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ABSTRACT
Knowledge base is one of the main forms to represent informa-
tion in a structured way. A knowledge base typically consists of
Resource Description Frameworks (RDF) triples which describe the
entities and their relations. Generating natural language descrip-
tion of the knowledge base is an important task in NLP, which
has been formulated as a conditional language generation task
and tackled using the sequence-to-sequence framework. Current
works mostly train the language models by maximum likelihood
estimation, which tends to generate lousy sentences. In this paper,
we argue that such a problem of maximum likelihood estimation
is intrinsic, which is generally irrevocable via changing network
structures. Accordingly, we propose a novel Triple-to-Text (T2T)
framework, which approximately optimizes the inverse Kullback-
Leibler (KL) divergence between the distributions of the real and
generated sentences. Due to the nature that inverse KL imposes
large penalty on fake-looking samples, the proposed method can
significantly reduce the probability of generating low-quality sen-
tences. Our experiments on three real-world datasets demonstrate
that T2T can generate higher-quality sentences and outperform
baseline models in several evaluation metrics.
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1 INTRODUCTION

Neil Armstrong

RDF 
Triples

United States

astronaut Wapakoneta

occupation birthPlace

nationality

location

<Neil Armstrong, occupation, astronaut>
<Neil Armstrong, nationality, United States>
<Neil Armstrong, birthPlace, Wapakoneta>
<Wapakoneta, Location, United States>

(a) Knowledge base and its RDF triples.

Natural 
Sentence

Neil Armstrong was an American 
astronaut born in Wapakoneta, a city in 
the United States

(b) Corresponding natural language description.

Figure 1: A small knowledge base, (a) its associated RDF
triples and (b) an example of the corresponding natural lan-
guage description.

Knowledge bases (KB) are gaining attention for their wide range
of industrial applications, including, question answering (Q&A) sys-
tems [20, 58], search engines [16], recommender systems [29] etc.
The Resource Description Frameworks (RDF) is the general frame-
work for representing entities and their relations in a structured
knowledge base. Based on W3C standard [38], each RDF datum is a
triple consisting of three elements, in the form of (subject, predicate,
object). An instance can be found in Figure 1(a), which illustrates a
knowledge base about Neil Armstrong and its corresponding RDF
triples.

Based on the RDF triples, the Q&A systems can answer ques-
tions such as "which country does Neil Armstrong come from?"
Although such tuples in RDF allow machines to process knowledge

ar
X

iv
:1

90
6.

01
96

5v
1 

 [
cs

.C
L

] 
 2

5 
M

ay
 2

01
9

https://doi.org/10.1145/3331184.3331232
https://doi.org/10.1145/3331184.3331232


efficiently, they are generally hard for humans to understand. Some
human interaction interfaces (e.g., DBpedia1) are designed to deliver
knowledge bases in the form of RDF triples in a human-readable
way.

In this paper, given a knowledge base in the form of RDF triples,
our goal is to generate natural language description of the knowl-
edge bases which are grammatically correct, easy to understand,
and capable of delivering the information to humans. Figure 1(b)
lays out the natural language description given the knowlege base
about Neil Armstrong.

Traditionally, the Triple-to-Text task relies on rules and tem-
plates [11, 13, 51], which requires a large number of human efforts.
Moreover, even if these systems are developed, they are often faced
with problems of low scalability and inability to handle complex
logic.

Recently, with significant progress on deep learning, the neural
network (NN) based natural language generation models, espe-
cially the sequence to sequence framework (SEQ2SEQ) [48], have
achieved remarkable success in machine translation[3] and text
summarization[42]. The SEQ2SEQ framework has also been em-
ployed to translate knowledge bases into natural languages. Vou-
giouklis et al. [54] proposed Neural Wikipedian to generate sum-
maries of the RDF triples.

However, most existing studies focus on the design of the model
structure [54], while paying less attention to the training objective.
These models are usually trained via maximum likelihood esti-
mation, which is equivalent to minimizing Kullback-Leibler (KL)
divergence between the ground-truth conditional distribution (P )
and the estimated distribution (G), i.e., KL(P ∥G). Models trained
with KL divergence tend to have high diversity, but at the same
time, they are likely to generate shoddy samples [30].

In such tasks, we usually care more about the quality of the
translation and care less about diversity. Hence, we propose the
triple-to-text model. By introducing a new component called judger,
we optimize the model in two directions: minimizing the approxi-
mated inverse KL divergence and maximizing the self-entropy.

Our main contributions can be summarized as follows:
• We propose a theoretically sound and empirically effective
framework (T2T) for optimizing the inverse KL divergence
for conditional language generation task of translating a
knowledge base into its natural language description.

• We conduct a series of experiments on different datasets to
validate our proposed method. The results show that our
method outperforms baselines in common metrics.

