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ABSTRACT

Semantic web techniques (e.g., ontologies) have been recently adopted
for sensor network modeling. However, existing works do not fully
address these challenges: (i) representing different sensor types (e.g.,
mobile/static sensors) to enrich the network with different data and
ensure better coverage; (ii) representing a variety of platforms (e.g.,
environments, devices) for sensor deployment, thus, integrating
new components (e.g., mobile phones); (iii) representing the diverse
data (scalar/multimedia) needed for various applications (e.g., event
detection); and (iv) proposing a generic model to allow re-usability
in various application domains. In this paper, we propose HSSN,
an ontology that extends the Semantic Sensor Network (SSN) on-
tology which is already re-usable and considers various platforms.
We extend the representation of sensors, sensed data, and deploy-
ment environments to cope with these challenges. We evaluate the
consistency, accuracy, clarity, and performance of HSSN.
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1 INTRODUCTION

Recently, Sensor Networks (SNs) have impacted more and more
application domains [14] such as environmental sensing, military,
and medical fields. Various sensors (e.g., camera, microphone) are
nowadays embedded in smart phones, and capable of sensing use-
ful data for various purposes (e.g., pollution monitoring in a city).
Therefore, considering such devices, and other equipment capable
of sensing, is very beneficial for knowledge extraction in sensor
networks. Nonetheless, SNs may produce heterogeneous data, that
have to be collected, processed, and analyzed in order to provide
various services for network managers. Representing, sharing, and
integrating the aforementioned data is a challenging task. In or-
der to address this challenge, semantic web techniques, such as
ontologies, have been adopted for their information representation.
However, existing approaches on sensor network representation
[1-4, 6, 11, 13] are restrictive due to the following issues:

o Lack of platform diversity: existing approaches do not con-
sider equipment with embedded sensors (e.g., smart phones,
drones, machines) as platforms, in addition to traditional
platforms (e.g., buildings, cities, offices) where sensors are
deployed. Extending the platform representation, by both
considering and detailing the representation of various types
of platforms, allows the addition of new components to the
network, nested platforms, and dynamic, collaborative sens-
ing activities (e.g., crowd-sensing).
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o Lack of sensor diversity: these works do not represent dif-
ferent sensor types (e.g., mobile/static sensors, simple sen-
sor nodes/multi-sensor devices, sensors capable of sensing
scalar/multimedia properties). Providing a more detailed
sensor representation that considers various attributes (e.g.,
mobility) improves network coverage, and allows sensor
tracking and dynamic sensing.

o Lack of data diversity: most works cover scalar environment
properties (i.e., mainly focus on scalar data such as tempera-
ture, motion, and neglecting multimedia data such as sounds,
images, and videos). Since several devices are capable of sens-
ing both types, and data diversity is required for different
application purposes (e.g., event detection), it is important
to cover scalar and multimedia data in the representation.

o Lack of re-usability: these approaches are heavily linked to a
specific application domain. The sensor network modeling
should remain generic and re-usable in different contexts.

To answer these challenges, we present here an extension of the
widely used Semantic Sensor Network ontology (SOSA/SSN) [7]
called HSSN. It allows the representation of hybrid sensor net-
works, i.e., networks containing mobile/static sensors, scalar/multi-
media properties, and infrastructures/devices as platforms where
sensors are deployed. We chose to extend SSN since it is already
re-usable in various contexts and allows the representation of dif-
ferent platforms. Nonetheless, sensor and data diversity are not
fully developed. Our proposal adds diverse data, sensors, and details
the description of various platform types. In addition, HSSN does
not contain domain specific knowledge and can be easily aligned
with other ontologies (e.g., mobile phone, smart building ontologies
(16]).

The rest of the paper is organized as follows. Section 2 illustrates
a scenario that motivates our proposal. Section 3 reviews related
work regarding mobility, platforms, and sensed data. Section 4 de-
tails the HSSN ontology. Section 5 describes the experimental setup
and results. Finally, section 6 concludes the paper and discusses
future research directions.

2 MOTIVATING SCENARIO

To highlight the utility of our proposal, we choose the following
scenario (we only use this example to concretely illustrate the needs,
challenges, and motivations behind our work. We do not consider
it to be a generic, all summarizing, sensor network application sce-
nario). Consider a smart mall/shopping center (cf. Fig.1). In order to
optimize client comfort, health, and security, the smart mall relies
on a set of sensors (s1-S9) to monitor the environment. Video surveil-
lance cameras (s1-s¢) monitor security related events. Humidity,
CO3, and temperature sensors (s7, sg, and sg respectively) make



observations that help regulate the indoor air quality, and temper-
ature. The sensed data is stored and used for these applications.

