset L′ ⊆ L and for every subset W ′ ⊆ W (which is of size at most n1−δ) the mechanism
prefers the allocation W ′ over W ′ ∪ L′:

∑

i∈W ′∪L′

vi −H(W ′ ∪ L′) ≤
∑

i∈W ′

vi +
∑

i∈L′

vi −

|W ′|+|L′|
∑

i=|W ′|+1

1

i
−H(W ′)

<
∑

i∈W ′

vi +

|W ′|+|L′|
∑

i=|W ′|+1

1

i
−

|W ′|+|L′|
∑

i=|W ′|+1

1

i
−H(W ′)

=
∑

i∈W ′

vi −H(W ′)

where the second inequality holds since
∑

i∈L′ vi < 1
n1−δ+1

+ · · · + 1
n1−δ+|L′|

<
∑n1−δ+|L′|

i=n1−δ+1
1
i ≤

∑|W ′|+|L′|
i=|W ′|+1

1
i . Hence no player from L is in ALG nor in ALG−i. Recall that we have already observed

that for any W ′ ⊂ W , the mechanism prefers the empty set over W ′ since
∑

i∈W ′ vi < H(W ′).
We get that the mechanism outputs W , the only allocation that provides a non-negative value.

Similarly, for every i ∈ W it holds that ALG−i = ∅. Therefore, the payment of every player i ∈ W
is:

pi =





∑

j∈ALG−i

vj −H(ALG−i)



−





∑

j∈W−{i}

vj −H(W)





= H(W)−
|W | − 1

|W |
·H(W)−

|W | − 1

|W |
· ε >

H(W)

|W |
−

1

n3

Summing over all i ∈ W we get that the sum of the payments is at least H(W)− 1
n2 . By claim 5.2,

H(W) ≥ H|W |. Recall that |W | ≥ n(1−δ)/2, therefore H(W) ≥ Hn(1−δ)/2 ≈ 1−δ
2 · log n. Hence, the

sum of payments that the mechanism collects is at least 1−δ
2 · log n− 1.

We now analyze the social cost in this instance. Note that
∑

i∈L vi >
∑n

i=n1−δ+1
1
i − |L| · 1

n3 >

Hn − Hn1−δ − 1 ≈ log n − log n1−δ − 1 = δ · log n − 1 whereas the optimal allocation is N , with
social cost 1. The approximation ratio to the social cost is therefore no better than δ · log n− 1.

18

Minimality of the Potential Function

The potential mechanism is an affine maximizer that uses the potential function as the function H
in the affine maximizer. Other choices for H also guarantee that the mechanism will always cover
the cost. However, we show that our choice of the potential function is not arbitrary in the sense
that the potential function is the minimal function that always covers the cost.

Theorem 5.3 Let A be a VCG-based combinatorial cost-sharing mechanism for a domain that
contains additive valuations and always covers the cost. I.e., A is a mechanism that outputs

−−−→
ALG = arg max

~S∈2M1×···×2Mn

∑

i

vi(Si)−H(~S) (6)

where H : 2M1 × · · · × 2Mn → R∪{∞} is normalized and monotone. Then, for every ~S ∈ 2M1 ×
· · · × 2Mn it holds that H(~S) ≥ PC(~S).

Proof: We first prove for the case where H(M) < ∞. Suppose toward contradiction that the
theorem is false and let ~S be a minimal allocation for which H(~S) < PC(~S) (i.e. for every strict
subset ~T , H(~T) ≥ PC(~T)). Define for each player i the additive valuation vi({j}) = 2H(~M) if
j ∈ Si and vi({j}) = 0 otherwise. Observe that vi(Si) = 2 · |Si| ·H(~M).

Consider the allocation
−−−→
ALG = (ALG1, ..., ALGn) that the mechanism outputs when the val-

uation profile is (v1, ..., vn). It holds that Si ⊆ ALGi for every i, otherwise the value of the

allocation ~S + {j}, for j /∈ ALGi, j ∈ Si, is higher in (6). Thus, ~S ⊆
−−−→
ALG and by monotonicity

H(
−−−→
ALG) ≥ H(~S).
Let Z = {j|∃i, j /∈ Si, j ∈ ALGi} be the set of items with 0 value that the algorithm selects.

