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ABSTRACT
Memory-based collaborative filtering methods like user or item

k-nearest neighbors (kNN) are a simple yet effective solution to

the recommendation problem. The backbone of these methods is

the estimation of the empirical similarity between users/items. In

this paper, we analyze the spectral properties of the Pearson and

the cosine similarity estimators, and we use tools from random

matrix theory to argue that they suffer from noise and eigenvalues

spreading. We argue that, unlike the Pearson correlation, the cosine

similarity naturally possesses the desirable property of eigenvalue

shrinkage for large eigenvalues. However, due to its zero-mean as-

sumption, it overestimates the largest eigenvalues. We quantify this

overestimation and present a simple re-scaling and noise cleaning

scheme. This results in better performance of the memory-based

methods compared to their vanilla counterparts.

CCS CONCEPTS
• Information systems→ Collaborative filtering.

KEYWORDS
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1 INTRODUCTION
Collaborative Filtering (CF) methods are one type of recommen-

dation techniques that use the past interactions of other users to
filter items for a single user. Broadly speaking, CF methods are

generally characterized into memory-based and model-based meth-

ods. Memory-based methods are known for their simplicity and

competitive performance [6]. Recently, they have been successfully

used for session-based recommendations[4] and they are still used

as a part of the recommendation solution in industry[2].

Memory-based methods like user-kNN and item-kNN extract

user (or item) similarities which are used to form user (or item)

neighborhoods by taking the k-nearest neighbors. These neighbor-
hoods are then used to filter items for a user.

Calculating the similarity effectively is of great importance in

these methods. One of the most commonly used similarity metrics

is cosine similarity. Formally, the cosine similarity between two

users x and y can be defined as:
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i=1
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i

√∑n
i=1

y2

i

, (1)

where, n is the total number of samples (items in this case) and xi
and yi represent the preferences of user x and user y on the i-th
item respectively. The similarity between two items is defined in a

similar manner. If the data is centered then the cosine similarity is

equivalent to the empirical correlation which is calculated by:

σ =

∑n
i=1
(xi − x̄)(yi − ȳ)√∑n

i=1
(xi − x̄)2

√∑n
i=1
(yi − ȳ)2

, (2)

where, x̄ is the sample mean i.e.,
1

n
∑n
i=1

xi , and analogously for ȳ.
The empirical correlation, and hence the cosine similarity, is a

good estimation of the true correlation when the number of samples

is large. However, in practice the number of users is of the same

order as the number of items and the ratio of the number of users

to the number of items is not very small compared to 1. In this case,

the empirical correlations are dominated by noise and care should

be taken while using them as similarities.

The correlations between users (or items) can be viewed as an

empirical correlationmatrix where each entry denotes the empirical

correlation of the entities represented by its index e.g., the entry

at the index (1, 5) of the user empirical correlation matrix would

be the correlation between user 1 and user 5. Results from random

matrix theory (RMT) can then be used to understand the structure

of the eigenvalues and eigenvectors of this empirical correlation

matrix. The main contributions of this paper are as follows:

• We analyze the structure and spectral properties of the Pear-

son and cosine similarity.

• We argue that Cosine similarity possesses the desirable prop-

erty of eigenvalue shrinkage.

• We quantify the overestimation of the largest eigenvalue in

cosine similarity.

• We show that the theoretical results regarding the distribu-

tion of eigenvalues of random matrices can be used to clean

the noise from the empirical user/item correlation matrix.

2 PRELIMINARIES OF RMT
RMT theorems attempt to make statements about the spectral prop-

erties of large random correlation matrices
1
. They are applied in

the case when an n ×m random matrix X with independent and

identically distributed (i.i.d.) random entries of zero-mean is such

thatm,n →∞ and the ratiom/n → q ∈ (0, 1].
Interestingly, the eigenvalue distribution of the empirical cor-

relation matrix of X is known exactly under these conditions and

1
RMT theorems are also applicable to other general matrices.
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Figure 1: The solid line shows the plot of theMP-law density
from Equation 3. The histogram obtained from eigenvalues
of a random matrix follows the MP-law distribution.

given by the Marčenko Pastur law (MP-law):

ρX(λ) =
1

2πqλ

√
(λmax − λ)(λ − λmin ), (3)

where the eigenvalue λ ∈ [λmax , λmin ] and λmax = (1 +
√
q)2 and

λmin = (1 −
√
q)2.