However, many improvements still need to be integrated:
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Figure 1: Smart Mall Example

e Need 1- Provide better temperature/air quality readings: re-
lying on measures from a multitude of sensors (instead of
only one) allows a more precise monitoring of the environ-
ment. Currently, this is not possible since there is only one
temperature/air quality sensor in the mall.

o Need 2- Keep track of client positions in the mall since it is
useful to know: the number of occupants in each zone, client
positions for tracking suspicious/interesting behaviours. Cam-
eras (s1-s¢) are used by mall agents to monitor limited events
and cannot track client locations everywhere.

e Need 3- Cover all areas of the mall: this is critical for client
security and safety. In the current setup, many uncovered
areas exist (e.g., no temperature monitoring in the movie
theater, no video surveillance in Shop 2).

e Need 4- Provide a rich documentation of critical events: in
order to increase the understanding of events (e.g., when
reporting incidents, providing evidences), rich descriptions
should be provided to police with a variety of sensed multi-
media and scalar data (e.g., video, audio, image, temperature,
humidity). Currently, reports on attack incidents (e.g., gun-
shot) rely only on video surveillance footage (e.g., no noise
levels to confirm the gunshot, no motion data to describe
how people ran away). A bigger data variety is needed.

o Need 5- Adapt to changing event detection needs: sometimes
new/spontaneous events need to be detected, the mall should
be able to sense the required data and detect these events.
However, the current sensor configuration/deployment and
sensed data cannot be easily modified. This doesn't allow
the detection of new events.

In order to address these issues, the mall managers would need
to add more sensors to cover all zones. This ensures full coverage
of the mall (Need 3), and allows multiple observations from each
zone for aggregation (Need 1). In addition, they could replace the
cameras with more advanced ones that enable image processing for
tracking purposes (Need 2). However, this increases the equipment,
maintenance, and implementation costs without addressing Needs
4 and 5. A more appropriate solution would be to integrate visitors'
mobile phones (since they embed sensors) as mobile sensors in the
mall's network, while avoiding excessive resource consumption
from the devices (e.g., draining a phone's battery). This provides
the following benefits: (i) sensor mobility provides observations

from different areas of the mall, multiple sensors can therefore
collaborate to calculate more reliable air quality/temperature mea-
sures (Need 1); (ii) mall visitors can easily be tracked using their
connected mobile phones (Need 2), location information can also
be used to discover uncovered areas (Need 3); (iii) using various
sensors from different devices helps cover a wider array of scalar/-
multimedia properties (Need 4); and (iv) these devices provide a
diversity of hardware (e.g., sensors), software, and services that can
be adapted to changing event detection needs (Need 5). However,
when adding mobility, diverse data, and devices to the network, the
following challenges emerge:

e Challenge 1: How to expressively describe locations in the
mall?

o Challenge 2: How to consider ad-hoc devices in the network?
How to query them based on their capabilities (e.g., without
draining their batteries)? How to represent the services that
they provide?

e Challenge 3: How to track locations and coverage areas of
mobile sensors?

o Challenge 4: How to collect scalar/multimedia observations
from sensors?

Other challenges also exist when modeling sensor networks. How-
ever, we address here the aforementioned four challenges from a
data modeling perspective by proposing an extension of the seman-
tic sensor network ontology that includes mobility, platform, and
data related concepts.

3 RELATED WORK

In this section, we study existing sensor network ontologies. We
focus our review on sensor mobility, deployment platforms, and
semantic representation of multimedia data. We compare these
works based on the following criteria:

(1) Sensor diversity: Indicating if different types of sensors exist
in the sensor network (e.g., mobile/static sensors, simple
nodes/multi-sensor equipment, sensors capable of sensing
scalar/multimedia properties).

(2) Platform diversity: Stating if the approach allows and de-
tails the description of different platforms where sensors are
deployed (e.g., in infrastructures, on devices).

(3) Data diversity: Denoting the approach's ability to handle
various data/properties (e.g., scalar, multimedia).

(4) Re-usability: Indicating if the approach is re-usable in various
contexts.