Observe that Σivi(Si) = Σivi(ALGi−Z) = Σivi(ALGi) but
−−−→
ALG maximizes (6). This implies that

H(
−−−→
ALG) ≤ H(~S). Together we have that H(

−−−→
ALG) = H(~S). Similar arguments give us that for

every i, ~S − Si ⊆
−−−−→
ALG−i and H(

−−−−→
ALG−i) = H(~S − Si).

Recall that ~S is a minimal allocation for which H(~S) < PC(~S), therefore for every i it holds
that H(~S − Si) ≥ PC(~S − Si). Combining all together, the sum of payments is given by

∑

i∈N

pi =
∑

i∈N









∑

j 6=i

vj(ALG
−i
j)−H(

−−−−→
ALG−i)



 −





∑

j 6=i

vj(ALGj)−H(
−−−→
ALG)









=
∑

i∈N

[

H(
−−−→
ALG)−H(

−−−−→
ALG−i)

]

=
∑

i∈N

[

H(
−→
S)−H(~S − Si)

]

<
∑

i∈N

[

PC(~S)− PC(
−→
S − Si)

]

≤ C(
−→
S)

Where the strict inequality follows due to our minimality assumption. Recall that ~S ⊆
−−−→
ALG. By

the monotonicity of the cost function C(~S) ≤ C(
−−−→
ALG). We get that Σi ≤ C(

−−−→
ALG), a contradiction.

Now suppose that H(M) = ∞. In this case, the theorem is obviously correct for ~S with
H(~S) = ∞ > PC(~S) so it remains to prove for ~S with H(~S) < ∞. Let ~T ′ be some maximal bundle
with H(~T) < ∞ (i.e., for any j /∈ ~T ,H(~T + {j}) = ∞). Let H ′ be the function that is defined
only on items in ~T by H ′(~T ′) = H(~T) for every ~T ′ ⊆ T . Observe that H ′(~T ′) < ∞ and that the
affine maximizer argmax~S⊆~T Σivi(Si)−H ′(S) coincides on subsets of ~T with (6). Thus, applying

the proof for finite H(M) we get that for every ~T ′ ⊆ ~T , H(~T ′) = H ′(~T ′) ≥ PC(~T
′). The theorem

follows.

19

6 Limitations of the Potential Mechanism

In this section we revisit the potential mechanism and consider relaxing some of our assumptions
on the valuations and on the cost function. We first show that the potential mechanism provides
a bad approximation ratio to the social cost for some non-subadditive functions. We then show
that the potential mechanism is not budget balanced with a submodular cost function and simple
submodular valuations such as unit demand.

Proposition 6.1 In the simple cost sharing setting, there is a non-subadditive cost function such
that the Potential Mechanism provides an approximation ratio of Ω(n) to the social cost.

Proof: Consider n players with Mi = {i} for each i ∈ N . Let C be the following non-subadditive
cost function: C(~S) = 0 for ~S 6= ~M , and C(~M) = 1. Note that PC(~S) = 0 for every ~S 6= ~M and
PC(~M) = 1

n . Set vi =
1
n + ε for every i and for some small ε > 0. The allocation that maximizes

(3) is
−−−→
ALG = ~M , whereas the optimal allocation is

−−−→
OPT = ({1}, {2}, ..., {n − 1}, ∅). Therefore,

the approximation ratio is π(
−−−→
ALG)

π(
−−−→
OPT)

=
C(

−−−→
ALG)+

∑
i∈ vi(Mi)−vi(ALGi)

C(
−−−→
OPT)+

∑
i∈N vi(Mi)−vi(OPTi)

= 1
0+vn({n})

= 1
1
n
+ε

= n
1+nε . For

ε = 1
n , the approximation ratio of the mechanism is Ω(n).

Proposition 6.2 The Potential Mechanism is Ω(n)-budget-balanced for submodular cost function
and unit demand valuations.

Proof: Consider n players where for each i, Mi = {mi
1, ..,m

i
i−1,m

i
i+1, ...,m

i
n}. The cost function

C : 2M1 × · · · × 2Mn → {0, 1, 2} is defined as follows:

• C(~S) = 1 if ~S 6= ~∅ and there exists j such that Sj = ∅ and for every player i 6= j, Si ⊆ {mi
j}.