We organize the remaining parts of this paper as follows. In
Section 2, we formulate the problem and introduce the preliminar-
ies. In Section 3, we provide our analysis of why it is preferable
to optimize an inverse KL divergence. Then Section 4 details our
proposed model. We then present the experiment results in Section
5. Finally, we discuss the related work in Section 6 and conclude
the paper in Section 7.

2 FORMULATION AND PRELIMINARIES
In this section, we formulate the task and introduce the preliminar-
ies of language generation models.
1https://wiki.dbpedia.org/

Table 1: Glossary

Symbol Description
F a knowledge base that consists of RDF triples
t a resource description framework (RDF) triple

⟨si ,pi ,oi ⟩ subject, predicate and object within a RDF triple
S a sentence
w a word in a sentence
X conditional context for SEQ2SEQ framework
Y target context for generative models
xi i-th token from conditional context
yi i-th token from target context
y<i prefix of target context: {y1,y2, · · · ,yi−1}
P the target (ground-truth) distribution
Gθ learned distribution of generator
Mϕ learned distribution of judger
θ parameters of generator
ϕ parameters of judger

2.1 Task Definition
A knowledge base F is formulated as a set of RDF triples, i.e.,
F = {t1, t2, · · · , tN }, where each RDF triple ti is represented as
⟨si ,pi ,oi ⟩. The three elements in a triple denote subject, predicate
and object, respectively. Given the knowledge base F , our goal
is to generate a natural language sentence S which consists of a
sequence of words [w1,w2, · · · ,wM ], wherewm denotes them-th
word in the sentence S . The generated sequence S is required to be
grammatically sound and correctly represent all the information
contained in the knowledge base F .

2.2 Sequence to Sequence Framework
Ourwork is based on the sequence to sequence framework (SEQ2SEQ).
The standard sequence to sequence framework consists of an en-
coder and a decoder. Both of them are parameterized by recurrent
neural networks (RNN).

The encoder takes in a sequence of discrete tokensX = [x1,x2, · · · ,xL].
At t-th step, the encoder takes in a token and updates the hidden
state recurrently:

henct = f enc(henct−1, ext ), (1)

where ext denotes the word embedding [41] of the t-th token. In
general, ext =Wext , whereWe is a pre-trained or learned word em-
bedding matrix with each column representing a embedding vector
of a token; given xt is a one-hot vector,Wext get the corresponding
column ofWe for token xt . f enc is a nonlinear function. Long short-
term memory (LSTM) [28] and gated recurrent unit (GRU) [10] are
often considered as the paradigm of the function. The final output of
encoder is an array of hidden states Henc = [henc1 , h

enc
2 , · · · , h

enc
L ].

Each hidden state can be regarded as a vector representation of all
the previous tokens.

The decoder takes in the hidden states Henc of the encoder as
input and outputs a sequence of hidden states Hdec. The hidden
state at its t-th step is computed by:

hdect = f dec(hdect−1, eyt−1 , ct ), (2)



(a) P (b) KL(P ∥G) (c) KL(G ∥P )

Figure 2: (a) shows the target distribution P , and the histogram in the background represents frequency of different samples;
(b), (c) illustrate the empirical results of G by minimizing KL(P ∥G) and KL(G∥P) respectively.

where eyt−1 is the word embedding of the last output token of the
decoder, and ey0 is set to be a zero vector. ct is a function of hidden
states of encoder that provides the summary of the input sequence
at step t , and typical choices include: i) ct = hencL ; ii) the attention
mechanism [3] with ct = д(henc1 , h

enc
2 , · · · , h

enc
L , h

dec
t−1).

In general, generation of language is modeled as an autoregres-
sive sequential generation process with each token sampled from
the probability distribution conditioning on its previous tokens.
The probability distribution of t-th token is parameterized by a
softmax over an affine transformation of the decoder’s hidden state
at step t , i.e.

Pr(yt |x1,x2, · · · ,xL ,y<t ) = softmax(Whdect + b), (3)

whereW and b are the weight matrix and the bias vector of output
layer respectively, and y<t denotes the first t − 1 tokens of target
content. The probability distribution of the entire output sequence
Y conditioning on the input sequence X is thus modeled as

Pr(Y |X ) = Pr(y1,y2, · · · ,yT |x1,x2, · · · ,xL) (4)

=

T∏
t=1

Pr(yt |x1,x2, · · · ,xL ,y<t ).

2.3 Maximum Likelihood Estimation (MLE)
Training neural language models through maximum likelihood
estimation (MLE) is the most widely used method. The objective is
equivalent to minimizing the cross entropy between the real data
distribution P and the estimated probability distribution Gθ by the
generative models:

JG (θ ) = EY∼P [logGθ (Y )] = −H (P ,Gθ ), (5)

where Y denotes a complete sequence sampled from the real data
distribution P and H denotes the cross entropy.

