
ar
X

iv
:1

90
6.

02
07

4v
1

 [
cs

.D
B

]
 5

 J
un

 2
01

9

An Effective Algorithm for Learning Single

Occurrence Regular Expressions with

Interleaving

Yeting Li1,2, Haiming Chen1, Xiaolan Zhang1,2, and Lingqi Zhang3

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing 100190, China

{liyt,chm,zhangxl;}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Beijing University of Technology Beijing, China
zhanglingqisteve@gmail.com

Abstract. The advantages offered by the presence of a schema are nu-
merous. However, many XML documents in practice are not accompa-
nied by a (valid) schema, making schema inference an attractive research
problem. The fundamental task in XML schema learning is inferring re-
stricted subclasses of regular expressions. Most previous work either lacks
support for interleaving or only has limited support for interleaving. In
this paper, we first propose a new subclass Single Occurrence Regular Ex-

pressions with Interleaving (SOIRE), which has unrestricted support for
interleaving. Then, based on single occurrence automaton and maximum

independent set, we propose an algorithm iSOIRE to infer SOIREs. Fi-
nally, we further conduct a series of experiments on real datasets to eval-
uate the effectiveness of our work, comparing with both ongoing learning
algorithms in academia and industrial tools in real-world. The results re-
veal the practicability of SOIRE and the effectiveness of iSOIRE, showing
the high preciseness and conciseness of our work.

Keywords: XML, schema inference, learning expressions, interleaving

1 Introduction

XML schemas have always played a crucial role in XML management. The pres-
ence of a schema for XML documents has many advantages, such as for query
processing and optimization, development of database applications, data integra-
tion and exchange [15,42,34,18]. However, many XML documents in practice are
not accompanied by a (valid) schema [3,37,36,6,41,25], making schema inference
an attractive research problem [2,5,7,17,22,43,13,30,32]. Studying schema infer-
ence also has several practical motivations. Schema inference techniques may
be extended to schema repairing techniques [25]. Besides, schema inference is
also useful in situations where a schema is already available, such as in schema
cleaning and dealing with noise [7].

http://arxiv.org/abs/1906.02074v1

2 Y. Li et al.

The content models of XML schemas are defined by regular expressions, and
previous research has shown that the essential task in schema learning is inferring
regular expressions from a set of given samples [9,2,5,7,17,22,43,13,30,32]. In fact,
in some cases these learned regular expressions can directly be used as parts of
the schema, and in other cases the inference of regular expressions is the most
important component of the schema inference. Therefore, research on schema
learning has focused on inferring regular expressions from a set of given samples.

We focus on learning regular expressions with interleaving (shuffle), denoted
by RE(&). Since RE(&) are widely used in various areas of computer science [4],
including XML database systems [19,14,34], complex event processing [33], sys-
tem verification [10,21,23], plan recognition [26] and natural language process-
ing [27,39].

Inference of regular expressions from a set of given samples belongs to the
problem of language learning. Gold proposed a classical language learning model
(learning in the limit or explanatory learning) and pointed out that the class of
regular expressions could not be identifiable from positive samples only [24]. This
means that no matter how many positive samples from the target language (i.e.,
the language to be learned) are provided, no algorithm can infer every target
regular expression. Hence, researchers have turned to study subclasses of regular
expressions [38,9,2,5,7,17,22,43,13,30,32].

Most existing subclasses of regular expressions for XML are defined on stan-
dard regular expressions, e.g., [5,7,6,16,35] which were analyzed together in
[31,28]. For single occurrence regular expressions (SOREs), in which each symbol
occurs at most once and its subclass chain regular expressions (CHAREs), Bex
et al. proposed two inference algorithms RWR and CRX [7,8]. Freydenberger
and Kötzing [17] proposed more efficient algorithms Soa2Sore and Soa2Chare
for the above mentioned SOREs and CHAREs. Bex et al. [5] also studied learn-
ing algorithms, based on the Hidden Markov Model, for the subclass of regular
expressions (k-OREs) in which each alphabet symbol occurs at most k times.
Notice that none of the above subclasses support an important feature in XML,
i.e., the interleaving.

There may be no order constraint among siblings in data-centric applica-
tions [1]. In such cases the interleaving is necessary. Here we list the more recent
efforts on RE(&) inference (see [13,40,43,30,32]). The aim of these approaches is
to infer restricted subclasses of single occurrence RE(&), in which each symbol
occurs at most once, starting from a positive set of words. Ciucanu and Sta-
worko proposed two subclasses disjunctive multiplicity expression (DME) and
disjunction-free multiplicity expression (ME) [11,13] which support unordered
concatenation, a weaker form of interleaving. The concatenation operator is dis-
allowed in both formalisms and ME even uses no disjunction operator. For exam-
ple, r1 = (a|b+)&c is a DME and r2 = a&b∗&c? is an ME. But r3 = (a+b?)&c∗

and r4 = a∗((b∗|c)&d∗) do not satisfy both formalisms. The inference algorithm
based on maximum clique for DME was given in [13]. Li et al. provided an algo-
rithm to learn DMEs from both positive and negative examples based on genetic
algorithms and simplified candidate regions (SCRs) [29]. When there is no order

An Effective Algorithm for Learning SOIREs with Interleaving 3

constraint among siblings, the relative orders within siblings are still important.
Peng and Chen [40] proposed a subclass SIRE using the grammar: S ::= T&S|T ,
T ::= ε|a|a∗|TT . But it does not support the union operator. For example, r2
and r3 are SIREs but r1 and r4 are not. Besides, they presented an approximate
algorithm to infer SIREs [40]. Li et al. [30] proposed a subclass ICRE using the
grammar:

E := F
p1

1 · . . . · F pn

n , (n ≥ 0, pi ∈ {?, 1}),

Fi := D1& . . .&Dk, (i ∈ [1, n], k ≥ 1),

Dj := amul1
1 | . . . |amulm

m , (j ∈ [1, k],m ≥ 1),

where mulo ∈ {1, ?, ∗,+} and ao ∈ Σ for o ∈ [1,m]. For example, r1, r2 and
r4 are ICREs but r3 is not. Besides, they presented an approximate algorithm
to infer ICREs [30]. Zhang et al. [43] proposed a subclass called ICHARE con-
sidering interleaving. The inference algorithm is based on SOA and maximum
independent set (MIS). However, components of interleaving are restricted to
the extended strings (ES) defined in [43]. For example, r2 and r3 are ICHAREs
but r1, r4 and r5 = a?((b+|c)d∗&ef ?) are not. Li et al. [32] proposed a prac-
tical subclass called ESIRE and designed an inference algorithm GenESIRE
to infer ESIREs. For example, r1, r2, r3, r4 and r5 are ESIREs, but r6 =
a∗b?(fm?&c?d|e(n|l)?g&h?)(j+|k)? is not. All of the above subclasses are re-
stricted subclasses of single occurrence RE(&). As shown above, the support for
interleaving in existing work is very limited.

In this paper, based on the analysis of large-scale real data, we propose
a new subclass of RE(&), i.e., single occurrence RE(&), called SOIRE. The
relationships among ME, DME, SIRE, ICRE, ICHARE, ESIRE, SOIRE and
RE(&) are shown in Figure 1. Among them, ME ⊂ DME ⊂ ICRE, ME ⊂
SIRE ⊂ ICHARE, DME ∩ SIRE = ME, ICRE ⊂ ESIRE ⊂ SOIRE ⊂ RE(&)
and ICHARE ⊂ ESIRE ⊂ SOIRE ⊂ RE(&). For example, all of r1, r2, r3,
r4, r5 and r6 are SOIREs. It reveals that SOIRE is more powerful than the
above subclasses since the latter are all subclasses of SOIRE, and especially
SOIRE has unrestricted support for interleaving, which was never achieved by
existing work. Then, we develop the corresponding learning algorithm, iSOIRE,
to carry out SOIREs inference automatically. The massive experimental results
demonstrate the practicality of the proposed subclass as well as the preciseness
and conciseness of iSOIRE.

The main contributions of this paper are listed as follows.

– We propose a new subclass SOIRE of RE(&). SOIRE is more powerful than
the existing subclasses and especially has unrestricted support for interleav-
ing.

– Correspondingly, we design an inference algorithm iSOIRE which can learn
SOIREs effectively based on single occurrence automaton (SOA) and maxi-
mum independent set (MIS).

– We conduct a series of experiments, comparing the performance of our al-
gorithm with both ongoing learning algorithms in academia and industrial

4 Y. Li et al.

RE(&)

ME

DME

ICRE

(a) ME ⊂ DME ⊂ ICRE

RE(&)

ME

SIRE

ICHARE

(b) ME ⊂ SIRE ⊂ ICHARE

RE(&)

DME SIRE

ME

(c) DME ∩ SIRE = ME

RE(&)

ICRE

SOIRE

ESIRE

ICHARE

(d) ICRE ⊂ ESIRE ⊂ SOIRE
⊂ RE(&), ICHARE ⊂ ESIRE
⊂ SOIRE ⊂ RE(&)

Fig. 1: Relationships among ME, DME, SIRE, ICRE, ICHARE, ESIRE, SOIRE
and RE(&).

An Effective Algorithm for Learning SOIREs with Interleaving 5

tools in real-world. The results reveal the practicability of SOIRE and the
effectiveness of iSOIRE, showing the high preciseness and conciseness of our
work.

The rest of this paper is organized as follows. Preliminaries are presented in
Section 2. Section 3 provides the learning algorithm. Then a series of experiments
is presented in Section 4. Finally we conclude this work in Section 5.

2 Preliminaries

2.1 Definitions

Let Σ be a finite alphabet of symbols. The set of all words over Σ is denoted by
Σ∗. The empty word is denoted by ε.

Definition 1. Regular Expression with Interleaving. A regular expression
with interleaving over Σ is defined inductively as follows: ε or a ∈ Σ is a regular
expression, for regular expressions r1 and r2, the disjunction r1|r2, the concate-
nation r1 · r2, the interleaving r1&r2, or the Kleene-Star r∗1 is also a regular
expression. r? and r+ are abbreviations of r|ε and r · r∗, respectively. They are
denoted as RE(&).

The size of a regular expression r, denoted by |r|, is the total number of sym-
bols and operators occurred in r. The language L(r) of a regular expression
r is defined as follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(r∗1) = L(r1)

∗;
L(r1·r2) = L(r1)L(r2); L(r1|r2) = L(r1)∪L(r2); L(r1&r2) = L(r1)&L(r2). Let
u = au′ and v = bv′ where a, b∈Σ and u′, v′∈Σ∗, then u&ε = ε&u = {u} and
u&v = a(u′&v)∪ b(u&v′). For example, L(ab&c) = {cab, acb, abc}.

Definition 2. Single Occurrence Regular Expressions with Interleav-
ing (SOIRE). A regular expression with interleaving is SOIRE, in which each
symbol occurs at most once.

For instance, r1 = a?(b?c&d∗(e|f)?) is an SOIRE, but r2 = a+b&c+b is not
because b appears twice.