I.e., n − 1 players “agree” on an index j and either take the corresponding item or nothing,
and player j gets nothing.

• C(∅) = 0. In any other case, C(~S) = 2.

Clearly, C is monotone. One can verify that it is also submodular.
Consider the following valuation profile: every player is unit demand with vi(Si) = L for every

∅ 6= Si ⊆ Mi, where L > 2 · Hn, and vi(∅) = 0.
By proposition 3.6, for submodular function C it holds that PC(~S) ≤ Hn · C(~S) for every ~S,

therefore PC(~S) ≤ 2 ·Hn < L. Hence, in every allocation ~S that maximizes (3) every player receives
at least one service. By monotonicity of C, PC is monotone as well (proposition 3.3), therefore
there is an allocation that maximizes (3) where no player gets more than one service. Our goal
now is to find the allocation that allocates every player one service and minimizes the potential
function PC(~S).

Recall that by [15] and Section 3, given an allocation ~S = (S1, . . . , Sn), the marginal value
PC(~S)− PC(~S − Si) equals the Shapley value6 of player i in the cooperative game with N players
and cost function C ′, where the cost of serving a set T is C ′(T) = C(∪i∈TSi). For each player i
let Shapleyi({1, ..., i}) denote the Shapley value of player i in the coalition {1, ..., i}. We get that
PC(~S) = Σn

i=1Shapleyi({1, ..., i}).

Fix some allocation ~S where each player gets one service. For every i, we have that C ′({i}) = 1.
Therefore Shapleyi({1, ..., i}) ≥ 1/i. When all players agree on the index we furthermore have that
Shapleyi({1, ..., i}) = 1/i, since only the first player in the permutation has a positive marginal
contribution to the cost.

6Recall that the Shapley value of a player is its expected marginal contribution to the cost in a random permutation.

20

If not all players agree on the permutation, then the marginal contribution to the cost of the
first player who disagrees on the index is 1. Therefore, both this player and the first player has
a marginal contribution of 1. In this case we thus have Shapleyi({1, ..., i}) > 1/i. Hence, the
allocation in which every player gets at least one service that minimizes the potential function is

the one in which n − 1 players agree on an index and one player does not agree, e.g.,
−−−→
ALG =

{{

m1
n

}

,
{

m2
n

}

, . . . ,
{

mn−1
n

}

, {mn
1}
}

. We note that PC(
−−−→
ALG) =

∑n
i=1 Shapleyi({1, 2, ..., i}) =

∑n−1
i=1

1
i +1 = 1+Hn−1. Similarly, for every i the allocation that minimizes the potential function

PC when player i does not get a service and any other player gets exactly one service is
−−−−→
ALG−i =

{{

m1
i

}

,
{

m2
i

}

, ...,
{

mi−1
i

}

, ∅,
{

mi+1
i

}

, ..., {mn
i }
}

, for which PC(
−−−−→
ALG−i) =

∑n−1
i=1

1
i = Hn−1.

Therefore, the payment of player i is given by:

pi =
∑

j∈N\{i}

vi(ALG
−i
j)− PC(

−−−−→
ALG−i)−





∑

j∈N\{i}

vj(ALGj)− PC(
−−−→
ALG)





= (n− 1) · L− PC(
−−−−→
ALG−i)−

[

(n− 1) · L− PC(
−−−→
ALG)

]

= PC(
−−−→
ALG)− PC(

−−−−→
ALG−i) = Hn−1 + 1−Hn−1 = 1

In total, the sum of payments is n, whereas the cost is 2. Therefore, the potential mechanism is at
least n

2 -budget-balanced in this case.