Maximizing Eq. 5 is equivalent to minimizing the Kullback-
Leibler (KL) divergence between target distribution P and learned
distribution Gθ , which is defined as

KL(P ∥Gθ ) = EY∼P
[
log P(Y )

Gθ (Y )
]
= H (P ,Gθ ) − H (P), (6)

where H (P) is a constant irrelevant to parameter θ .
For clarity, we here ignore the conditional context X here. We

will later regard the maximum likelihood estimation as minimizing
the Kullback-Leibler (KL) divergence.

3 OBJECTIVE ANALYSIS
In this section, wewill give a detailed discussion on the fundamental
problems of minimizing KL divergence in training and explain why
we choose the inverse KL divergence as our optimization objective.
We will also discuss several related solutions.

3.1 Practical Tendency of KL and Inverse KL
The KL divergence between two distributions P and Gθ is formu-
lated as

KL(P ∥Gθ ) =
∑
Y

P(Y ) log P(Y )
Gθ (Y )

. (7)

Since the KL divergence is non-negative, it is minimized when
Gθ = P . Unfortunately, in real-world scenarios, the target P is
usually a very complex distribution. Given limited capacity, the
learned probabilistic modelGθ may only be a rough approximation.

As pointed out in [1], KL(P ∥Gθ ) goes to infinity if P(Y ) > 0 and
Gθ (Y ) → 0, which means that the cost function is extremely high
when the distribution of generator fails to cover some patterns of
the real data. On the other hand, the cost function is relatively low
when the generator is low-quality samples, as KL(P ∥Gθ ) goes to
zero if Gθ (Y ) > 0 and P(Y ) → 0.

That is, although the optimal is guaranteed to be Gθ = P under
MLE objective, during training, the estimated distribution Gθ (y) is
more likely to have a wide coverage and possibly contain samples
out of the real distribution, as illustrated in Figure 2(b). In prac-
tice, models trained via MLE have a high probability of generating
rarely-seen sequences, most of which are inconsistent with human
expressions due to exposure bias [7].

With a similar argument to the behavioral tendency of KL(P ∥Gθ ),
it can be shown that KL(Gθ ∥P) has less penalty to "mode collapse",
which means G tend to generate a family of similar samples. By
contrast, KL(Gθ ∥P) assigns a large penalty to fake-looking samples.
The typical non-optimal estimation, as illustrated in Figure 2(c),
is that it covers several major modes of the real distribution, but
misses several minor modes.

We here argue that in the conditional language generation task,
especially such the triple-to-text tasks, minimizing the inverse KL
divergence would be more preferred. Because, in these translation
tasks, people usually care more about the quality of the generated
text, rather than their diversity. In other words, it is tolerable to have



low diversity, but it is usually unacceptable to be grammatically
incorrect or miss important information.
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...Decoder

Encoder

Entity to Types 

RDF Pre-processor

Tokenizer & Shuffle

Natural Language

Entity to Types

Text Pre-processor
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Knowlegde Bases
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Attention 
Mechanism

Embedding

Embedding

Figure 3: General framework. Sentences and RDF triples are
pre-processed into discrete tokens. Then after embedding,
they are fed into an encoder-decoder neural network with
attention mechanism.

3.2 The Decomposed Objective of Inverse KL
Here, we explain the property of inverse KL divergence via objec-
tive decomposition. We will show that minimizing the inverse KL
divergence KL(Gθ ∥P) can be regarded as a direct optimization of
the performance of the Turing test.

In Turing test , we assume that the human judges know the
accurate natural language distribution P .[39] Given a language
sample X , its quality is scored by P(X ). Thus the averaged score
in a Turing test can be modeled as the negative cross-entropy
−H (Gθ , P) = EY∼Gθ [log P(Y )].

The inverse KL divergence can be rewritten as
KL(Gθ ∥P) = H (Gθ , P) − H (Gθ ). (8)

Eq. 8 illustrates that the objective of minimizing an inverse KL
divergence can be be decomposed into two parts:

• Minimizing H (Gθ , P), which corresponds to the objective of
Turing test.

• MaximizingH (Gθ ), the self-entropy of the generator. It helps
expand the support ofGθ , to avoid disjoint support between
P and Gθ , which may lead to gradient vanish problem [1].

3.3 Estimation of the Real Distribution P
In most real applications, P is an empirical distribution and not
directly accessible. For this reason we could not directly optimize
the inverse KL divergence. In our proposed method, we introduce a
new moduleMϕ , called judger, to approximate target distribution
P . The judger is trained via maximum likelihood estimation and
the objective function forMϕ is

JM (ϕ) = E(X ,Y )∼P [logMϕ (Y |X )]. (9)
Note that, although the judger distributionMϕ might suffer from

the problems as mentioned earlier of MLE, i.e., it does not precisely
model all the modes, it generally widely covers the distribution with
the major modes having large probability masses. Then, based on
this inaccurate estimated distributionMϕ , we minimize the inverse
KL divergence KL(Gθ ∥Mϕ ). As we discussed before, the inverse
KL divergence cares more about the major modes and tends to
ignore these minor modes, including small fake modes stemming
from imperfect MLE estimation, so the shortcoming of MLE-based
estimated distributionMϕ poses no serious problems here.