This result implies that there should be no eigenvalues outside

the interval [λmax , λmin ] for a random noise correlation matrix. A

plot of the density of Equation 3 is shown in Figure 1 along with

the eigenvalue distribution of a random item correlation matrix

formed by randomly permuting the entries of each column of a

user-item feedback matrix. As we can see the histogram follows

the theoretical MP-law distribution quite accurately.

3 CLEANING THE CORRELATION MATRIX
Using the result where a pure noise correlation matrix has an eigen-

value distribution similar to MP-law in the limiting case, we can

clean the user (or item) correlation matrix by comparing its empiri-

cal eigenvalue distribution with that of the MP-law. If the bulk of

the eigenvalues are within the range [λmax , λmin ] and their distri-

bution resembles the MP-law then it is most probably due to noise

and can be ignored.

A simple strategy is to remove all eigenvalues between RMT

“noise bulk” range i.e., [λmin , λmax ] by setting them to 0, and retain-

ing the rest of the eigenvalues. However, in practice the eigenvalue

distribution in the noise bulk range does not follow the MP-law

exactly. Therefore, a cutoff point near λmax is used instead of λmax .

This cutoff point λcut is usually searched within a range near λmax .

This strategy is known as eigenvalue clipping [1].

3.1 Eigenvalue spreading
The empirical correlation estimator of Equation 2, also known as

the Pearson or the sample correlation matrix is a common estimator

of the true user or item correlation matrix. When we have a much

larger number of datacases compared to the number of features

i.e., q → 0 then this estimator approaches the true correlation

matrix. However, when the number of datacases and the number

of features are of the same order i.e., q = O(1), the MP-law states

that the empirical correlation estimate becomes a noisy estimate of

the true correlation matrix. This is because if the true correlation

matrix is an identity matrix (pure noise) then the distribution of the

eigenvalues of the empirical correlation is not a single spike at 1,

but rather it is spread out as shown in Figure 1. This spreading out

is dependent on q itself and given by the MP-law stated in Equation

3. The spectrum gets more spread out (noisier) as q increases. This

tells us that when we have a data sample in the regime q = O(1)
then the small eigenvalues are smaller and the large eigenvalues

are larger compared to the corresponding eigenvalues of the true

correlation matrix. Therefore, the cleaning strategy should take this

into account and shrink the estimated eigenvalues appropriately.

3.2 Zero-mean assumption
The Pearson estimator is more general as it assumes that the data

is not-zero mean, which is often the case in practice. However, the

data in collaborative filtering are large and sparse, and applying the

Pearson correlation estimator on this data would imply making this

large user-item matrix X dense (by removing the mean from each

entry of the matrix). This is problematic from both the memory

and computational points of view.

The MP-law was stated for the zero-mean data. The Pearson

estimator standardizes the data to make it zero-mean, therefore we

can use the MP-law results. In this subsection, we show that we

can use the findings from MP-law for the case when the data is not

zero-mean. This is because any matrix X can be written as:

X̃ = X −M, (4)

where, X̃ is the demeaned version of X and M = 1n × m is an

n×m matrix, where each row is equal to the vectorm. Additionally,

m is a 1 × m row vector that contains the column mean of the

corresponding columns of X and 1n is a 1×n vector of all 1’s. Then

we can rewrite the Pearson correlation estimation as:

Ep =
1

n
X̃T X̃ =

1

n
(XTX −MTM), (5)

where, w.l.o.g., for simplicity of notation, we assume that data

has unit variance. It is trivial to see that MTM is of rank 1 and has

one eigenvalue ξ , which is a positive number. We know from the

subadditivity property of rank that:

rank(XTX) = rank(X̃T X̃ +MTM) (6)