7 Groupstrategyproof Mechanisms

Recall that VCG-based mechanisms, such as the potential mechanism, are not group-strategyproof.
That is, two or more players can collude and increase their profit. For example, consider the
potential mechanism and the excludable public good problem. Note that two players with values
v1, v2 =

1
2 + ε do not get the service, since PC({1}) = PC({2}) = 1 and PC({1, 2}) = 1.5. However,

if they both misreport v1, v2 = 1 + ε, they served and each pays pi =
1
2 , which provides a profit of

ε > 0 for both of them.
In the single parameter setting, many papers study groupstrategyproof mechanisms (e.g., [3, 18,

19, 21]). Constructing groupstrategyproof mechanisms for a multi-parameter setting is even more
challenging. In this section we present and analyze some simple groupstrategyproof mechanisms
for combinatorial cost sharing. We start with recalling some standard definitions:

Weakly groupstrategyproofness requires that no subset of players can report a different valuation,
and strictly increase the profit for every player in the subset:

• A combinatorial cost-sharing mechanism is weakly groupstrategyproof (WGSP) if for every
subset of players K ⊆ N and every valuation profile ~v′ it holds that if vi(Si)−pi ≤ vi(S

′
i)−p′i

for every i ∈ K then vj(Sj) − pj = vj(S
′
j) − p′j for some j ∈ K, where (~S, ~p) and (~S′, ~p′) are

the outputs of the mechanism for ~v and for the instance that is obtained from ~v by setting
vi = v′i for every i ∈ K, respectively.

The strongest notion is groupstrategyproofness in which every misreporting by a subset of players
which strictly increases the profit of one of the members, strictly decreases the profit of another
member:

• A combinatorial cost-sharing mechanism is groupstrategyproof (GSP) if for every subset of
players K ⊆ N and every valuation profile ~v′ it holds that if vi(Si)−pi ≤ vi(S

′
i)−p′i for every

i ∈ K then vi(Si)− pi = vi(S
′
i)− p′i for every i ∈ K, where (~S, ~p) and (~S′, ~p′) are the outputs

21

of the mechanism for ~v and for the instance that is obtained from ~v by setting vi = v′i for
every i ∈ K, respectively.

Note that every mechanism that is GSP is also WGSP, and that every mechanism that is WGSP
is also truthful.

7.1 The Sequential Mechanism

Here we restate the Sequential Mechanism [19] and identify two cases in which it is groupstrate-
gyproof, 1-budget-balance, and provides an approximation ratio of n to the social cost. Similarly
to Section 4, the sequential mechanism provides the mentioned guarantees when the cost func-
tion is submodular and the valuations are supermodular and when the cost function is player-wise
symmetric and the valuations are symmetric as well.

The Sequential Mechanism

1. Set ALGi = ∅ for every player i ∈ N .

2. For player i = 1 to n:

(a) Let Ai =
{

Ai : Ai ∈ argmaxSi⊆Mi vi(Si)−
[

C(
−−−→
ALG ∪ Si)− C(

−−−→
ALG)

]}

.

(b) Allocate to player i a bundle ALGi ∈ Ai with the maximal size in Ai.

(c) Charge player i: pi = C(ALG1, ALG2, . . . , ALGi−1, ALGi)−C(ALG1, ALG2, . . . , ALGi−1).

Theorem 7.1 Suppose that either:

1. The cost function C is submodular and the valuation functions are supermodular.

2. The cost function C is submodular and player-wise symmetric and the valuation functions
are symmetric.

Then the Sequential Mechanism is group-strategyproof, 1-budget-balanced, provides an n-approximation
to the social cost and satisfies IR and NPT.

Lemma 7.2 For every monotone and normalized cost function and normalized valuation function
the sequential Mechanism is 1-budget-balanced and satisfies IR and NPT.

Proof: The mechanism satisfies individual rationality since a player can choose the empty bundle
with zero payment, hence he never pays more than the value of the bundle allocated to him. By
the monotonicity of the cost function, the payments are always positive. Moreover, since C is

normalized, the sum of payments is C(
−−−→
ALG).

In order to prove groupstrategyproofness, we first prove claim 7.3 which states that for the
combinatorial cost sharing with a submodular cost function and supermodular valuations, the
union of bundles which maximize the profit also maximizes the profit.

Claim 7.3 Assume that the cost function C is submodular. Consider player i with supermodular

valuation vi, and consider an allocation
−−−→
ALG with ALGj = ∅ for every j ≥ i. For each bundle S ⊆

Mi, let pS denote the price of the bundle which is its marginal cost, i.e., pS = C(
−−−→
ALG∪S)−C(

−−−→
ALG).