It is also important to notice that, if the two steps in our algorithm
both get the optimum, we have Gθ = P , which is the same as
previous methods. The key benefit of our algorithm is that when it
does not get the optimum, the generated samples still tend to be
feasible.

3.4 JS Divergence: GANs and CoT
Some previous works also recognized the limitations of KL diver-
gence and alleviated this problem with various optimization meth-
ods. Generative Adversarial Networks (GAN) [24] introduced a
module named discriminator to distinguish whether a sample is
from the real distribution or is forged by Gθ . In theory, given a
perfect discriminator, the training objective of GAN is equivalent
to minimize Jensen-Shannon Divergence, which is defined as the
symmetrized version of two aforementioned divergences:

JSD(P ∥Gθ ) =
1
2
(
KL(P ∥M) + KL(Gθ ∥M)

)
, (10)

whereM = 1
2 (P +Gθ ) is the average of two distributions.

GAN is initially designed for generating continuous data, which
is not directly applicable to discrete tokens, such as language sen-
tences. SeqGAN [56] is introduced to generate discrete tokens via
adversarial training. However, the generative models trained by Se-
qGAN tend to have high variance due to the REINFORCE algorithm
[55].

Another attempt to leverage Jensen-Shannon divergence on se-
quence generation tasks is CoT [37]. CoT introduces a new module,
the mediator Mϕ , which estimates the mixture data distribution
1
2 (P +Gθ ) via maximum likelihood estimation. Then Mϕ is used
to guide the training of the generator Gθ with JSD. However, in
practice, we find that the optimization ofMϕ could be problematic.
According to our experiments, as the real distribution becomes
complicated, Mϕ tends to get a distribution to fit Gθ rather than
accurately modeling the 1

2 (P +Gθ ). We explain this phenomenon
as follows.

The real distribution P is relatively complex, and the estimated
distributionGθ tends to be simple and smooth. Because of the wide
coverage tendency of MLE,Mϕ would cover 1

2 (P +Gθ ) in general;



Distribution of JudgerReal Distribution and Samples Distribution of Generator

Figure 4: The overall training process of our proposed algorithm.

while due to limited capacity ofMϕ ,Mϕ tends to fit the simple one,
i.e., Gθ .

The problem that Mϕ captures limited differences between P
and Gθ makes the training hard to converge.

Note that one key difference is that the target mediator distribu-
tion in CoT is dynamical and involves with the learning distribution
Gθ , while the judger in our method is estimating the static distri-
bution P .

4 METHODOLOGY
In this section, we will first explain how to convert the task into a
sequence-to-sequence generation problem, and then illustrate the
details of how to optimize it with inverse KL divergence.

Algorithm 1: Triple-to-Text algorithm
Input: a corpus of knowledge bases and its corresponding

natural sentences {(F , S)}, hyper-parametersm and д
Output: a generator Gθ , a judgerMϕ

1 Pre-process the knowledge bases corpus {(F , S)} into discrete
token sequence pairs {(X , Y )}

2 Initialize Gθ andMϕ with random parameters θ and ϕ
3 Pre-trainGθ using Maximum Likelihood Estimation (optional)
4 while Gθ not converge do
5 form steps do
6 Sample from sequence pairs {(X , Y )}
7 Update judgerMϕ via maximizing

E(X ,Y )∼P [logMϕ (Y |X )]
8 end
9 for д steps do

10 Sample conditional context X̂ from pairs {(X , Y )}
11 Generate the estimated target sentence Ŷ given X̂

according to Gθ
12 Update generator Gθ via minimizing

E(X̂ ,Ŷ )∼Gθ

[
log Gθ (Ŷ |X̂ )

Mϕ (Ŷ |X̂ )

]
by Eq. 15

13 end
14 end
15 return Gθ ,Mϕ

4.1 General Framework
The SEQ2SEQ framework cannot process graph-based data like
RDF triples directly. Thus we first use a pre-processing technique
similar to the one mentioned in [50]. It substitutes the subjects and

objects in the RDF triples and their corresponding entities in the
sentences into their types.