3.1 Sensor Diversity

In [2], the authors focus mainly on features that describe the sensor
nodes, their functionality, and their current CPU, memory, and
power supply states (in order to determine the future state of the
WSN). However, they do not represent different types of sensors.
In [6], the authors provide a set of ontologies describing missions,
tasks, sensors, and deployment platforms for sensor to task assign-
ment. Unfortunately, different types of sensors were not considered.
In [7], the authors propose the SOSA/SSN? ontologies. Together,
they describe systems of sensors and actuators, observations, the

https://www.w3.org/TR/vocab-ssn/



used procedures, properties, and so forth. SOSA/SSN propose sim-
ple sensor node representation, as well as (sensing) systems/devices.
However, SOSA/SSN do not propose any mobility-related concepts,
nor multimedia data/properties. The authors only consider one
aspect of sensor diversity (i.e., simple sensor nodes/sensor systems).
In [1], the authors propose an extension of SSN, denoted MSSN
(Multimedia SSN), where they detail the technical aspects of multi-
media data (e.g., video, audio segments, frequencies). In this work,
the authors improve the sensor diversity of SOSA/SSN by adding a
media sensor (i.e., a sensor type that observes multimedia proper-
ties). However, they do not achieve full sensor diversity as they do
not consider sensor mobility (i.e., mobile/static sensors).

3.2 Platform Diversity

The authors in [9] only consider embedded sensors on mobile
phones to monitor noise pollution. In [4], the authors rely on tradi-
tional deployment of sensor nodes in the wilderness to detect fire
events. The problem is, these works do not provide any platform di-
versity. In the SSN ontology [7], sensors are deployed on platforms.
SSN also introduces systems, that can integrate various sensors,
actuators, and samplers. Therefore, SSN provides a foundation for
sensor deployment on various platforms (e.g., traditional deploy-
ment on platforms, embedding sensors in systems and devices).
However, the differences between theses platforms is not detailed
in SSN. The description of physical infrastructures/environments
such as smart buildings and cities (where it would be interesting to
model maps and locations) is different than of machines, drones,
and devices that host sensors (where it would be interesting to
model hardware and software). It is better to distinguish and detail
the description of different platform types to better understand the
environments where sensors are deployed (e.g., for location-based
services in infrastructures, task assignment based on hardware/-
software capabilities for devices). MSSN [1] suffers from the same
limitation since it is based on the SSN ontology and does not add
any new concepts related to platforms.

3.3 Data Diversity

In [5], the authors represent images for object recognition pur-
poses. The scope of their work does not extend to other types of
multimedia data (e.g., video, audio). In [10], the authors are also
limited to image representation, since they propose an approach
for object-based image retrieval. In [11], the authors monitor noise
pollution in urban zones by sensing (audio) noise levels using occu-
pants' mobile phones. The authors only consider noise data, and
geo-locations in order to generate a noise level map. Therefore, their
proposal does not fully consider data diversity (e.g., video, images,
other scalar data). The SSN ontology [7] does not consider multime-
dia observations. It details scalar sensed data. This motivated the
proposal of MSSN [1] where the authors represent multimedia data
in sensor networks. For each multimedia observation value, the
authors associate data descriptors (denoted media descriptors), and
data segments (denoted media segments). Their proposed ontology,
MSSN, complements the SSN ontology [7] since the latter does not
cover multimedia contents nor multimedia sensors.

3.4 Re-usability

In [9], the authors propose a noise pollution monitoring solution in
a city using mobile phones to sense noise. The authors enrich the
sensed information by allowing users to add contextual information
to their sensor observations. However, it lacks the genericity needed
for it to be reusable in other contexts. In [1], the authors propose a
multimedia wireless sensor network ontology for event detection
purposes (the authors include concepts related to atomic, complex
events, and event detection/composition). These added concepts are
domain specific and not necessary in other application scenarios.
This restricts MSSN's re-usability. Each of these works are task-
centric and heavily linked to an application purpose. The SSN
ontology [7] remains generic and re-usable in various contexts
since it is extensible and does not contain any concepts that link it
to any specific application.

3.5 Discussion

The aforementioned works do not fully integrate sensor diversity
in their representation of sensor networks (i.e., static/mobile sen-
sors, simple node/multi-sensor devices, and scalar/multimedia sen-
sors). The SSN ontology [7] is a culmination of much of the related
work on semantic sensor networks and is the most widely used (re-
usable). In addition, SSN is extensible, facilitates alignments with
other standards, and allows the integration of new concepts. The
MSSN ontology [1], integrates multimedia data in SSN. Therefore,
we propose to extend SSN since: (i) it partially allows sensor diver-
sity; (ii) it is re-usable and does not contain any domain specific
knowledge; and (iii) it allows having various platform types. More-
over, we do not neglect MSSN for its ability to cover multimedia
data (data diversity). Therefore, our proposal will extend SSN and
use key MSSN concepts in order to achieve full sensor diversity,
platform diversity enriched with detailed descriptions of each type
(e.g., infrastructures, devices), and finally data diversity through
the coverage of scalar/multimedia sensed data.