Definition 3. Single Occurrence Automaton (SOA) [7,17] Let Σ be a fi-
nite alphabet. src and snk are distinct symbols that do not occur in Σ. A single
occurrence automaton (short: SOA) over Σ is a finite directed graph A = (V,E)
such that

1. src, snk ∈ V , and V ⊆ Σ ∪ {src, snk};
2. src has only outgoing edges, snk has only incoming edges and every node

v ∈ V lies on a path from src to snk.

For example, the SOA A for r = a(bc)?d+ is shown in Figure 2. A general-
ized single occurrence automaton (generalized SOA) over Σ is defined
as a directed graph in which each node v ∈ V \ {src, snk} is an SOIRE and all
nodes are pairwise alphabet-disjoint SOIREs.

6 Y. Li et al.

src a b

cdsnk

Fig. 2: Example SOA A for r = a(bc)?d+.

3 Learning Algorithm

In this section, we give the learning algorithm iSOIRE, which efficiently infers an
SORE from a set of positive samples S. We show the major technical details of
our algorithm in this section. The input and output of the algorithm iSOIRE is a
set of given samples and an SOIRE respectively. The algorithm iSOIRE consists
of two steps, constructing an SOA from samples, and converting the SOA into
an SOIRE. Constructing an SOA from samples is introduced in Section 3.1.
Converting the SOA into an SOIRE is given in Section 3.2.

Algorithm 1: iSOIRE

Input: a set of positive sample S

Output: an SOIRE
1 Construct SOA A for S using method 2T-INF [20];
2 return Soa2Soire(S, A)

3.1 Constructing an SOA from Samples

We use method 2T-INF [20] to construct SOA A for S. The algorithm 2T-
INF [20] used in the algorithm is proved to construct a minimal-inclusion gen-
eralization of S. Here minimal-inclusion means that there is no other SOA A
such that S ⊆ L(A) ⊂ L(SOA(S)).

Here we give an example to show the execution process. Let S={begk, aabengk,
abegjj, beg, hk, behgj, belhg, bheg, bfcmd, bfdm, afmcd, adf}. Using method 2T-
INF, we construct the graph SOA(S) shown in Figure 3.

3.2 Converting the SOA into an SOIRE

We use dot-notation to denote the application of subroutines. For a given SOA
A, we let A.src and A.snk denote the source and the sink of A, respectively. We
let V be the set of vertices and E the set of edges in A, respectively.

– For any vertex v ∈ V , we let A.pred(v) denote the set of all predecessors of
v in A; similarly, A.succ(v) denotes the set of all successors of v in A.

An Effective Algorithm for Learning SOIREs with Interleaving 7

src b

a

e n g

l

h

j

f

c

m

d

k

snk

Fig. 3: Constructing SOA A for S.

– For any vertex v ∈ V , we let A.reach(v) be the set of all vertices reachable
from v.

– “first” returns all vertices v such that the only predecessor of v is the source
in A.

– “contract” on SOA A takes a subset U of vertices of A and a label δ. The
procedure modifies A such that all vertices of U are contracted to a single
vertex and labeled δ (edges are moved accordingly).

– “extract” on SOA A takes as argument a set of vertices U of A; it does not
modify A, but returns a new SOA with copies of all vertices of U as well
as two new vertices for source and sink; all edges between vertices of U are
copied, all vertices in U having an incoming edge in A from outside of U
have now an incoming edge from the new source, and all vertices in U having
an outgoing edge in A to outside of U have now an outgoing edge to the new
sink.

– “addEpsilon” on SOA A adds a new vertex labeled ε; all outgoing edges
from the source to vertices that have more than one predecessor (vertices,
that are not in the first-set) are redirected via this new vertex.

– “exclusive” on SOA A on argument v (a vertex of A) returns the set of all
vertices u such that, on any path from the source to the sink that visits u,
v is necessarily visited previously. Intuitively, the exclusive set of a vertex
v is the set of all vertices exclusively reachable from v, not from any other
vertex incomparable to v.

8 Y. Li et al.

Furthermore, we use the following eight subroutines or algorithms.

– “plus” on label δ returns δ+.
– “or” on labels δ and δ′ returns δ|δ′.
– “concatenate” on labels δ and δ′ returns δ · δ′.
– “filter” on a subset U of vertices and a set of given sample S returns a new

subset S′. For string s ∈ S each symbol of which is computed as follows:
πs(U, si) = si if si ∈ U ; πs(U, si) = ε otherwise. And the result is reduced
by xε = εx = x. For example, let U={b, c, r} and S = {abgr, ebbdfc}, S′ =
filter(U, S) = {br, bbc}.

– “Merge” on a set of positive samples S returns an expression ζ with inter-
leaving.

– For a set of positive sample S, we let por(S) denote the set of all partial order
relations of each string in S and cs(S) denote the constraint set. The cs(S)
is defined as follows. cs(S) = {〈x, y〉|〈x, y〉 ∈ por(S) and 〈y, x〉 ∈ por(S)}.

– “combine” on a subset U of vertices returns a new vertice, which combines
all vertices in U with interleaving operator. For example, let U = {a∗, b+},
combine(U) is a∗&b+.

– “clique removal” on an undirected graph G returns a maximum independent
set (MIS). Finding an MIS of a graph G is a NP-hard problem. Hence we
use the method clique removal() [12] to find an approximate result.

The algorithm Soa2Soire is given in Algorithm 2. The main procedures are
as follows.

1. We first deal with all strongly connected looped components, replace each
with a new vertex.

2. After the SOA is a directed acyclic graph (DAG), focus on the set F of all
vertices which can be reached from the source directly, but not via other
vertices; make sure that there are no vertices which can be reached directly
and via other vertices (if necessary, add an auxiliary node labeled ε).

3. Recurse on the sets of vertices exclusively reachable from a vertex in F and
contract these sets to vertices labeled with the result of the recursion.