For example, given a knowledge base [("Bill Gates", "founder",
"Microsoft Corporation") , ("Microsoft Corporation", "startDate",
"April 4, 1975" )] and its corresponding human-annotated natural
sentence "Bill Gates founded the Microsoft Corporation in April
4, 1975". The pre-process module will map "Bill Gates," "Microsoft
Corporation" and "April 4, 1975" into "PERSON," "CORPORATION"
and "DATE" respectively, in both RDFs and the corresponding sen-
tences. The pre-process can reduce the size of the vocabulary list,
and improve the generalization capacity of the model so that it can
handle most dates rather than just "April 4, 1975". Considering that
the nodes in the knowledge bases are unordered, we also apply
permutation among the triples to enhance the training data, and we
believe this approach can improve the generalization capabilities
of the final generation model.

The pre-processed RDF triples are then transformed into a se-
quence of discrete tokens. We use commas to separate elements
within an RDF triple, and semicolons to separate different RDFs.
For instance, the knowledge base mentioned above is turned into
"PERSON, founder, CORPORATION; CORPORATION, startDate,
DATE". Simultaneously, zero padding is used to fill all sequences
into the same length.

Finally, a SEQ2SEQ method introduced in Section 2.2 is used
to encode the processed triple and then translate it into a human-
understandable sentence. To enhance the performance of the encoder-
decoder model, attention mechanisms [3] are used in our proposed
framework. Figure 3 illustrates the general structure of this method.

4.2 Algorithm Details
The general idea of the proposed method is that: a module Mϕ
called judger is introduced to approximate the target distribution P ,
which is trained via maximum likelihood estimation. Based on the
approximated distribution Mϕ , we then minimize the inverse KL
divergence KL(Gθ ∥Mϕ ). The overall process is illustrated in Figure
4.

Because we target at the sequence to sequence translation task,
the distribution of generator is modeled as a chain product of prob-
ability distribution of the next token yt conditioning on the input
sequence X and prefix y<t ,

Gθ (Y |X ) =
T∏
t=1

дθ (yt |y<t ,X ). (11)



Table 2: Dataset statistics, including the number of RDF triples-sentence pairs used in training and test, the number of RDF
triples per datum, the (maximum) number of tokens per sentence and the vocabulary list size.

Dataset #Train #Test #RDF Triples #sentence length #vocabulary in sentence #vocabulary in triples
WebNLG 20288 2240 1-7 82 4678 2718
SemEval 8000 2717 1 97 24986 7333
Baidu SKE 19520 2000 1-5 84 25027 22713

Within our framework, the judger is trained to model the target
distribution via maximum likelihood estimation. The judger Mϕ is
also modeled as a chain product of conditional distributions,

Mϕ (Y |X ) =
T∏
t=1

mϕ (yt |y<t ,X ). (12)

The objective function forMϕ is

JM (ϕ) = E(X ,Y )∼P [logMϕ (Y |X )]. (13)

GivenMϕ which estimates the real distribution P , we then update
Gθ via minimizing the inverse KL divergence KL(Gθ ∥Mϕ ):

JG (θ ) = KL(Gθ ∥Mϕ ) = E
(X ,Y )∼Gθ

[
log Gθ (Y |X )

Mϕ (Y |X )

]
, (14)

where (X ,Y ) ∼ Gθ denotes the data pair where X is sampled from
conditional context and Y is the output of generator given X as
input. The objective can be directly optimized by taking Eq. (11)
and (12) into Eq (14), which can be reformulated as

E
(X ,Y )∼Gθ

[ T∑
t=1

(
logдθ (yt |X ,y<t ) − logmϕ (yt |X ,y<t )

) ]
. (15)

Algorithm 1 illustrated the overall algorithm of our proposed
method. Note that instead of training the judger to convergence at
the beginning, the judger and the generator are trained alternately.
From the perspective of curriculum learning [8], by gradually in-
creasing the complexity of the generator’s training objective, it
improves the generalization ability of the generator and helps find
a better local optimum. Our method shares the same computational
complexity as MLE training.

5 EXPERIMENTS
5.1 Datasets
Our methods are evaluated on the following datasets.

WebNLG [23] is extracted from 15 different DBPedia [2] categories,
which consists of 25,298 (data, text) pairs and 9,674 distinct data
units. The data units are sets of RDF triples, and the texts are
sequences of one or more sentences verbalizing these data units. It
also provides a set of 373 distinct RDF properties.

SemEval-2010 Task 8 [27] was originally designed for multi-way
classification of semantic relations between pairs of nominals. It
contains 10,717 samples, divided as 8,000 for training and 2,717 for
testing. The dataset contains nine relation types. Since each example
is a sentence annotated for a pair of entities and the corresponding
relation class for this entity pair in this dataset, we can extract an
RDF triple from each sentence.

Baidu SKE2 is a large-scale human annotated dataset with more
than 410,000 triples in over 200,000 real-world Chinese sentences,
bounded by a pre-specified schema with 50 types of predicates.
Each sample in SKE contains one sentence and a set of associated
tuples. SKE Tuples are expressed in forms of (subject, predicate,
object, subject type, object type). In our experiments, we only use
knowledge bases related to Film and TV works domain, and each
Chinese character is treated as a distinct token.

