
Learning Unsupervised Semantic Document Representation for
Fine-grained Aspect-based Sentiment Analysis

Hao-Ming Fu
National Taiwan University
r06922092@ntu.edu.tw

Pu-Jen Cheng
National Taiwan University
pjcheng@csie.ntu.edu.tw

ABSTRACT
Document representation is the core of many NLP tasks on machine
understanding. A general representation learned in an unsupervised
manner reserves generality and can be used for various applications.
In practice, sentiment analysis (SA) has been a challenging task that
is regarded to be deeply semantic-related and is often used to assess
general representations. Existing methods on unsupervised docu-
ment representation learning can be separated into two families:
sequential ones, which explicitly take the ordering of words into
consideration, and non-sequential ones, which do not explicitly do
so. However, both of them suffer from their own weaknesses. In this
paper, we propose a model that overcomes difficulties encountered
by both families of methods. Experiments show that our model
outperforms state-of-the-art methods on popular SA datasets and a
fine-grained aspect-based SA by a large margin.

CCS CONCEPTS
• Information systems → Information retrieval.

KEYWORDS
Document representation, Sentence embedding, Unsupervised learn-
ing, Sentiment analysis, Semantic learning, Text classification
ACM Reference Format:
Hao-Ming Fu and Pu-Jen Cheng. 2019. Learning Unsupervised Semantic
Document Representation for Fine-grained Aspect-based Sentiment Analy-
sis. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’19), July 21–25, 2019, Paris,
France. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3331184.
3331320

1 INTRODUCTION
An informative document representation is the key to many NLP
applications such as document retrieval, ranking, classification and
summarization. Learning without supervision reserves generality
of learned representation and takes advantage of large corpus with
no labels.

There are two families on learning document representation
without supervision: Sequential and non-sequential models. The
former takes ordering of words into consideration when processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331320

a document, often with sequential architectures such as RNN. The
effectiveness of thesemodels drops significantlywhen the text being
processed gets much longer than a sentence. Consequently, simpler
models from non-sequential family often outperforms sequential
ones on the task. However, semantic meaning is intuitively lost
when ordering of words is discarded.

For instance, consider these two reviews on beer: “ I love the
smell of it, but the taste is terrible.” and “This one tastes perfect, but
not its smell.” Obviously, for models discarding the order of words,
recognizing which aspect each sentimental word “love”, “terrible”,
“perfect”, “not” refers to is not possible.

The overall sentiment of the reviews cannot be well captured ei-
ther without aspect separation. That is because an overall sentiment
can be viewed as a combination of individual aspects weighted by
their importance. The best a non-sequential model can do with a
mixture of sentimental words without knowing importance of each
of them is a rough average.

In this paper, we propose a model that overcomes difficulties
encountered by both sequential and non-sequential models. Our
model is tested on widely used IMDB [5] sentiment analysis dataset
and the challenging aspect-based Beeradvocate [6] dataset. Our
results significantly outperform state-of-the-art methods on both
datasets.

2 RELATEDWORKS
Non-sequential methods range widely from early Bag-of-Word
model and topic models including LDA to more complex models
such as Denoising Autoencoders [8], Paragraph Vectors[4] and
doc2vecC[2]. Sequential methods emerge quickly in recent years
thanks to the development of neural networks. Models for text
sequence representation include Skip-thoughts [3], a sentence level
extension from word level skip-gram model, and many other CNN
or RNN based methods.

Modeling a document as a group of sentences is not a new idea,
but an effective design to learn without supervision under this
framework is yet to be done. The closest work to our model should
be doc2vecC and Skip-thoughts Vectors. Our model is similar to
doc2vecC in the way that our model represents a document by
averaging embedding of sentences in it, while doc2vecC averages
embedding of words in the document. Besides, both doc2vecC and
our model explicitly use mean of embedding during training to
assure a meaningful aggregation of embedding vectors. Our model
is similar to Skip-thought Vectors in the way that both models try
to capture relations between adjacent sentences. Skip-thought Vec-
tors chooses a generic prediction model, while our model projects
sentences into a shared hidden space and learn meaningful features
by managing relations of sentences in the space.

ar
X

iv
:2

40
1.

06
21

0v
1

 [
cs

.L
G

]
 1

1
Ja

n
20

24

https://doi.org/10.1145/3331184.3331320
https://doi.org/10.1145/3331184.3331320
https://doi.org/10.1145/3331184.3331320

3 THE PROPOSED MODEL
Given a document 𝐷 composed of 𝑛 sentences [𝑠0, 𝑠1, . . . , 𝑠𝑛] in
order, our goal is to obtain a vector representation 𝑣𝐷 for the docu-
ment. Note that [. . .] stands for an ordered list in the rest of this
paper.