Let S1, S2 be two bundles that maximize player i’s profit, i.e., S1, S2 ∈ argmaxS vi(S) − pS. Then
S1 ∪ S2 maximizes the profit as well, that is, S1 ∪ S2 ∈ argmaxS vi(S)− pS.

22

Proof: Let T = S1 ∩ S2 and denote by U1 and U2 the unique elements in each of the bundles:
U1 = S1\T , U2 = S2\T . The following holds:

vi(S1 ∪ U2)− vi(S1) = vi(U1 ∪ T ∪ U2)− vi(U1 ∪ T)

≥ vi(T ∪ U2)− vi(T)

≥
[

C(
−−−→
ALG ∪ T ∪ U2)− C(

−−−→
ALG)

]

−
[

C(
−−−→
ALG ∪ T)− C(

−−−→
ALG)

]

≥
[

C(
−−−→
ALG ∪ T ∪ U1 ∪ U2)− C(

−−−→
ALG)

]

−
[

C(
−−−→
ALG ∪ T ∪ U1)− C(

−−−→
ALG)

]

=
[

C(
−−−→
ALG ∪ S1 ∪ U2)− C(

−−−→
ALG)

]

−
[

C(
−−−→
ALG ∪ S1)−C(

−−−→
ALG)

]

The first inequality is due to supermodularity of vi. The second inequality is by the fact that S2

maximizes v(S)−pS , therefore v(S2)−
[

C
(−−−→
ALG ∪ S2

)

− C(
−−−→
ALG)

]

≥ vi(T)−
[

C(
−−−→
ALG ∪ T)−C(

−−−→
ALG)

]

.

The third inequality is by submodularity of C. Note that S1 ∪ U2 = S1 ∪ S2, hence we conclude
that

v(S1 ∪ S2)−
[

C(
−−−→
ALG ∪ S1 ∪ S2)− C(

−−−→
ALG)

]

≥ v(S1)−
[

C(
−−−→
ALG ∪ S1)− C(

−−−→
ALG)

]

therefore S1 ∪ S2 maximizes the profit as well.

Lemma 7.4 In each one of the settings (1) and (2) of theorem 7.1 the sequential mechanism is
groupstrategyproof.

Proof: We denote by
−−−→
ALG = (ALG1, . . . , ALGn) and by p1, . . . , pn the output of the mechanism

given the valuation profile ~v. Consider player i. Note that nothing that players i+1, ..., n do affects
player i’s prices. Hence, a strategic player i chooses a bundle that maximizes his profit (which
depends only on ALG1, ..., ALGi−1). In case of tie-breaking, he chooses the bundle that decreases
the prices for players i+1, ..., n, if such exists. We prove by induction on the players that for every
i, ALGi is the bundle that both maximizes his profit and always minimizes players i+1, ..., n prices.

Consider player 1, and assume that she chooses a bundle A′
1 6= ALG1 that maximizes her profit.

Note that in setting (1) of theorem 7.1, claim 7.3 implies A′
1 ⊂ ALG1. Fix some choice of actions

by the rest of the players given that player 1 chooses A′
1 : (A

′
2, p

′
2), ..., (A

′
n, p

′
n) , i.e. player j chooses

A′
j and pays p′j . Since C is submodular, for every player j > 1 it holds that

C(A′
1, A

′
2 . . . , A

′
j−1, A

′
j)−C(A′

1, A
′
2 . . . , A

′
j−1) ≥ C(ALG1, A

′
2, . . . , A

′
j−1, A

′
j)−C(ALG1, A

′
2, . . . , A

′
j−1)

i.e., every player j > 1 pays no more than p′j assuming that player 1 chooses the bundle ALG1.
Recall that ALG1 maximizes player 1’s profit, therefore he does not join any coalition, and takes
ALG1.

We note that the proof is similar in setting (2) of theorem 7.1: in this case |A′
1| ≤ |ALG1|.

Without loss of generality we can assume that A′
1 ⊆ ALG1 since for every Ã1 ⊆ ALG1 with

|A′
1| = |Ã1| it holds that v1(A

′
1) = v1(Ã1) and for every allocation of other players ~S−1 = (S2, ..., Sn)

it holds that C(A′
1,
~S−1) = C(Ã1, ~S−1).