We select some data in the three data sets and divide them into
a training set and a test set. Table 2 shows some statistical details
about the data.

5.2 Implementation Details
The generator consists of a word embedding matrix, an encoder, a
decoder, and the output layer. For the word embedding, wemaintain
two different sets of embeddings for encoder and decoder respec-
tively; both are of 64 dimensions. Both encoder and decoder are
built as an LSTM [28] with hidden units of 128 dimensions. The
dimension of hidden units of the output layer is also 128. We apply
Bahdanau attention [3] to the context vector ct , which is computed
as the weighted sum of encoder states. For the judger, we use the
same configuration as the generator.

For the initialization, all initial parameters follow a standard
Gaussian distributionN(0, 1). All models are optimized using Adam
optimization [32] with a learning rate of 0.001 and a batch size of
64. The hyper-parameters of д andm in the algorithm are both set
as 1, which makes the objective of the generator gradually harder
as indicated in Section 4.2. We also pre-train the generator via MLE
with the number pre-train epochs set as 2.

5.3 Baseline Algorithms
We validate our proposed method for RDF triple-to-text (we will
later refer to as T2T) by comparing it with the following baselines.
To give a fair comparison, we apply the same RDF pre-processing
technique discussed in Section 4.1 to all the baselines.

• MLE. A common method for training sequence to sequence
framework. For a fair comparison, the parameter setting of
the generator is the same with our model.

• CoT. We adapt CoT [37] into conditional sequence gener-
ation task. As its authors suggested, the size of the hidden
unit of the mediator is twice the size of the generator.

• Pointer-GeneratorNetwork (PG). See et al. [46] proposed
pointer-generator network. Their work can be regarded as a
combination of SEQ2SEQ and pointer network [53].

• SeqGAN. Yu et al. [56] used an adversarial network to pro-
vide the reward and train a sequence generator with policy

2http://ai.baidu.com/broad/introduction



Table 3: Comparison of model performance.

BLEU-3 ↑ BLEU-4 ↑ TER ↓ METEOR ↑
WebNLG SemEval SKE WebNLG SemEval SKE WebNLG SemEval SKE WebNLG SemEval SKE

MLE 40.8 4.24 18.6 30.2 2.73 15.6 0.497 1.07 1.01 0.636 0.222 0.349
CoT 9.84 1.90 15.7 6.40 1.41 12.9 1.085 1.16 1.08 0.349 0.102 0.305

SeqGAN 42.0 4.11 19.0 24.4 2.63 14.1 0.534 1.11 1.10 0.597 0.231 0.344
PG 41.7 4.21 17.9 30.9 2.06 14.1 0.607 1.13 1.12 0.628 0.197 0.310
NW 35.8 2.80 14.6 24.6 1.87 11.9 1.664 1.17 1.92 0.302 0.143 0.301
T2T 42.4 4.35 20.3 32.2 2.83 17.1 0.473 0.957 0.947 0.641 0.247 0.367

gradient. According to [35] and our initial experiments, in
SEQ2SEQ framework, when the discriminator is parameter-
ized as a convolutional neural network, it is difficult for the
discriminator in SeqGAN to improve the generator. We thus
follow [35] and adapt the discriminator into a hierarchical
recurrent neural network [34].

• Neural Wikipedian (NW). Vougiouklis et al. [54] used a
standard feed-forward neural network to encode RDF triples.
Then the vectors derived from encoders are concatenated and
used as the input of the decoder which generates summaries
for RDF triples.

Table 4: predicate accuracy on SemEval dataset.

methods MLE CoT PG SeqGAN NW T2T
accuracy 0.240 0.258 0.231 0.244 0.155 0.276

5.4 Metrics
For natural language generation tasks, the most widely accepted
metric is human evaluation [6]. While human evaluation is reliable,
it is hardly applied to quality evaluating of large corpus since it will
involve too many human resources. Therefore, we have to intro-
duce automatic metrics for evaluating all the sentences our system
has generated. However, to our knowledge, no single automatic
evaluation metric is sufficient to measure the performance of a
natural language generation system [43]. Thus, in order to give
objective results, we use a variety of automatic metrics to compare
our models and benchmarks.

We have adopted three widely used word-level metrics: BLEU
[45], TER [47] and METEOR [5]. BLEU and METEOR3 to calculate
the number of n-grams of the generated sentence occurs within the
set of references.