4 HSSN ONTOLOGY

In this section, we detail our proposed extension of the SSN on-
tology, and mainly our additions related to: (i) sensor diversity;
(ii) platform diversity; and (iii) data diversity. The following pre-
fixes sosa:, ssn:, mssn:, time:, and hssn: refer to the SOSA[7], SSN[7],
MSSN([1], Time[8], and HSSN ontologies respectively. We begin
first by describing sensor-related concepts.

4.1 Sensor Diversity

4.1.1 Sensor Mobility. Fig.2 illustrates the sensor types added in
HSSN. The concept Sensor already exists in the SSN ontology, where
mobility is not extensively developed. Therefore, we add two child
concepts of Sensor: (i) MobileSensor, describing any sensor that
has the ability to move or change location; and (ii) StaticSensor, a
sensor that does not change location in time. This allows the sensor
network to have diverse sensor types (cf. Criterion 1 - Section 3).

4.1.2  Sensor Tracking. Every sensor has a Location. To consider
mobility, one should be able to locate any sensor at all times. The ob-
ject property isCurrentlyLocatedAt maps each sensor to its current



Location (cf. Challenge 3 in Section 2). This is specifically impor-
tant for tracking mobile sensors, since static sensors do not change
locations (cf. Fig.3). A hasPastLocation property is added to retrieve
the previous positions of a (mobile) Sensor, and also a hasLocation-
Time (cf. Fig.4) property is added to map these positions to time
instants or intervals in order to track sensors (temporal entities are
extracted from Time ontology [8]).
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4.1.3 Coverage Area. Each Sensor, mobile or static, has a Cover-
ageArea (cf. Fig.5), a geographical zone that contains any sensing
activity (i.e., any happening outside of this zone is not detected by
the Sensor). In order to represent coverage areas, we consider the
following: (i) a CoverageArea is bound to the sensor's current Loca-
tion; and (ii) the geographical spread of a CoverageArea is affected by
the sensing range and sensing angles (horizontal and vertical orien-
tation) of the concerned Sensor. We represent the coverage area as
a sector of space (Fig.6 shows a horizontal slice of the space) where
S is the focal point (the sensor's current Location), a, f € [0; 2]
are the angles that define the horizontal/vertical rotational spread
of the coverage area respectively, and the distance SA = SB is the
sensing range that defines the extent of the coverage area. The
angles and range depend of the sensor's capability properties. For
instance, a temperature sensor has « = = 27, but a surveillance
camerahasa = §, f = % if the camera lens is limited to a 45°

horizontal angle, and a 30° vertical angle. Similarly, the sensing
range varies from one sensor to another (e.g., 10, 20, 50 meters).
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The composition of a CoverageArea is explained in Fig.7. The
SensingLocation is equivalent to the sensor's Location, and the an-
gles and range of the CoverageArea are equivalent to the sensor's
HorizontalAngle, VerticalAngle, and Range properties that we added
in HSSN as part of a system's properties. Since static sensors are
immobile, it is easy to know their coverage areas using the sensor's
location, and its sensing range and angles. In contrast, knowing
the coverage areas of mobile sensors is more challenging, since
these areas move when the sensors move. In order to keep track
of these changes, the object property currentlyCovers maps each
Sensor to its current CoverageArea (cf. Fig.8). Also, the property
hasPastCoverageArea maps mobile sensors to their respective sets
of previous coverage areas (cf. Challenge 3 in Section 2). Finally,
hasCoverageTime is the property that maps previous coverage ar-
eas to temporal entities (i.e., time instant or interval from Time
ontology [8]) for tracking purposes (cf. Fig.9).
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4.2 Platform Diversity