≤ rank(X̃T X̃) + rank(MTM), (7)

≤ N + 1, (8)

where, rank(X̃T X̃) = N and it can also be shown [3] that since

rank(MTM) = 1 then:

rank(XTX) = rank(X̃T X̃ +MTM) ≥ N − 1, (9)

therefore, the rank of the correlation matrix (
1

nX
TX) of data will

change by at most 1, if at all, compared with the rank of the cor-

relation matrix of the demeaned data. As we will see next, the

eigenvalue ξ is positive and large, so it will only affect the top

eigenvalues of the correlation matrix of the original data.

In Figure 2 we plot the difference in the eigenvalue magnitudes of

the user correlation matrices of the original data and the demeaned

data for the Movielens1M dataset, where the eigenvalues of both

matrices are sorted in the ascending order of magnitude. We can

see a huge positive spike at the largest eigenvalue, signifying that

the largest eigenvalue of the original data correlation matrix is

overestimated, and a couple of relatively negligible spikes. From

the discussion in the previous subsection, the largest eigenvalue

of the demeaned data correlation matrix is already overestimated

and the effect of not removing the mean exaggerates it further.

Therefore, the effect of not removing the mean from the data is that

the largest eigenvalue of the correlation matrix is overestimated.



Figure 2: Themagnitude of the difference in the correspond-
ing eigenvalues of the original data correlation matrix and
de-meaned data correlation matrix is shown on the y-axis,
against the ID of the eigenvalue on the x-axis.

In the context of recommender systems, where the data are

sparse and large, this means that we can operate on the sparse data

matrices by correcting for this overestimation. Moreover, since not

demeaning the data effectively just changes the top eigenvalue, we

can still use the eigenvalue clipping strategy and other insights

based on the MP-law.

3.3 Quantifying the overestimation
Interestingly this overestimation can be quantified by the eigen-

value of
1

nM
TM. The sum of the difference shown in Figure 2 is

exactly equal to ξ . This is trivially true since the trace of the data

correlation matrix is to be preserved.

We do not need to do the eigenvalue decomposition of
1

nM
TM

to get ξ . This is because, firstly, the eigenvalue of a rank 1 matrix is

equal to its trace by the following argument;
1

nM
TM = uvT is an

m ×m rank 1 matrix, where u,v arem × 1 vectors. Sincem ≥ 1 the

matrix is singular and has 0 as its eigenvalue. We know if µ is the

eigenvector associated with ξ then:

(uvT )µ = ξ µ, (10)

u(vT µ)/ξ = µ, (11)

since (vT µ)/ξ is a scalar, u is also an eigenvector associated with

ξ . Then, it follows that u(vTu) = ξu, and as u , 0 we have ξ =
(vTu) = ∑m

i=1
viui = Tr ( 1

nM
TM). Secondly, the trace of 1

nM
TM is

non-zero by the construction of the matrix M.

The matrix
1

nM
TM is dense and when m is large calculating

this matrix gets unfeasible. However, we notice that we are only

interested in the diagonal of the above matrix and not the complete

matrix. Therefore, the above trace can efficiently be calculated by:

Tr ( 1
n
MTM) =

m∑
i=1

nm̃2

i , (12)

where, m̃i =mi/
√
n andmi is the i − th element of m. Equation 12

gives us an efficient way to quantify the overestimation in the top

eigenvalue of XTX 2
.

2
The discussion so far generalizes to the case when columns ofX are not a unit variance

by dividing each column of X andM by the standard deviation of the corresponding

column of X.

Figure 3: The the magnitude of the difference in the cor-
responding eigenvalues of the Pearson correlation matrix
and Cosine correlation matrix is shown. The negative slope,
highlighted by the red box, signifies the shrinkage property
of cosine similarity.

3.4 Eigenvalue shrinkage
Before we outline our cleaning procedure we briefly talk about

cosine similarity. Cosine similarity assumes that the data is zero

mean, however, this is not true in general. Moreover, based on our

previous discussion, it does not make the correction for this by

scaling the largest eigenvalue.