Besides the traditional word-based metrics, we also evaluate
the generator via likelihood and perplexity. Inspired by likelihood-
based discrimination[40], we design a new metric which we re-
fer to as "predicate accuracy". In detail, given a single RDF triple
Xp = ⟨s,p,o⟩, a natural sentence Y describing the triple and a gen-
erative model Gθ , we can calculate Gθ (Y |Xp ), i.e. the predictive
likelihood of the target sentence. If we keep subject s and objecto un-
changed, and substitute predicate p with another predicate p′, then
our generative model can derive a probability density Gθ (Y |Xp′)
3We useMETEOR 1.5 (https://www.cs.cmu.edu/ alavie/METEOR/README.html), with
parameters suggested by Denkowski et al. [15] for universal evaluation

for each predicate class p′, where Xp′ denotes the triple ⟨s,p′,o⟩.
Then, we can use the likelihood of generative model to predict the
predicate given subject s , object o and sentence Xp , the predicted
predicate p̂ is

p̂ = argmax
pi ∈P

Gθ (Y |Xpi ) (16)

where P is the set of all kinds of predicate. The "predicate accuracy"
is defined as precision of p̂ in Eq. 16 being the correct predicate
describing the sentence Y .

We also use forward perplexity (FPPL) to evaluate the quality of
the generated text. Different from the traditional perplexity evalu-
ated only on generative models, FPPL evaluate perplexity of gen-
erated samples from generatorGθ using another language model
(denoted as Hψ ) trained on real data via MLE. According to Zhao
et al. [31], FPPL measures the fluency of generated sentences.

FPPL(Gθ ) = e−Ey∼Gθ logHψ (y) (17)

In our experiments,Hψ is implemented as an LSTM-based SEQ2SEQ
model, whose word embedding size is set as 64, encoder hidden
unit and decoder hidden unit is all set as 300.

Table 5: Forward perplexity among three datasets.

methods WebNLG SemEval SKE
MLE 1.810 2.918 7.046
CoT 2.423 2.579 6.643

SeqGAN 3.556 4.129 7.834
PG 2.151 3.180 8.078
NW 2.461 2.771 6.916
T2T 1.589 2.067 3.565

5.5 Experiments Results
Table 3 shows the overall results of each training method on BLEU,
TER, and METEOR among the three datasets. From the results,
we find that our proposed T2T method improves the quality of
the generated sentence on these word-based metrics. As we have
analyzed, generators optimized via inverse KL divergence tend to
generate text with more common expressions, while other baselines
tend to use some low-quality text. Thus, sentences from T2T will
overlap more words with reference text, which means it can achieve
better performance on the word based metrics like BLEU.

The experiments on FPPL also validated our conclusion. Table
5(b) shows the results of FPPL on WebNLG dataset. Low forward
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Figure 5: Forward perplexity training curves on Three datasets respectively.

perplexity validates that our method allows the generator to gener-
ate high-frequency language patterns more and better. We plot the
training curves of FPPL.

Table 4 shows the predicate accuracy of different training meth-
ods on SemEval datasets. Our model can fit the logical connection
between real sentences and RDF predicates better compared with
baselines.

Human evaluation is conducted on WebNLG dataset to validate
the performance of our framework further. We choose WebNLG
dataset because it consists of more RDF triples and its reference
sentences are relatively simple. We randomly select 20 RDF triples
from the dataset, along with the corresponding sentences generated
by T2T and baselines. Ten human volunteers are asked to rate the
sentences from two aspects: grammar and correctness. The score
on grammar is used to judge whether the sentence contains gram-
matical errors, improper use of words and repetition. Correctness
measures whether the sentence accurately represents the infor-
mation in the RDF triples. The score for each criterion takes an
integer between 1 and 10. Volunteers are given both scoring criteria
and examples. Table 6 lists the results of overall human evaluation
score.

Table 7 presents samples of generated sentences from different
baselines and T2T given a knowledge base about Amatriciana sauce.
Compared with baselines, the text generated from T2T is not only
grammatically sound and correctly expresses all the information
from RDF triples as well. We also found that when the length of
the generated sentence is long, the quality of output from SeqGAN
is compromised, which may because they use Monte Carlo sam-
pling to guide the generator, which will introduce variance. The
sentences generated by MLE correctly express the knowledge, but
the grammar and the words are not quite authentic. Text generated
using Pointer-Generator suffers from repetition. Neural Wikipedian
can hardly express all information soundly given multiple triples.

6 RELATEDWORKS
Our task can be regarded as a combination of two problems. One is
on the training of neural language models; another is on converting
knowledge bases (structured data) into natural languages.

Table 6: Human evaluation on WebNLG dataset.

methods Grammar Correctness
MLE 7.6 6.7
CoT 5.5 3.5
PG 7.1 5.6

SeqGAN 8.0 5.8
NW 6.3 4.6
T2T 8.6 7.1

6.1 Knowledge Base to Natural Language
Previous approaches on generating natural language from knowl-
edge bases can be categorized into the following types: rule-based,
template-based and neural language model based.