4.2.1 Infrastructure Representation. In SSN[7], sensors are deployed
on platforms. In Fig.10, we define the following child concepts of
Platform: (i) Infrastructure, a physical environment having locations
where sensors could be deployed (cf. Challenge 1 in Section 2);
and (ii) Device, an electronic equipment where sensors could be
embedded (cf. Challenge 2 in Section 2). This allows different types
of deployments such as the traditional deployment in environments
(e.g., buildings, malls) or nested deployment of multi-purpose de-
vices that in turn embed sensors (e.g., mobile phones). This provides
platform diversity (criterion 2 cf. Section 3). Every Infrastructure de-
scribes a specific physical environment where sensors are deployed.
Therefore, infrastructures can host platforms such as other infras-
tructures (e.g., cities host buildings) and devices (e.g., buildings host
mobile phones). However, devices can embed systems of sensors,
actuators, and samplers but cannot host infrastructures (e.g., build-
ings). Each Infrastructure is described by a Location Map which
contains (isComposedOf property) a set of Locations (cf. Fig.11).
For example, a building is an Infrastructure that has a Location-
Map. The latter describes the spatial relations between individual
Locations in the building such as floors, offices, etc. HSSN uses topo-
logical, distance, and directional relations to describe the spatial
ties that exist between individual Locations. We integrate the afore-
mentioned location-related concepts in order to locate sensors, and
better understand the spatial constraints/setup of the Infrastructure.
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4.2.2 Device Representation. A Device is another type of Platform
where sensors are deployed. It is introduced in HSSN to repre-
sent mobile phones and other sensing equipment. A Device has
sub-concepts for storage, communication, processing, and power
supply, in addition to the ability of embedding sensors (using the de-
ployEntity concept cf. Fig.12). These concepts describe the Hardware
of a Device. The Software part is also represented. A Device could
be used for various purposes (e.g., representing mobile phones for
mobile phone sensing, machines with mounted sensors for fault
detection in an Industry 4.0 scenario). The hardware and software
representation allows complex queries such as assigning sensing
tasks to devices based on their processing capabilities, or battery
status (cf. Challenge 2 in Section 2). Finally, each Device can provide
a set of services. Fig.13 illustrates our service modeling, inspired
by the Web Service Modeling Ontology (WSMO) [12]. We created
generic concepts that can be aligned with WSMO. We do not aim
to detail the service description to allow alignments with any other
service ontology. We limit the service modeling to the following
concepts: Service Metadata describes the properties of a Service.
The Input represents the set of variables and constraints required
for correct service execution, while the Output is the set of gen-
erated results. The functionality of a service is described by the
Capability concept which is mapped to a specific UserGoal or objec-
tive (i.e., a user desire satisfied by the service). Users communicate
with a service through UserlInteractionInterfaces (choreography in
WSMO). Finally, services communicate with each other via the
ServicelnteractionInterface (service orchestration in WSMO). Finally,
the infrastructure and device detailing also improves sensor di-
versity by allowing the representation of simple sensor nodes in
infrastructures, multi-sensor systems, and multi-sensor devices.
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4.3 Data Diversity

Audio, image, and video data can be sensed by mobile or static sen-
sors (e.g., surveillance cameras, mobile phones). Also, in order to
detect complex events (e.g., gunshot) a combination of multimedia
and scalar observations is needed. Therefore, we aim to integrate
concepts related to multimedia properties (cf. Criterion 3 in Section
3). In MSSN [1], multimedia data/properties are integrated in SSN.
We re-organize MSSN multimedia concepts into scalar (e.g., tem-
perature, motion) and multimedia (e.g., noise, video) properties as
illustrated in Fig.14. Also, we introduce in Fig.15 the mediaSenses
and scalarSenses relationships to map sensors to their correspond-
ing scalar and/or multimedia observable properties (cf. Challenge
4 in Section 2). This highlights the sensor diversity in HSSN since
static/mobile sensors can detect scalar and/or multimedia proper-
ties. The authors in [1] also describe technical aspects/metadata of
multimedia objects such as annotations, audio (e.g., frequencies),
motion (e.g., trajectories), visual (e.g., color histograms). We use
these concepts in HSSN to describe sensor observation values. A
MediaValue in HSSN is composed of the MultimediaData concept,
referring to the audio, video, or image objects/files and the Medi-
aDescriptor concepts, describing the metadata of the multimedia
objects (e.g., frequencies, colors). ScalarValues are textual (e.g., tem-
peratures, humidity levels). Finally, we map observation values to
their related properties using the hasMediaValue and hasScalarValue
relationships. Sensors can now be correctly mapped to observable
properties and observation values (cf. Challenge 4 in Section 2).
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In conclusion, new concepts and properties are introduced in
HSSN in order to address the challenges presented in Section 2.
Our proposal details the representation of infrastructures (a type
of platforms) by adding location maps, individual locations, and
spatial relations. This allows the expressively describe locations (cf.