However, when we plot the difference in the eigenvalues of the

cosine similarity and the Pearson correlation, we find some inter-

esting results. As seen in Figure 3, we have a large spike at the top

eigenvalue as before which is expected since cosine similarity does

not remove the mean. This is followed by some oscillations, but

these oscillations are negative too. This can be due to the difference

in variance. Finally, and more importantly, unlike before, the dif-

ference between the magnitude of eigenvalues of cosine similarity

and Pearson correlation for all the other top eigenvalues is not

very close to 0. In fact, we can see a gradual upward slope in the

zoomed-in plot in Figure 3 which was not visible before.

This negative slope signifies that the top eigenvalues of cosine

similarity (except the maximum eigenvalue) are shrunk compared

to the eigenvalues of the Pearson correlation. Therefore, the cosine

similarity implicitly does eigenvalue shrinkage.

The reason for this shrinkage is that the column variances of the

data calculated in the Pearson correlation and cosine similarity are

not the same. This can been seen from the denominators of Equation

1 and Equation 2. When this is the case we cannot write a simple

expression like Equation 5 since both matrices on the right-hand

side will have different column variances(theMTM matrix comes

from the Pearson correlation). Consequently, the simple analysis

that followed will not hold, hence the effect of not removing the

mean will be more complex and in this case in the form of shrinkage

of the top eigenvalues except the maximum eigenvalue.

3.5 Cleaning algorithm
Below we outline a linear time and memory efficient similarity

matrix cleaning strategy that explicitly shrinks the top eigenvalue,

inherits the shrinkage property of cosine similarity for other eigen-

values
3
and removes noise by clipping the smaller eigenvalues.

3
This shrinkage(both explicit and inherent) is not present in vanilla SVD/PCA.



Algorithm 1 Clean-KNN(X,F )
Inputs: Sparse user-item matrix X„ number of top eigenvalues F .

1: procedure Learn Item-Item Similarity

2: One-pass over non-zero entries:
3: Calculate column mean vectorm;

4: Calculate column sum vector σ ;
5: One-pass over the non-zero entries xi j of X:
6: X′ = [xi j /σj ]i j , divide each xi j by its column sum σj to form X′;
7: Get the top F singular value matrix S and right-singular vector matrix V:
8: [V, S] ← svds(X′) via Lanczos algorithm in roughly O (nnz ) time;

9: Adjust maximum eigenvalue:
10: m← m./(σ .

√
n);

11: s2

top ← s2

top −
∑n
i=1

nm2

i ; λtop =
√
s2

top ;

12: Get the cleaned, low-dimensional similarity representation:
13: S← V × (S.2); V← V;
14: For item i and j the similarity/correlation ci j = Si ×V T

j .

where, “.” denotes element-wise operation on vectors and ma-

trices. Si and Vj denote the i − th and j − th row of the matrices

respectively, stop is the largest singular value, λtop is the largest

eigenvalue and nnz is the number of non-zeros.

Clean-KNN starts by calculating the mean and sum of each col-

umn of X and then it normalizes X in line 6 to form X′. This is
so that X′TX′ is equal to cosine similarity matrix of X. Since for
real matrices the square of the singular values of X′ is equal to the

eigenvalues of X′TX′ while the eigenvectors are the same, Clean-

KNN just calculates the right-singular vectors and singular values

of X′ in line 8. In line 11 the top eigenvalue is shrunk according to

Equation 12. Finally, we get the low-dimensional similarity repre-

sentation in line 13. We note that Clean-KNN can also be used for

user-user similarity by transposing X.

4 EXPERIMENTS
We aim to answer the following questions via quantitative evalua-

tion: i) Is noise removed by removing the bulk of the eigenvalues?

ii) Does the shrinkage of λtop improve performance?