4. Combine vertices in F with “or”, recurse again on what is exclusively reach-
able from this new vertex.

5. Once only one item is left in F , split it off and recurse on the remainder.

Note that the algorithm introduces “?” by way of constructing “or ε”. This
can be cleaned up by postprocessing the resulting SOIRE.

The algorithm Merge is given in Algorithm 3. The main procedures are as
follows.

1. The first step (line 1): We first compute the constraint set constraint tr

using the function cs(S).
2. The second step (line 4): We construct an undirected graph G using element

in constraint tr as edges.
3. The third step (lines 5-8): We select a maximum independent set (MIS) of

G, add it to list all mis and delete the MIS and their related edges from G.
The process is repeated until there exists no nodes in G.

An Effective Algorithm for Learning SOIREs with Interleaving 9

Algorithm 2: Soa2Soire

Input: a set of positive sample S; an SOA A = (V ,E)
Output: an SOIRE

1 if |E| = 0 then return ∅;
2 ;
3 else if |V | = 2 then return ε;
4 ;
5 else if A has a cycle then
6 Let U be a strongly connected component of A;
7 if |U | = 1 then
8 Let v be the only vertice of U ;
9 A.contract(U ,plus(v.label()));

10 else A.contract(U ,Merge(filter(U , S))); ;

11 else if A.succ(A.src) 6= A.first() then
12 A.addEpsilon();

13 else if |A.first()| = 1 then
14 Let v be the only successor of src;
15 δ ← v.label();
16 A.contract({A.src,v},src);
17 δ′ ← Soa2Soire(S,A);
18 return concatenate(δ,δ′);

19 else if ∃v ∈ A.first(), A.exclusive(v) 6= {v} then
20 Let v be such that A.exclusive(v) 6= {v};
21 U ← A.exclusive(v);
22 A.contract(U ,Soa2Soire(S,A.extract(U)));

23 else
24 Let u,v ∈ A.first() with u 6= v s.t. A.reach(u) ∩ A.reach(v) is ⊆-maximal;
25 A.contract({u,v},or(u.label(),v.label()));

26 return Soa2Soire(S,A);

4. The fourth step (lines 9-13): We get the sample set S′ using the function
filter(mis, S) for each MIS, and construct SOAs for sample sets by calling
the algorithm 2T-INF [20]. Then convert SOAs into SOIREs using algorithm
Soa2Soire.

5. The last step (line 14): We call the function combine to generate an expres-
sion ζ with interleaving operator.

Following the example in section 3.1, there are four strongly connected com-
ponents U1 = {a}, U2 = {j}, U3 = {f, d,m, c} and U4 = {l, g, h, e, n} shown in
Figure 4. For strongly connected component (SCC) U1 = {a}, because |U1| = 1,
we use A.contract(U1,plus(j)) to modify A such that vertice a is contracted to a
new vertex a+ and the self-loop is removed. Similarly, we useA.contract(U2,plus(j))
to modify A such that vertice j is contracted to a new vertex j+ and the self-
loop is removed (Figure 5). For SCC U3, because |U3| > 1, so we should call
A.contract(U3,Merge(filter(U3, S))). In this sub-process, we first compute the

10 Y. Li et al.

Algorithm 3: Merge

Input: a set of positive sample S

Output: an epression ζ

1 constraint tr ← cs(S);
2 U ← ∅;
3 G ← Graph(constraint tr);
4 all mis ← ∅;
5 while |G.nodes()| > 0 do
6 W ← clique removal(G) [12];
7 G ← G \W ;
8 all mis.append(G)

9 foreach mis ∈ all mis do
10 S′ ← filter(mis, S)
11 Construct SOA A for S′ using method 2T-INF [20];
12 δ ← Soa2Soire(S′,A)
13 U .append(δ)

14 return ζ ← combine(U)

new sample set S1={fmcd, fcmd, df, fdm} using function filter(U3,S). Then we
get cs(S1) = {〈f, d〉, 〈d, f〉, 〈m, d〉, 〈d,m〉, 〈m, c〉, 〈c,m〉} in the algorithm Merge.
Next, we constructing undirected graph G1 based on cs(S1) shown in Figure 6.
We compute the set of all maximum independent sets (all mis = {{f,m}, {c, d}})
for Figure 6. We construct two SOAs using filter({f,m}, S1) and filter({c, d},
S1), respectively. They are shown in Figure 7 and Figure 8. We convert two SOAs
into fm? and c?d, respectively. Then we get the new label ζ = fm?&c?d using
combine(fm?,c?d). We use A.contract(U3,ζ) to modify A such that all vertices
of U3 are contracted to a single vertex and labeled ζ (edges are moved accord-
ingly) shown in Figure 9. Similarly, we also call A.contract(U ,Merge(filter(U4,
S))). We first compute the new sample set S2 = {egh, eng, eg,
elhg, ehg, heg} using filter(U4,S). Then we get cs(S2) = {〈g, h〉, 〈h, g〉, 〈h, e〉, 〈e, h〉}
in the algorithm Merge. Next, we constructing undirected graph G2 based on
cs(S2) shown in Figure 10. We compute the set of all maximum independent sets
{{l, g, e, n}, {h}} for Figure 10. We construct two SOAs using filter({l, g, e, n},
S2) and filter({h}, S2), respectively. They are shown in Figure 11 and Figure 12.
We convert two SOAs into e(n|l)?g and h?, respectively. Then we get the new
label δ = e(n|l)?g&h? using combine(e(n|l)?g,h?). We use A.contract(U4,δ) to
modify A such that all vertices of U4 are contracted to a single vertex and la-
beled δ (edges are moved accordingly) shown in Figure 13. Continue to execute
the remaining processes of the algorithm iSOIRE and we get the final inferred
result r=a∗b?(fm?&c?d|e(n|l)?g&h?)(j+|k)?.