Generating sentences based on knowledge bases with hand-
crafted rules is the main technology in traditional NLG systems,
which often involves domain-specific knowledge and onlyworks for
a particular data type. Bontcheva et al. [9] designed a set of rules to
generate natural language reports from medical data automatically.
O’Donnell et al. [44] designed a text generation system by utilizing
the potential rules from relational databases. They specified the
semantics of relational databases and reconstructed an "Intelligent
Labelling Explorer" (ILEX) system. Based on that, the ILEX system
can interpret entities from databases based on information like
domain taxonomy and specification of the data type. Cimiano et
al. [11] presented a principled language generation architecture
by analyzing statistical information derived from a domain corpus.
Their system can write recipes based on RDF representations of a
cooking domain. They mainly focus on extracting lexicon and then
formulate the recipes with a parse tree.

Template-based generation is another traditional approach to
convert structured data into text. In general, developing such kind
of system often requires complex design about grammar, semantic
and lexicalization [14]. Kukich [33] designed a knowledge-based
report generator which infers semantic messages from the data and
then maps that information into a grammar-based template. Flani-
gan et al. [22] proposed a two-stage method for natural language
generation from Abstract Meaning Representation [4]. Duma et al.
[18] formulated a system which automatically learns sentence tem-
plates using the corpus extracted from Simple English Wikipedia
and DBpedia.



Table 7: Sample output of the system.

RDF inputs <Italy , capital , Rome>, <Italy , leaderName , Matteo Renzi>, <Amatriciana sauce , country , Italy>,
<Italy , leaderName , Laura Boldrini>

Reference Amatriciana sauce is a traditional sauce in italy ( the capital of which is rome ) , where two of the country ’ s leaders
are matteo renzi and laura boldrini .

MLE Italy is called a country Amatriciana sauce . Matteo Renzi and Laura Boldrini are leaders in Italy where the capital
is Rome .

CoT Laura Boldrini is a leader in Italy where Rome is the capital of the country of Italy where where valencia is bacon.

SeqGAN Amatricana sauce comes from Italy , a political leader and the capital is Rome . matteo renzi and Laura Boldrini are
one of the leaders of Italy is

PG Amatriciana sauce , a traditional italian dish from the Rome of the italian , where Rome the the leader is either two
leaders include Matteo Renzi.

NW the leader of Italy is Laura Boldrini where amatriciana sauce can be found .

T2T Amatriciana sauce is from the country of Italy where capital is Rome . its leader is Laura Boldrini and Matteo Renzi
leads the country .

The former two technologies have good availability, reliability
and do not rely on large quantities of corpora to train the model.
However, they require a labor expert and have poor scalability.

6.2 Neural Language Models
Sequence-to-sequence model [19] adopts an end-to-end generation
method that converts a meaning representation into a sentence.
As attention mechanism [3] presents advantages in soft-searching
the most relevant information among a sequence in neural ma-
chine translation task, Nallapati et al. [42] proposed a sequence-
to-sequence attentional model to tackle text summarization task.
See at al. [46] proposes a hybrid pointer-generator network facili-
tating copying words from the source text via pointing [53] while
retaining the ability to produce new words via generator, and uses
coverage to discourage repetition. Yu et al. [56] proposed SeqGAN
framework that introduces GAN discriminator [24] to provide the
reward signal and uses policy gradient technique [49] to bypass
the generator differentiation problem. Lu et al. [37] proposed Coop-
erative Training (CoT) that coordinately trains a generative mod-
ule and an auxiliary predictive module, to optimize the estimated
Jensen-Shannon divergence.

Besides the studies on design and training of language models,
the researchers also proposed many indicators for evaluating the
quality of samples generated by languagemodels. These metrics can
be classified into word-based metrics and grammar-based metrics.
Word-based metrics move from simple n-gram overlap (including
BLEU, TER [47], ROUGE [36], NIST [17], LEPOR [25], CIDER [52]
and METEOR [5]) to semantic similarity like Semantic Text Similar-
ity [26]. Grammar-based metrics include F-score, MaxMatch [12],
I-measure [21]. Besides, instead of comparing sentences words by
words, EmbSim [57] compares the word embeddings. Some metrics
are likelihood-based metrics that estimate the cross-entropy be-
tween the generated sentences and the true data, such as NLLoracle
[56] that estimates average negative log-likelihood of generated
sentences on oracle LSTM.

7 CONCLUSION
In this paper, we studied the problem of converting knowledge
base RDF triples into natural languages. To handle this problem,
we formulated it as a conditional natural language problem and
utilized the discrete sequence generative models. We analyzed the
limitations of existing methods on conditional sequence generative
models and proposed a new method T2T which approximately
optimizes an inverse Kullback-Leibler divergence between the real
distribution and the learned one. We validated the proposed method
on three benchmark datasets. The experiment results show that
our method outperforms the baselines.

Our model is not limited in the task of translating knowledge
bases RDF triples to natural languages; it can also be applied to
other conditional generation tasks like machine translation and
question answering systems, which we leave as future work.
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