Challenge 1). In HSSN we describe devices as platforms that host
sensors. We detail device hardware, software, and provided services.
In addition, we add properties that help locate, track, and query
these devices (cf. Challenge 2). HSSN also provides a description of
sensor coverage areas and properties that map both locations and
coverage areas to mobile/static sensors at any time (cf. Challenge
3). Finally, we address data heterogeneity by detailing multimedia
data objects, their metadata, and scalar data. We also map them to
their respective sensors (cf. Challenge 4).

5 IMPLEMENTATION AND EXPERIMENTAL
SETUP

5.1 HSSN Implementation

We implemented the HSSN ontology using Protege 5.2.0%. The
files are available at http://spider.sigappfr.org/research-projects/
hybrid-ssn-ontology/ (External Links - Download ontology files).
Also, a complete documentation can be found at http://spider.sigappfr.
org/HSSNdoc/index-en.html. In the following, we detail the SPARQL
queries used during the experimentation. Then, we describe the
experimental setup, before discussing the obtained results from an
accuracy, clarity, performance, and consistency standpoint.

5.2 Illustration Example

The challenges mentioned in Section 2 can be addressed via the
following SPARQL queries: Platform Diversity: In order to expres-
sively describe locations (Challenge 1) in the mall infrastructure, a
detailed representation of location maps and locations is needed
(Query 1). Also, covered and uncovered areas should be easily found
(Query 2). In order to consider ad-hoc devices in the network (Chal-
lenge 2), one should be able to query devices, their hardware (e.g.,
embedded sensors), software, and services. Query 3 shows how to
locate a mobile device by querying its embedded sensor. Similarly,
one could query a device based on other characteristics (e.g., battery
status, processing power).

Query 1: Knowing the spatial description of infrastructures

SELECT distinct ?infrastructure ?locationmap ?location WHERE

{?infrastructure isDescribedBy ?locationmap. ?locationmap isComposedOf ?location.}

Query 2: Knowing covered locations

SELECT distinct ?location ?coveragearea WHERE {?location isIncludedIn ?cover-

agearea.}

Query 3: Locating mobile devices, querying device hardware

SELECT distinct ?location ?dev WHERE {?location currentlyLocates ?sensor.

?sensor isEmbeddedOn ?du. ?du hasExpansionCard ?hd. ?hd isRelatedToDevice ?dev.}

Sensor Diversity: To track sensors at all times (Challenge 3),
it is important to know current locations/coverage areas for all
sensors (Query 4), as well as previous ones (Query 5).

Zhttps://protege.stanford.edu/
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Query 4: Finding current sensor locations/coverage areas

SELECT distinct ?location ?sensor ?coveragearea WHERE

{?location currentlyLocates ?sensor. ?sensor currentlyCovers ?coveragearea.}

Query 5: Finding previous sensor locations

SELECT distinct ?location ?sensor WHERE {?location hasPreviouslyLocated ?sensor}

Data Diversity: In order to consider data diversity (Challenge
4), on should be able to distinguish scalar/multimedia data and
correctly map them to sensors (Queries 6 and 7).

Query 6: Mapping sensors to their scalar properties and observations

SELECT distinct ?sensor ?property ?observation WHERE

{?sensor scalarSenses ?property. ?property isScalarValueOf ?observation.}

Query 7: Mapping sensors to their multimedia properties and observations

SELECT distinct ?sensor ?property ?observation WHERE

{?sensor mediaSenses ?property. ?property isMediaValueOf ?observation.}

5.3 HSSN Experimental Setup

Here, we did not aim to experiment SSN concepts and properties.
We evaluated the impact of our newly added concepts (e.g., stat-
ic/mobile sensors, infrastructures/devices, multimedia/scalar data).
Our objectives were the following:

(1) Accuracy Evaluation: Checks if the added concepts/proper-
ties answer the aforementioned challenges. This query based
evaluation highlights the impact of our extensions in over-
coming the challenges mentioned in Section 2.

(2) Clarity Evaluation: Checks if the labels used to describe the
concepts/properties are clear and unambiguous to domain
stakeholders. The aim is to evaluate the compatibility and
clarity of our provided description with respect to the appli-
cation domain.

(3) Performance Evaluation: Measures the impact of HSSN ad-
ditions on performance (i.e., query run time). The aim is
to evaluate the feasibility, performance-wise, of integrating
HSSN in sensor network applications.