An Effective Algorithm for Learning SOIREs with Interleaving 11

src b

a

e n g

l

h

j

f

c

m

d

k

snk

Fig. 4: Four SCCs of SOA.

src b

a+

e n g

l

h

j+

f

c

m

d

k

snk

Fig. 5: Dealing with SCC U1 and U2 of SOA A.

12 Y. Li et al.

f d m c

Fig. 6: Constructing undirected graph G1.

src f m snk

Fig. 7: Constructing SOA A1 of filter({f,m}, S1).

src c d snk

Fig. 8: Constructing SOA A2 of filter({c, d}, S1).

src b

a+

e n g

l

h

j+

ζ

k

snk

ζ = fm?&c?d

Fig. 9: Dealing with SCC U3 of SOA A.

l g h e n

Fig. 10: Constructing undirected graph G2.

src e

l

g

n

snk

Fig. 11: Constructing SOA A3.

An Effective Algorithm for Learning SOIREs with Interleaving 13

src h snk

Fig. 12: Constructing SOA A4.

src b

a+

δ j+ k

snkζ

ζ = fm?&c?d

δ = e(n|l)?g&h?

Fig. 13: Dealing with SCC U4 of SOA A.

4 Experiments

In this section, we conduct a series of experiments to analyze the practicability
of SOIRE, and compare algorithm iSOIRE with not only the learning algo-
rithms from ongoing researches but also the industrial-level tools used in real
world. In terms of preciseness and conciseness, our work has achieved satisfy-
ing results compared with existing methods, reaching higher preciseness with
less description length. Specifically, indicators Language Size (|L(r)|) [5] and
datacost (DC) [5] are used to measure preciseness, while Len [30] and Nesting
Depth (ND) [31] for conciseness. Similar as the discussion of |L(r)| and Len
above, we have that larger the value of DC (ND) is, more precise (concise) the
regular expression will be. Language Size [5], denoted by |L(r)|, is defined as:

|L(r)| =

ℓmax
∑

ℓ=1

|Lℓ(r)|,

where |Lℓ(r)| is the size of subset containing words with length ℓ in L(r). Gen-
erally, L(r) is an infinite language with infinitely large value of ℓ, it is of course
impossible to take all words into account. Hence, we only consider the word
length ℓ up to a maximum value: ℓmax = 2m + 1 where m is the length of r
excluding ε, ∅ and regular expression operators. Language Size (|L(r)|) can well
measure the preciseness of a regular expression. Smaller the value of |L(r)| is,
more precise the regular expression will be. datacost (DC) [5], is defined as:

datacost(r, S) =

ℓmax
∑

ℓ=1

(

2× log2ℓ+ log2

(

|Lℓ(r)|

|Sℓ|

))

,

where ℓmax = 2m+1 and |Lℓ(r)| as before, |Sℓ| is the number of words in S that
have length ℓ. Smaller the value of DC is, more precise the regular expression

14 Y. Li et al.

will be. Len [30] is defined as:

Len = n× ⌈log2(|Σ|+ |M|)⌉,

where |Σ| is the number of distinct symbols occurring in regular expression r,
M is the set of metacharacters {|, ·,&, ?, ∗,+,

(,)} and n is the length of r including symbols and metacharacters. An expression
with a smaller value of Len is more concise. Nesting Depth (ND) [31] is defined
as:

– ND(r) = 0, if r = ε, ∅ or a for a ∈ Σ.
– ND(r) = ND(r1) + 1, if r = r∗1 , r = r?1 or r = r+1 , where r1 is a regular

expression over Σ.
– ND(r) = max{ND(r1),ND(r2)}, if r = r1|r2, r = r1 · r2 or r = r1&r2, where

r1 and r2 are regular expressions over Σ.

The learning algorithms compared in experiments are Soa2Sore [17] and Soa2Chare [17],
GenEchare [16], learner+DME [13], conMiner [40], GenICHARE [43] and GenE-
SIRE [32]. The industrial tools which are capable of supporting inference of XML
schemas used in this section include IntelliJ IDEA4, Liquid Studio5, Trang6, and
InstanceToSchema7.

For the massive comparative experiments, we conduct the experiments based
on two kinds of datasets: small dataset (i.e., mastersthesis) and large dataset
(i.e, www) of XML documents, which are both extracted from DBLP. DBLP
is a data-centered database of information on major computer science journals
and proceedings. We download the file of version dblp-2015-03-02.xml.gz 8 . mas-
tersthesis and www are two elements chosen from DBLP with 5 (small) and
2, 000, 226 (large) samples, respectively.

All of our experiments are conducted on a machine with 16 cores Intel Xeon
CPU E5620 @ 2.40GHz with 12M Cache, 24G RAM, OS: Windows 10.

4.1 Usage of SOIRE in Practice

Though interleaving is indispensable in data-centric applications, the lack of
research on it is still a concern. In Figure 14, we visualized the coverage rates
of regular expressions covered by different subclasses on Relax NG. We can
see that the initial subclass, DME, only covers 50.62%. Then the proportions
show an upward trend, reaching more than 85.55% (ICRE, ICHARE, ESIRE).
Compared with their coverage, SOIRE covers 93.24%, which is 5.68% more than
the second largest proportion. Therefore, the experimental result reveals the high
practicality of SOIRE, and its strong support for interleaving.