3.1 Overview
Figure 1 is an overview of our model. The purpose of the model
is to obtain a vector representation for document 𝐷 in an unsu-
pervised manner. We update variables in the model by training
it to predict a target sentence among some candidate sentences
given its context sentences. The context sentences are defined
by 𝑘 sentences on each side of the target sentence 𝑠𝑡 . Namely,
𝑆𝑐𝑛𝑡𝑥 = [𝑠𝑡−𝑘 , . . . , 𝑠𝑡−1, 𝑠𝑡+1, . . . , 𝑠𝑡+𝑘].

Besides the target sentence, 𝑟 negative samples are coupled
with each target sentence 𝑠𝑡 . The model will calculate a proba-
bility distribution over these 𝑟 + 1 candidate sentences to make
prediction. We refer to the list of candidate sentences as 𝑆𝑐𝑑𝑑 =

[𝑠𝑡 , 𝑠𝑛𝑒𝑔1 , . . . , 𝑠𝑛𝑒𝑔𝑟]. The model will output 𝑟 +1 scalars, correspond-
ing to each sentence in 𝑆𝑐𝑑𝑑 . These scalars are referred to as logits
of the sentences. A higher logit indicates a higher probability is dis-
tributed to the sentence by the model. Logit of the target sentence
𝑠𝑡 is denoted as 𝑙𝑡 and logits of negative samples 𝑠𝑛𝑒𝑔1 , . . . , 𝑠𝑛𝑒𝑔𝑟 are
denoted as 𝑙𝑛𝑒𝑔1 , . . . , 𝑙𝑛𝑒𝑔𝑟 .

According to Chen et al.[7], with those logits given, optimiz-
ing the following loss function will approximate optimizing the
probability distribution over all possible sentences in the world:

𝑙𝑜𝑠𝑠 = −𝑙𝑜𝑔(𝜎 (𝑙𝑡)) +
𝑟∑︁
𝑖=0

𝑙𝑜𝑔(𝜎 (𝑙𝑛𝑒𝑔𝑖)) (1)

Applying negative sampling, a softmax function is not literally
operated while a distribution over infinite number of all possible
sentences in the world is optimized. After the model is trained
this way, it can be used to calculate a vector representation for a
document.

3.2 Architecture
3.2.1 model. As illustrated in Figure 1, we use sentence encoders
to encode a sentence into a fixed-length sentence vector. Two sen-
tence encoders are used in the model, the context encoder 𝐸𝑐𝑛𝑡𝑥
and the candidate encoder 𝐸𝑐𝑑𝑑 . Sentences in 𝑆𝑐𝑛𝑡𝑥are encoded into
sentence vectors 𝑉𝑐𝑛𝑡𝑥 = [𝑣𝑡−𝑘 , . . . , 𝑣𝑡−1, 𝑣𝑡+1, . . . , 𝑣𝑡+𝑘] by 𝐸𝑐𝑛𝑡𝑥 .
Those in 𝑆𝑐𝑑𝑑 are encoded into a target sentence vector 𝑣𝑡 and neg-
ative samples vectors 𝑉𝑛𝑒𝑔 = [𝑣𝑛𝑒𝑔1 , . . . , 𝑣𝑛𝑒𝑔𝑟] by 𝐸𝑐𝑑𝑑 . To merge
information captured by each sentence vector in𝑉𝑐𝑛𝑡𝑥 into a single
context vector, vectors in 𝑉𝑐𝑛𝑡𝑥 are element-wise averaged. The
obtained context vector is called 𝑣𝑐𝑛𝑡𝑥 .

𝑣𝑐𝑛𝑡𝑥 will go through a process called length adjustment except
when calculating 𝐿𝑐𝑛𝑡𝑥 in Section 3.3.1. Length adjustment process
will normalize 𝑣𝑐𝑛𝑡𝑥 and lengthen it to the average length of sen-
tence vectors which are used to obtain 𝑣𝑐𝑛𝑡𝑥 itself. The process is
as follow:

𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 𝑣𝑐𝑛𝑡𝑥 =
𝑣𝑐𝑛𝑡𝑥

𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑐𝑛𝑡𝑥)
×
∑

𝑣𝑖 ∈𝑉𝑐𝑛𝑡𝑥 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑖)
𝑠𝑖𝑧𝑒 (𝑉𝑐𝑛𝑡𝑥)

(2)

Figure 1: Overview of our model. In the figure, number of
context sentences on each side is 1 and number of negative
samples 𝑟 is 2. Context sentences 𝑠𝑡−1, 𝑠𝑡+1are fed to themodel
from the bottom. The target sentence 𝑠𝑡 and negative samples
𝑠𝑛𝑒𝑔1 , 𝑠𝑛𝑒𝑔2are fed from the top. Logit of the target sentence
𝑙𝑡and negative samples 𝑙𝑛𝑒𝑔1 , 𝑙𝑛𝑒𝑔2are obtained in the middle.
These will be used to calculate the loss.

where 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥) denotes 𝑙2 norm of 𝑥 and 𝑠𝑖𝑧𝑒 (𝑦) denotes number
of elements in 𝑦. This process solves the length vanishing problem
of element-wise averaging many vectors.