(4) Consistency Evaluation: Checks if the added concepts/prop-
erties generate inconsistencies (e.g., anti-patterns) within
the structure of the ontology. The aim is to evaluate the
soundness of the ontology graph.

5.3.1 Accuracy Evaluation. We created a population of individuals
and ran the aforementioned queries. Then, we compared the ob-
tained and expected results. We created two infrastructures, each
described by a location map containing 500 locations. Then, 1000
sensors were deployed (500 mobile/static, 500 scalar/media). Each
sensor is located in one location, covers one coverage area, observes
one property, and produces one observation value.

Platform Results:We ran queries 1, 2, and 3. The returned results

match perfectly the expected ones. Infrastructures were correctly
assigned to their location maps and included locations. This al-
lowed the identification of distinct spaces/areas. Query 2 correctly
returned the set of distinct locations included in each coverage area.
This allowed the identification of non covered locations. Query 3
allowed the identification of device hardware related to the embed-
ded sensors. Also, the mobile devices were correctly located in the
location map.

Mobility Results: We ran queries 4 and 5 on the population of
individuals and for each case the returned results matched exactly
the expected ones. Sensors were correctly assigned to their curren-
t/previous locations and coverage areas.

Data Results: We ran queries 6 and 7 and obtained an exact match-
ing between the actual and expected results. Thus, scalar/multi-
media properties were correctly distinguished. Also, sensors were
correctly assigned to the scalar or multimedia observations that
they produced.

Result Discussion: The test results showed that locating any type
of sensor (i.e., simple node/multi-sensor device, static/mobile sen-
sors, and scalar/multimedia sensors), and knowing their coverage
areas is possible at any point in time. Hence, allowing tasks such
as tracking mobile sensors, and detecting uncovered areas. Also,
the results showed that the detailing of infrastructure and device
descriptions (platform diversity) allowed a better knowledge of
the environment space (also important for locating sensors). Multi-
sensor devices were also detailed by describing their hardware
and software which proved useful when querying devices based
on their capabilities (e.g., we ran an additional query that returns
sensors/devices with good battery status). From a data diversity
standpoint, the results showed that sensors that sense multimedia/s-
calar properties were correctly distinguished and their observations
were accurately retrieved. To conclude, the query results confirmed
that the added extensions (i.e., regarding sensor, platform, and data
diversity) accurately answer the challenges mentioned in Section 2.

5.3.2  Clarity Evaluation. We created two evaluation forms: the
first3 for evaluating the ambiguity of the labels used to describe
the HSSN concepts, and the second* for evaluating the ambigu-
ity of the labels used to describe inter-concept relations. We sent
the two forms to 50 sensor network and ontology experts (25 net-
working experts, and 25 computer scientists). Results in Fig.16 and
17 show that terms considered clear by computer scientists are
sometimes found ambiguous by network experts and vice-versa.
Fig.16 shows that a few terms do not meet the acceptable ambiguity
level (e.g., ComUnit, DeployUnit), while others (e.g., MediaProperty,
MediaValue) need some clarification. Therefore, we considered the
experts' suggestions in the final version of the ontology by modi-
fying the following: (i) ExpansionCard instead of DeployUnit; (ii)
PowerSupply instead of PowerUnit; (iii) Networkinterface instead of
ComUnit; (iv) Memory instead of StorageUnit; (v) Processor instead
of ProcessingUnit ; and (vi) Multimedia instead of Media. Finally,
Fig.17 shows that in most cases, both categories of experts assigned
correctly the inter-concept relationships. Networking experts have
low success on the first two questions since the latter are outside of
their domain of expertise (regarding inheritance between concepts).

3Link: https://goo.gl/forms/blc8pKLLqtNtjXHI2
“Link: https://goo.gl/forms/KNNY3XsmGpOptM2N2
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Result Discussion: The clarity evaluation allowed the identi-
fication and correction of ambiguous/unclear labels that we used
to describe our added concepts/properties. In the version currently
available online, all labels achieve an acceptable level of clarity
(based on the stakeholders' feedback). This reinforces the re-usability
of HSSN since it is unambiguous and easily understood.

5.3.3  Performance Evaluation. In order to evaluate the performance
of HSSN, we measured the query run-time by running each of the
previously mentioned queries 10 times and calculating the average.
We varied the size of the population (100 sensors, 1000 sensors, and
10000 sensors) in order to test various scenarios related to mobility,
platforms, and data.