4 https://www.jetbrains.com/idea/
5 https://www.liquid-technologies.com/
6 http://www.thaiopensource.com/relaxng/trang.html
7 http://www.xmloperator.net/i2s/
8 http://dblp.org/xml/release/dblp-2015-03-02.xml.gz

https://www.jetbrains.com/idea/
https://www.liquid-technologies.com/
http://www.thaiopensource.com/relaxng/trang.html
http://www.xmloperator.net/i2s/
http://dblp.org/xml/release/dblp-2015-03-02.xml.gz

An Effective Algorithm for Learning SOIREs with Interleaving 15

D
M
E

C
H
A
R
E

S
O
R
E

k
-O

R
E

S
IR

E

IC
R
E

IC
H
A
R
E

E
S
IR

E

S
O
IR

E

0
10
20
30
40
50
60
70
80
90

100

50.62 55.04 58.3

76.11 76.83
85.55 85.78 87.56

93.24

P
er
ce
n
t
in

A
L
L
R
E
s(
%
)

Fig. 14: The proportion of subclasses on Relax NG. The dataset used for
this statistical experiment is acquired from [28], with 509, 267 regular expressions
from 4, 526 Rleax NG schemas.

4.2 Analysis of Inference Results

To better illustrate the performance of our work, we first compare the inferred
results of our work with that of existing learning algorithms and industrial tools
in real world. To save space, we use the short names of words and the list of
abbreviations is shown in Table 1. The experimental results are shown in Table
2-5.

Table 1: The list of abbreviations for words in DBLP.

Word Abbr. Word Abbr. Word Abbr.

author a editor b title c

booktitle d pages e year f

address g journal h volume i

number j month k url l

ee m cdrom n cite o

publisher p note q crossref r

isbn s series t school u

chapter v publnr w

We can see from Table 3 that for dataset mastersthesis, the first six algo-
rithms/tools (Liquid Studio, Soa2Sore, Soa2Chare, GenEchare, IntelliJ IDEA
and Trang) reach high conciseness at enormous cost of |L(r)|, from unaffordable
1.57× 1010 to 1.64× 104. Algorithms/tools InstanceToSchema, learner+DME and
conMiner have highest conciseness, with 52 for Len, yet their preciseness is not
the highest among these algorithms. Finally, the last three algorithms including
iSOIRE reach the performance at the same level, with highest preciseness and

16 Y. Li et al.

the equal magnitude of conciseness. From the table we can draw a conclusion
that though interleaving could improve the preciseness, the former one sacrifices
the conciseness to some degree.

Table 2: Expressions of inference using different learning algorithms/inference
tools on mastersthesis.

Method Regular Expression

Liquid Studio (a|c|f|u|l|m)+

Soa2Sore acfu(l|m)∗

Soa2Chare acfu(l|m)∗

GenEchare acfu(l|m)∗

IntelliJ IDEA acfu(l|m)∗

Trang acfu(l|m)∗

InstanceToSchema a&c&f&l?&m?&u

learner
+

DME
a&c&f&l?&m?&u

conMiner acful?&m?

GenICHARE acfu(l?&m?)

GenESIRE acfu(l?&m?)

iSOIRE acfu(l?&m?)

For the second dataset (Table 5), the advantage of our work is more out-
standing. Without supporting the usage of interleaving, the previous eleven algo-
rithms/tools have huge |L(r)| and DC, from 1.11× 1021 to 4.39× 1011 and from
15158.773 to 8479.873, respectively. Among them, Liquid Studio, Soa2Chare
and IntelliJ IDEA have the shortest Len, which are 120, while learner+DME and
ESIRE have the longest, which are 175. Soa2Sore has the deepest ND [31], with
3, followed by Liquid Studio, GenEchare, GenICHARE and GenESIRE, with 2
nestings. On the other hand, the algorithms/tools which support interleaving
have smaller values on average. Especially for the indicator |L(r)|, the magni-
tudes are much smaller than that of the first group of methods. It is noteworthy
that our work reaches almost the same conciseness with much less values of
|L(r)|(1.84 × 1011) and DC(7599.996).

It is clear from the above analysis, our work outperforms other state-of-the-
art learning algorithms and published tools, achieving the highest preciseness
and the equal level of conciseness. Furthermore, through the comparison, the
performance of our method indicates that the involvement of interleaving could
contribute to both preciseness and conciseness.

An Effective Algorithm for Learning SOIREs with Interleaving 17

Table 3: Results of inference using different learning algorithms/inference tools
on mastersthesis.

Method |L(r)| DC LenND

Liquid Studio 1.57 × 1010 122.880 56 1

Soa2Sore 1.64 × 104 67.657 56 1

Soa2Chare 1.64 × 104 67.657 56 1

GenEchare 1.64 × 104 67.657 56 1

IntelliJ IDEA 1.64 × 104 67.657 56 1

Trang 1.64 × 104 67.657 56 1

InstanceToSchema 984 102.446 52 1

learner+
DME

984 102.446 52 1

conMiner 13 72.886 52 1

GenICHARE 5 65.072 60 1

GenESIRE 5 65.072 60 1

iSOIRE 5 65.072 60 1

Table 4: Expressions of inference using different learning algorithms/inference
tools on www.

Method Regular Expression

Liquid Studio (a|c|l+|q+|o|b|f|m|d|r)+

Soa2Sore b∗(a∗(c(m?|d))?(l|q|f|o)∗)+|r

Soa2Chare b∗r?(m|o|f|a|l|q|c|d)∗

GenEchare (b+|r)?(m|o+|f|a+|l+|q+|c|d)∗

IntelliJ IDEA r?b∗(a|d|o|m|q|c|l|f)∗

Trang b∗(r|(a|d|o|m|q|c|l|f)+)

InstanceToSchema m?&q∗&b∗&f?&a∗&o∗&c?&d?&r?&l+

learner
+

DME
(q∗|f?|r?)&(o∗|d?|m?)&(a∗|b∗)&c∗&l∗

conMiner r?b∗c∗o∗d?m?f?&a∗q∗&l∗

GenICHARE (b+|r)?(a∗q∗d?m?&c+o∗f?&l∗)?