The proof of the inductive step for every player i > 1 is similar to that of player 1.

Lemma 7.5 Assume that the cost function C is subadditive (in particular, submodular). Then for
every valuation profile the sequential mechanism guarantees an approximation ratio of n.

23

Proof: Consider a valuation profile ~v and let
−−−→
ALG = (ALG1, ..., ALGn) be the output. Let

−−−→
OPT = (OPT1, ..., OPTn) be the allocation that minimizes the social cost. For every player i it
holds that:

vi(ALGi)− [C(ALG1, . . . , ALGi−1, ALGi)− C(ALG1, . . . , ALGi−1)]

≥ vi(OPTi)− [C(ALG1, . . . , ALGi−1, OPTi)− C(ALG1, . . . , ALGi−1)]

≥ vi(OPTi)− C(OPTi)

≥ vi(OPTi)− C(
−−−→
OPT)

where the first inequality holds since ALGi is the bundle that maximizes the profit of player i in
the ith iteration of the mechanism, the second inequality is due to the subadditivity of C and the
last inequality is due to monotonicity of C. Summing over all players we get:

∑

i∈N

vi(ALGi)− C(
−−−→
ALG) ≥

∑

i∈N

vi(OPTi)− n · C(
−−−→
OPT)

The approximation ratio is therefore:

π(
−−−→
ALG)

π(
−−−→
OPT)

=
C(

−−−→
ALG) +

∑

i∈N [vi(Mi)− vi(ALGi)]

C(
−−−→
OPT) +

∑

i∈N [vi(Mi)− vi(OPTi)]
≤

n · C(
−−−→
OPT) +

∑

i∈N [vi(Mi)− vi(OPTi)]

C(
−−−→
OPT) +

∑

i∈N [vi(Mi)− vi(OPTi)]
≤ n

To see that the analysis is tight, consider the excludable public good problem: Mi = {i} for every

i ∈ N . For every ~S 6= ~∅, C(~S) = 1. For every player i, set vi(Mi) = 1− ε for arbitrary small ε > 0.

Then the mechanism outputs
−−−→
ALG = (∅, ..., ∅), and the social cost is π(

−−−→
ALG) = 0+

∑

i vi = n−n·ε.

The optimal allocation is ~M and its social cost is π(~M) = C(~M) = 1. Since ε is arbitrary small,
the approximation ratio is no better than n.

7.2 A Weakly Groupstrategyproof Mechanism

Recall the weaker notion of groupstrategyproofness - weakly-groupstrategyproofness (WGSP), in
which there is no coalition which can get strictly better profit for every player in the coalition by
misreporting valuations. Relaxing the requirement for groupstrategyproofnes, and requiring WGSP
instead, allow us to use the sequential mechanism on a wider family of combinatorial cost-sharing
problems and get the same guarantees.

The Sequential Mechanism for Subadditive Cost and General Valuations

1. Set ALGi = ∅ for every player i ∈ N .

2. For player i = 1 to n:

(a) Allocate to player i some bundleALGi ∈ argmaxSi⊆Mi vi(Si)−
[

C(
−−−→
ALG ∪ Si)− C(

−−−→
ALG)

]

.

If there are several bundles that maximize the profit, choose the lexicographically first
one.

(b) Charge player i: pi = C(ALG1, ALG2, . . . , ALGi−1, ALGi)−C(ALG1, ALG2, . . . , ALGi−1).

Theorem 7.6 Suppose that the cost function C is subadditive. Then, the Sequential Mechanism
is weakly-groupstrategyproof, 1-budget-balanced, and provides an approximation ratio of n to the
social cost.

24

Proof: All proofs remain the same except weakly groupstrategyproofness. Recall that a coalition
might deviate and choose different bundles if those bundles strictly increase the profit of every
player in the coalition. We note that for every player j ≥ 1, nothing that players j + 1, ..., n do
affects player j’s profit, therefore he does not deviate and chooses the bundle ALGj which is a
bundle that maximize his profit.