Mobility impact: In this test, we varied the percentage of mobile
sensors in the network (0, 30, 50, 70, and 100 %). Then, we retrieved
the current/previous sensor locations (cf. Fig.18 and 19). We mea-
sured the run-time for queries 4 and 5. In Fig.18, we noticed that
increasing the number of mobile devices increases the time required
to retrieve current sensor locations. This is due to the fact that lo-
cating a device (Query 3) was a more complex task than locating a
static sensor since we needed to locate the sensor, its deployment
unit, hardware, and then the device. We noticed the same pattern
for all three cases (100, 1000, 10000 sensors). Finally, the progression
from 0% to 100% mobile devices had a quasi-linear impact on query
run-time. Similarly, Fig.19 details the query run-time for retrieving
previous different sensor locations. Since mobile sensors have a
larger list of previous locations in comparison with static sensors,
increasing the mobility percentage (0, 50, 100 %) increases the query
run-time. This progression was also quasi-linear for all three cases
(100, 1000, 10000 sensors).
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Platform impact: In this test, we varied the sensor distribution
on the platform locations. We tested three different scenarios (i)
each sensor is located in one location; (ii) all sensors are located in
one location; and (iii) half of the sensors are located in a location
and the other half in another. We measured the run-time of the
query that retrieves sensor locations.
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Figure 20: Platform impact on current location retrieval

Fig.20 shows how sensor distribution on locations affected the
time needed to map sensors to their current locations. When all
sensors were located in one location, the required time to perform
this task was minimal. Then, as we began to decrease sensor densi-
ties, the query took more time. Finally, the worst case was when
every location contained only one sensor.

Data impact: Here, we checked the impact of scalar/multimedia
data on the run-time of queries 6 and 7 (cf. Fig.21).
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For data diversity impact on performance (cf. Fig.21), we noticed

that in all cases (100, 1000, 10000 sensors) the query run-time was
similar when considering scalar and multimedia data. This is due
to the fact that we were measuring the time required to retrieve
the data and not the time needed to capture/sense it.
Result Discussion: The performance evaluation showed that the
added concepts/properties do not heavily impact the query run
time, which remains quasi-linear in most cases. This highlights
the feasibility of using of HSSN in sensor applications (from a
performance point of view).

5.3.4 Consistency Evaluation. In [15], consistency is defined as a
criterion that verifies if the ontology allows contradictions. The
descriptions in the ontology should be consistent.

Consistency Queries: To evaluate consistency, we adopted the
following SPARQL queries that search for anti-patterns, a strong
indicator of inconsistencies, in the ontology. Query 8 detects con-
cepts with no parent, and query 9 detects abnormally disjointed
concepts in the ontology:

Query 8: Searching for concepts with no parent

SELECT ?a WHERE {?a subClassOf owl:Nothing }

Query 9: Searching for abnormally dijointed concepts

SELECT distinct ?A ?B1 ?B2 ?C1 WHERE
{?B1 subClassOf ?A. ?B2 subClassOf ?A. ?C1 subClassOf ?B1. ?C1 disjointWith ?B2.}

Results & Discussion: We found no inconsistencies in the
HSSN ontology structure. The only concept subsuming nothing
is owl:Nothing (Query 8). Query 9 results indicate that there are
no concepts that have abnormal disjoint relations with their rela-
tives. This denotes the soundness of the integration of newly added
concepts mainly with the SSN core. Finally, to conclude the inconsis-
tency evaluation, we ran Protege's HermiT 1.3.8.413 reasoner, and
found no inconsistencies between the asserted class hierarchy and
inferred one. This highlights the soundness of the graph structure,
which proves critical when considering future alignments between

HSSN and other ontologies (e.g., that describe smart buildings,
events).

6 CONCLUSION & FUTURE WORK

Many works adopted ontologies for better semantic representation
of sensor networks. These approaches do not fully consider diver-
sity in terms of sensors, data, platforms, and application purposes.
In this paper, we propose an extension of the Semantic Sensor
Network ontology (SSN), since it is already re-usable in various
contexts. Our proposed ontology, denoted HSSN, adds to SSN sen-
sor mobility, and multimedia data related concepts in order to have
a representation of hybrid sensor networks. HSSN also extends
the platform representation of SSN in order to fully consider plat-
form diversity. We implemented HSSN, evaluated the consistency,
accuracy of our additions, and their impact on performance. As
future work, we would like to continue the ongoing evaluation
of the completeness of the ontology through comparisons with
mobility and sensor taxonomies. Finally, we want to represent a
sensor network in a smart environment (e.g., smart building, city)
for event detection purposes.
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