GenESIRE (b+|r)?(a∗(m?|q∗|d)&c(o∗|f)&l∗)?

iSOIRE b∗((a+(q∗|d?)|m)&c(o∗|f)&l∗)|r

18 Y. Li et al.

Table 5: Results of inference using different learning algorithms/inference tools
on www.

Method |L(r)| DC LenND

Liquid Studio 1.11 × 1021 15158.773 120 2

Soa2Sore 1.30 × 1012 7190.139 165 3

Soa2Chare 1.36 × 1019 13696.752 120 1

GenEchare 1.34 × 1019 13685.703 150 2

IntelliJ IDEA 1.36 × 1019 13696.752 120 1

Trang 1.20 × 1019 13606.698 125 1

InstanceToSchema 1.53 × 1018 13406.824 145 1

learner
+

DME
1.43 × 1015 11150.850 175 1

conMiner 4.11 × 1013 10453.822 145 1

GenICHARE 1.41 × 1013 9961.492 170 2

GenESIRE 4.39 × 1011 8479.873 175 2

iSOIRE 1.84× 1011 7599.996 165 1

5 Conclusion and Future Work

Based on large-scale real data, we proposed a new subclass SOIRE of regular ex-
pressions with interleaving. SOIRE is more powerful than the existing subclasses
and has unrestricted support for interleaving. Correspondingly, we design an in-
ference algorithm iSOIRE which can learn SOIREs effectively based on single
occurrence automaton (SOA) and maximum independent set (MIS). We con-
duct a series of experiments, comparing the performance of our algorithm with
both ongoing learning algorithms in academia and industrial tools in real-world.
The results reveal the practicability of SOIRE and the effectiveness of iSOIRE,
showing the high preciseness and conciseness of our work.

We will study another subclass of regular expressions: k-occurrence regular
expressions with interleaving (k-OIREs) in our future work. Its inference algo-
rithm will also be considered.

6 ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China
under Grant Nos. 61872339 and 61472405.

References

1. Abiteboul, S., Bourhis, P., Vianu, V.: Highly expressive query languages for un-
ordered data trees. Theory Comput. Syst. 57(4), 927–966 (2015)

An Effective Algorithm for Learning SOIREs with Interleaving 19

2. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C.: Parametric schema inference
for massive JSON datasets. The VLDB Journal (Jan 2019)

3. Barbosa, D., Mignet, L., Veltri, P.: Studying the XML web: Gathering statistics
from an XML sample. World Wide Web 8(4), 413–438 (2005)

4. Berglund, M., Björklund, H., Björklund, J.: Shuffled languages - representation
and recognition. Theor. Comput. Sci. 489-490, 1–20 (2013)

5. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular
expressions for the inference of schemas from XML data. TWEB 4(4), 14:1–14:32
(2010)

6. Bex, G.J., Neven, F., den Bussche, J.V.: Dtds versus XML schema: A practical
study. In: Proceedings of the Seventh International Workshop on the Web and
Databases, WebDB 2004, June 17-18, 2004, Maison de la Chimie, Paris, France,
Colocated with ACM SIGMOD/PODS 2004. pp. 79–84 (2004)

7. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise dtds from
XML data. In: Proceedings of the 32nd International Conference on Very Large
Data Bases, Seoul, Korea, September 12-15, 2006. pp. 115–126 (2006)

8. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of Concise Reg-
ular Expressions and DTDs. ACM Transactions on Database Systems 35(2), 1–47
(2010)

9. Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema definitions from
XML data. In: Proceedings of the 33rd International Conference on Very Large
Data Bases, University of Vienna, Austria, September 23-27, 2007. pp. 998–1009
(2007)

10. Boja’nczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: 21th IEEE Symposium on Logic in Computer Science
(LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings. pp. 7–16 (2006)

11. Boneva, I., Ciucanu, R., Staworko, S.: Simple schemas for unordered XML. In:
Proceedings of the 16th International Workshop on the Web and Databases 2013,
WebDB 2013, New York, NY, USA, June 23, 2013. pp. 13–18 (2013)

12. Boppana, R.B., Halldórsson, M.M.: Approximating Maximum Independent Set by
Excluding Subgraphs. Bit Numerical Mathematics 32(2), 180–196 (1992)

13. Ciucanu, R., Staworko, S.: Learning schemas for unordered xml (2013)
14. Clark, J., Makoto, M.: RELAX NG Tutorial (2003),

https://relaxng.org/tutorial-20030326.html

15. Colazzo, D., Ghelli, G., Sartiani, C.: Schemas for safe and efficient XML processing.
In: Proceedings of the 27th International Conference on Data Engineering, ICDE
2011, April 11-16, 2011, Hannover, Germany. pp. 1378–1379 (2011)

16. Feng, X., Zheng, L., Chen, H.: Inference Algorithm for a Restricted Class of Regular
Expressions, vol. 41. Computer Science (2014)

17. Freydenberger, D.D., Kötzing, T.: Fast learning of restricted regular expressions
and dtds. Theory Comput. Syst. 57(4), 1114–1158 (2015)

18. Gallinucci, E., Golfarelli, M., Rizzi, S.: Schema profiling of document-oriented
databases. Inf. Syst. 75, 13–25 (2018)

19. Gao, S., C. M. Sperberg-McQueen, B.M., Thompson, H.S.: W3C XML
Schema Definition Language (XSD) 1.1 Part 1: Structures (2012),
https://www.w3.org/TR/xmlschema11-1/