References

[1] Lawrence M. Ausubel and Paul Milgrom. The lovely but lonely vickrey auction. In Combina-
torial Auctions, chapter 1. MIT Press, 2006.

[2] Yvonne Bleischwitz, Burkhard Monien, and Florian Schoppmann. To be or not to be (served).
In International Workshop on Web and Internet Economics, pages 515–528. Springer, 2007.

[3] Yvonne Bleischwitz and Florian Schoppmann. Group-strategyproof cost sharing for metric
fault tolerant facility location. In International Symposium on Algorithmic Game Theory,
pages 350–361. Springer, 2008.

[4] Liad Blumrosen and Shahar Dobzinski. Reallocation mechanisms. EC, 2014.

[5] Janina Brenner and Guido Schäfer. Cost sharing methods for makespan and completion time
scheduling. In Annual Symposium on Theoretical Aspects of Computer Science, pages 670–681.
Springer, 2007.

[6] Ruggiero Cavallo. Optimal decision-making with minimal waste: Strategyproof redistribution
of vcg payments. In Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 882–889. ACM, 2006.

[7] Shuchi Chawla, Tim Roughgarden, and Mukund Sundararajan. Optimal cost-sharing mech-
anisms for steiner forest problems. In International Workshop on Internet and Network Eco-
nomics, pages 112–123. Springer, 2006.

[8] Rajat Deb and Laura Razzolini. Voluntary cost sharing for an excludable public project.
Mathematical Social Sciences, 37(2):123–138, 1999.

[9] Shahar Dobzinski, Aranyak Mehta, Tim Roughgarden, and Mukund Sundararajan. Is shapley
cost sharing optimal? In International Symposium on Algorithmic Game Theory, pages 327–
336. Springer, 2008.

[10] Joan Feigenbaum, Arvind Krishnamurthy, Rahul Sami, and Scott Shenker. Hardness results
for multicast cost sharing. In International Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 133–144. Springer, 2002.

[11] Hu Fu, Brendan Lucier, Balasubramanian Sivan, and Vasilis Syrgkanis. Cost-recovering
bayesian algorithmic mechanism design. In Proceedings of the fourteenth ACM conference
on Electronic commerce, pages 453–470. ACM, 2013.

[12] Konstantinos Georgiou and Chaitanya Swamy. Black-box reductions for cost-sharing mecha-
nism design. Games and Economic Behavior, 2013.

[13] Mingyu Guo and Vincent Conitzer. Worst-case optimal redistribution of vcg payments in
multi-unit auctions. Games and Economic Behavior, 67(1):69–98, 2009.

25

[14] Anupam Gupta, Jochen Könemann, Stefano Leonardi, R Ravi, and Guido Schäfer. Efficient
cost-sharing mechanisms for prize-collecting problems. Mathematical Programming, 152(1-
2):147–188, 2015.

[15] Sergiu Hart and Andreu Mas-Colell. Potential, value, and consistency. Econometrica: Journal
of the Econometric Society, pages 589–614, 1989.

[16] Kazuhiko Hashimoto and Hiroki Saitoh. Strategy-proof cost sharing under increasing returns:
Improvement of the supremal welfare loss. Games and Economic Behavior, 89:101–121, 2015.

[17] Stephen C Littlechild and Guillermo Owen. A simple expression for the shapley value in a
special case. Management Science, 20(3):370–372, 1973.

[18] Aranyak Mehta, Tim Roughgarden, and Mukund Sundararajan. Beyond moulin mechanisms.
In Proceedings of the 8th ACM Conference on Electronic Commerce, pages 1–10. ACM, 2007.

[19] Hervé Moulin. Incremental cost sharing: Characterization by coalition strategy-proofness.
Social Choice and Welfare, 16(2):279–320, 1999.

[20] Hervé Moulin. Almost budget-balanced VCG mechanisms to assign multiple objects. Journal
of Economic Theory, 144(1):96 – 119, 2009.

[21] Hervé Moulin and Scott Shenker. Strategyproof sharing of submodular costs: budget balance
versus efficiency. Economic Theory, 18(3):511–533, 2001.

[22] Kevin Roberts. Aggregation and revelation of preferences. The Characterization of Imple-
mentable Choice Rules, pages 321–348, 1979.