For our experiments we used Movielens1M dataset
4
(ML1M) and

converted it to implicit feedback
5
by ignoring the rating magni-

tudes. We used four evaluation metrics namely, recall@50 (R@50),

normalized discounted cumulative gain (NDCG@50), area under

the curve (AUC) and diversity@50 (D@50). D@N is the total num-

ber of distinct items in the top-N list across all users.

4.1 Baselines and Parameters
Weighted user-KNN (WUkNN) and weighted item-KNN (WIkNN)

were used as the base recommenders, with the similarity function

defined by Equation 1. We also compare our performance with

a well know item recommender SLIM [5], and the vanilla SVD

recommender (svds in MATLAB) which used the same number of

factors F as Clean-KNN. We performed 5-fold cross-validation to

select the parameters. We searched for λcut by incrementing F by

10 when 10 ≤ F ≤ 100 and in increments of 100 afterwards till we

reach close to λmax .

4
https://grouplens.org/datasets/movielens/1m/

5
We focused on implicit feedback since it is closer to the real user behavior and is the

focus of most research, however, our results generalize to explicit feedback.

Table 1: Performance of Clean-KNN w.r.t. four metrics
shows that it outperforms its vanilla counterparts.

Movielens1M NDCG@50 AUC R@50 D@50

(a)WUKNN(k = 500) 0.345 0.905 0.346 661

(b)Clean-UKNN(k = 500, F = 400) 0.361 0.912 0.364 761

(c)Shrink-UKNN(k = 500) 0.358 0.911 0.361 720

(a)WIKNN(k = 500) 0.356 0.912 0.355 1668

(b)Clean-IKNN(k = 500, F = 400) 0.368 0.919 0.378 2187

(c)Shrink-IKNN(k = 500) 0.369 0.917 0.368 1730

SVD(F = 400) 0.236 0.770 0.248 2242

SLIM(L
1
= 10
−2, L

2
= 10
−3, k = 500) 0.293 0.882 0.300 534

5 RESULTS
The results are shown in Table 1. It is worthmentioning here that we

do not aim to provide state of the art results, rather we aim to gain

insights into the similarity metrics used by memory based methods

and demonstrate the effects of these insights on the performance.

We note that Clean-KNN improves the performs over the vanilla

kNN. We also see that it is better than vanilla SVD with the same

number of factors.

5.1 Is noise removed?
For both datasets, the table is divided into subsections by dashed

horizontal lines. In each subsectionwewant to highlight two scenar-

ios: (a) the best base KNN recommender, and (b) the noise removed

Clean-KNN recommender of Algorithm 1. We can see that the per-

formance of the scenario (b) is better than scenario (a). This signifies

that most of the removed eigenvalues did not carry much useful

information and hence can be categorized as noise.

5.2 Does shrinkage of λtop help?
To answer this question we have to compare a base user or item-

KNN recommender with a recommender that contains all the eigen-

values but shrinks the top eigenvalue according to Equation 12.

Note, that this recommender is created for illustration of the ef-

fectiveness of the shrinkage procedure. The performance of this

recommender is shown in Table 1 and labeled as (c). We see that

the performance of the scenario (c) is always better than scenario

(a). This confirms that just by shrinking λtop we get improved per-

formance. In addition, scenario (c) is still outperformed by scenario

(b), thus this confirms the utility of the clipping strategy.

6 CONCLUSION
Memory-based recommenders are one of the earliest recommenda-

tion techniques which are still being deployed in the industry today

in conjunction with other methods. In this paper, we analyzed the

spectral properties of the Pearson and cosine similarities. And we

used insights from MP-law to show that these empirical similarities

suffer from noise and eigenvalue spreading. We showed that the

cosine similarity naturally performs the eigenvalue shrinkage but

it overestimates λtop . We then provided a linear time and memory

efficient cleaning strategy, Clean-KNN, that removes noise and cor-

rects for the overestimation of λtop . Through empirical evaluation,

we showed that this cleaning strategy is effective and results in

https://grouplens.org/datasets/movielens/1m/


better performance, in terms of accuracy and diversity, compared

to the vanilla kNN recommenders.
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