20. Garcia, P., Vidal, E.: Inference of k-Testable Languages in the Strict Sense and Ap-
plication to Syntactic Pattern Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 12(9), 920–925 (2002)

21. Garg, V.K., Ragunath, M.T.: Concurrent regular expressions and their relationship
to petri nets. Theor. Comput. Sci. 96(2), 285–304 (1992)

https://relaxng.org/tutorial-20030326.html
https://www.w3.org/TR/xmlschema11-1/

20 Y. Li et al.

22. Garofalakis, M.N., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: XTRACT: learn-
ing document type descriptors from XML document collections. Data Min. Knowl.
Discov. 7(1), 23–56 (2003)

23. Gischer, J.L.: Shuffle languages, petri nets, and context-sensitive grammars. Com-
mun. ACM 24(9), 597–605 (1981)

24. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

25. Grijzenhout, S., Marx, M.: The quality of the XML web. J. Web Semant. 19, 59–68
(2013)

26. Högberg, J., Kaati, L.: Weighted unranked tree automata as a framework for plan
recognition. In: 13th Conference on Information Fusion, FUSION 2010, Edinburgh,
UK, July 26-29, 2010. pp. 1–8 (2010)

27. Kuhlmann, M., Satta, G.: Treebank grammar techniques for non-projective depen-
dency parsing. In: EACL 2009, 12th Conference of the European Chapter of the
Association for Computational Linguistics, Proceedings of the Conference, Athens,
Greece, March 30 - April 3, 2009. pp. 478–486 (2009)

28. Li, Y., Chu, X., Mou, X., Dong, C., Chen, H.: Practical study of deterministic
regular expressions from large-scale XML and schema data. In: Proceedings of
the 22nd International Database Engineering & Applications Symposium, IDEAS
2018, Villa San Giovanni, Italy, June 18-20, 2018. pp. 45–53 (2018)

29. Li, Y., Dong, C., Chu, X., Chen, H.: Learning dmes from positive and negative
examples. In: Database Systems for Advanced Applications - DASFAA 2019 In-
ternational Workshops: BDMS, BDQM, and GDMA, Chiang Mai, Thailand, April
22-25, 2019, Proceedings. pp. 434–438 (2019)

30. Li, Y., Mou, X., Chen, H.: Learning concise relax NG schemas supporting inter-
leaving from XML documents. In: Advanced Data Mining and Applications - 14th
International Conference, ADMA 2018, Nanjing, China, November 16-18, 2018,
Proceedings. pp. 303–317 (2018)

31. Li, Y., Zhang, X., Peng, F., Chen, H.: Practical study of subclasses of regular
expressions in DTD and XML schema. In: Web Technologies and Applications -
18th Asia-Pacific Web Conference, APWeb 2016, Suzhou, China, September 23-25,
2016. Proceedings, Part II. pp. 368–382 (2016)

32. Li, Y., Zhang, X., Xu, H., Mou, X., Chen, H.: Learning restricted regular expres-
sions with interleaving from XML data. In: Conceptual Modeling - 37th Interna-
tional Conference, ER 2018, Xi’an, China, October 22-25, 2018, Proceedings. pp.
586–593 (2018)

33. Li, Z., Ge, T.: PIE: approximate interleaving event matching over sequences. In:
31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South
Korea, April 13-17, 2015. pp. 747–758 (2015)

34. Martens, W., Neven, F., Niewerth, M., Schwentick, T.: Bonxai: Combining the
simplicity of DTD with the expressiveness of XML schema. ACM Trans. Database
Syst. 42(3), 15:1–15:42 (2017)

35. Martens, W., Neven, F., Schwentick, T.: Complexity of Decision Problems for XML
Schemas and Chain Regular Expressions. Siam Journal on Computing 39(4), 1486–
1530 (2013)

36. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity
of XML schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)

37. Mignet, L., Barbosa, D., Veltri, P.: The XML web: a first study. In: Proceedings of
the Twelfth International World Wide Web Conference, WWW 2003, Budapest,
Hungary, May 20-24, 2003. pp. 500–510 (2003)

An Effective Algorithm for Learning SOIREs with Interleaving 21

38. Min, J., Ahn, J., Chung, C.: Efficient extraction of schemas for XML documents.
Inf. Process. Lett. 85(1), 7–12 (2003)

39. Nivre, J.: Non-projective dependency parsing in expected linear time. In: ACL
2009, Proceedings of the 47th Annual Meeting of the Association for Computa-
tional Linguistics and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, 2-7 August 2009, Singapore. pp. 351–359 (2009)

40. Peng, F., Chen, H.: Discovering restricted regular expressions with interleaving. In:
Web Technologies and Applications - 17th Asia-PacificWeb Conference, APWeb
2015, Guangzhou, China, September 18-20, 2015, Proceedings. pp. 104–115 (2015)

41. Sahuguet, A.: Everything you ever wanted to know about dtds, but were afraid to
ask (extended abstract). In: The World Wide Web and Databases, Third Interna-
tional Workshop WebDB 2000, Dallas, Texas, USA, Maaay 18-19, 2000, Selected
Papers. pp. 171–183 (2000)

42. Wang, L., Hassanzadeh, O., Zhang, S., Shi, J., Jiao, L., Zou, J., Wang, C.: Schema
management for document stores. PVLDB 8(9), 922–933 (2015)

43. Zhang, X., Li, Y., Cui, F., Dong, C., Chen, H.: Inference of a concise regular ex-
pression considering interleaving from XML documents. In: Advances in Knowledge
Discovery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018, Mel-
bourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II. pp. 389–401 (2018)

	An Effective Algorithm for Learning Single Occurrence Regular Expressions with Interleaving