[23] Tim Roughgarden and Mukund Sundararajan. Quantifying inefficiency in cost-sharing mech-
anisms. Journal of the ACM (JACM), 56(4):23, 2009.

[24] Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

[25] Mukund Sundararajan. Trade-offs in cost sharing. PhD thesis, Stanford University, 2009.

A Missing Proofs

A.1 Proof of Proposition 3.2

Starting with PC(∅) = 0, the potential function PC(~S) is uniquely determined by the recursion

PC(~S) =
C(~S)+

∑
i∈N;Si 6=∅ PC(~S−Si)

nS
, where we denote by nS the number of non-empty sets Si of ~S.

Next, we show that PC(~S) =
∑

I⊆N
C(∪iSi)

|I|·(n
|I|)

satisfies the requirements of the potential function.

Clearly, since C(∅) = 0 it holds that PC(∅) = 0. Notice that for every i ∈ N we can rewrite PC(~S):

PC(S) =
∑

I⊆N

C (∪iSi)

|I| ·
(n
|I|

) =
∑

I⊆N−{i}

[

C (∪j∈ISj ∪ Si)

(|I| + 1) ·
(n
|I|+1

) +
C (∪j∈ISj)

|I| ·
(n
|I|

)

]

26

Consider the sum of discrete gradients:

∑

i∈N

[

PC(~S)− PC(~S − Si)
]

=
∑

i∈N





∑

I⊆N−{i}

[

C (∪j∈ISj ∪ Si)

(|I|+ 1) ·
(

n
|I|+1

) +
C (∪j∈ISj)

|I| ·
(

n
|I|

)

]

−
∑

I⊆N−{i}

[

C (∪j∈ISj ∪ ∅)

(|I|+ 1) ·
(

n
|I|+1

) +
C (∪j∈ISj)

(|I|) ·
(

n
|I|

)

]





=
∑

i∈N





∑

I⊆N−{i}

C (∪j∈ISj ∪ Si)

(|I|+ 1) ·
(n
|I|+1

) −
C (∪j∈ISj)

(|I|+ 1) ·
(n
|I|+1

)



 (7)

By re-arranging the above double sum, we obtain constants {aI}I⊆N independent of S such that

∑

i∈N

[

PC(~S)− PC(~S − Si)
]

=
∑

I⊆N

aI · C (∪j∈ISj)

Since C(~∅) = 0, it suffices to show that aN = 1 and that for every non-empty I 6= N , aI = 0. Let
I ⊆ N , I 6= ∅, observe that the summand C (∪j∈ISj) appears in (7) exactly |I| times with a plus
sign, once for every i ∈ I. In each of these times the coefficient of C (∪j∈ISj) is

1
|I|·(n

|I|)
. If I 6= N ,

C (∪j∈ISj) appears in (7) exactly n − |I| times with a minus sign, once for every i /∈ I. In each
time the coefficient of −C (∪j∈ISj) is

1
(|I|+1)·(n

|I|+1)
. Summing the positive and negative coefficients

yields

aI =
|I|

|I| ·
(n
|I|

) −
n− |I|

(|I|+ 1) ·
(n
|I|+1

) =
1
(n
|I|

) −
(n− |I|) · (|I| + 1)! · (n− |I| − 1)!

(|I|+ 1) · n!

=
1
(n
|I|

) −
(n− |I|) · |I|! · (n− |I| − 1)!

n!

=
1
(

n
|I|

) −
1
(

n
|I|

) = 0

To conclude the proof, we note that C (∪j∈NSj) does not appear in (7) with a minus sign. Thus,
a similar observation shows that

aN =
|N |

|N | ·
(n
|N |

) = 1

27

	1 Introduction
	2 Preliminaries
	3 The Potential Function and its Properties
	4 The Main Result: The Potential Mechanism
	4.1 Proof of Claim ??

	5 Limitations of VCG-Based Mechanisms
	6 Limitations of the Potential Mechanism
	7 Groupstrategyproof Mechanisms
	7.1 The Sequential Mechanism
	7.2 A Weakly Groupstrategyproof Mechanism

	A Missing Proofs
	A.1 Proof of Proposition ??