Now, we have a single vector 𝑣𝑐𝑛𝑡𝑥 containing unified informa-
tion from context sentences. If the sentence vector of a candidate
is similar to 𝑣𝑐𝑛𝑡𝑥 , it is probability the sentence to be predicted.
Similarity is evaluated with inner product. So, 𝑣𝑐𝑛𝑡𝑥will dot with
the target sentence vector 𝑣𝑡 and negative sentence vectors in 𝑉𝑛𝑒𝑔
to obtain a logit for each of them. Logit of the target sentence is
called 𝑙𝑡 = 𝑑𝑜𝑡 (𝑣𝑐𝑛𝑡𝑥 , 𝑣𝑡) and logits of negative samples are called
𝑙𝑛𝑒𝑔1 , . . . , 𝑙𝑛𝑒𝑔𝑟 , where 𝑙𝑛𝑒𝑔𝑖 = 𝑑𝑜𝑡 (𝑣𝑐𝑛𝑡𝑥 , 𝑣𝑛𝑒𝑔𝑖).

With these logits, the loss can be calculated with Equation (1).

3.2.2 Sentence encoders. 𝐸𝑐𝑛𝑡𝑥 and 𝐸𝑐𝑑𝑑 have the same structure,
as elaborated in Table 1. Nevertheless, they do not share variables
except the word embedding table. This allows a sentence to be
represented differently when playing different roles. We choose
convolutional networks for sentence encoders for its simplicity and
efficiency of training. Note that a global average pooling layer is
placed on top of convolutional layers to form a fix-length vector
for sentences of variable length.

Table 1: Structure of sentence encoders. For consistency with
Figure 1, first layer is placed at the bottom and the last layer
at the top.

Layer type parameters

Output Layer a fixed-length sentence vector.
Dropout dropout rate 0.5

Fully connected 100 nodes
Fully connected 1024 nodes with ReLU

Global average pooling
Max pooling size 2 with stride 2
Convolutional 256 filters with size 2
Convolutional 256 filters with size 2
Max pooling size 2 with stride 2
Convolutional 256 filters with size 2
Convolutional 128 filters with size 2

Word embedding table embedding dimension 100
Input Layer a sentence.

3.3 Training
During training, a list of sentences 𝑆𝐷 = [𝑠0, 𝑠1, . . . , 𝑠𝑛] from a
single document 𝐷 is fed to the model as a single training sample.
The total loss to be minimized, 𝐿𝑡𝑜𝑡𝑎𝑙 , is the weighted sum of two
terms: the context loss 𝐿𝑐𝑛𝑡𝑥 and the document loss 𝐿𝑑𝑜𝑐 . Themodel
is then trained end to end by minimizing 𝐿𝑡𝑜𝑡𝑎𝑙 .

3.3.1 Context loss. For each sentence in 𝑆𝐷 , 𝑘 sentences before
and 𝑘 sentences after the target sentence are given in 𝑆𝑐𝑛𝑡𝑥 as con-
text sentences. Besides this, randomly selected negative samples
𝑠𝑛𝑒𝑔1 , . . . , 𝑠𝑛𝑒𝑔𝑟 are selected from sentences in other documents in
the dataset. Length adjustment process is not applied when cal-
culating context loss. Target sentence logit 𝑙𝑡 and negative sen-
tences logits 𝑙𝑛𝑒𝑔1 , 𝑙𝑛𝑒𝑔2 , . . . , 𝑙𝑛𝑒𝑔𝑟 are obtained and used to calculate
𝐿𝑐𝑛𝑡𝑥𝑡with Equation (1). The context loss 𝐿𝑐𝑛𝑡𝑥 is defined by aver-
aging losses from each sentence in 𝑆𝐷 except the first 𝑘 and the
last 𝑘 sentences for incomplete context sentences.

𝐿𝑐𝑛𝑡𝑥 =

∑𝑛−𝑘
𝑖=𝑘+1 𝐿𝑐𝑛𝑡𝑥𝑖
𝑛 − 2𝑘

(3)

where 𝐿𝑐𝑛𝑡𝑥𝑖 is the context loss of a single target sentence.

3.3.2 Document loss. For document loss, there are only two differ-
ences from context loss: 1) length adjustment process is applied on
𝑣𝑐𝑛𝑡𝑥 . 2) all the sentences in 𝑆𝐷 , including the target sentence 𝑠𝑡
itself, are regarded as context sentences for each target sentence.
Consequently, each sentence in 𝑆𝐷 can be used as target sentence.
The document loss 𝐿𝑑𝑜𝑐 is defined by averaging losses from all the
sentences in the document:

𝐿𝑑𝑜𝑐 =

∑𝑛
𝑖=1 𝐿𝑑𝑜𝑐𝑖

𝑛
(4)

3.3.3 Total loss. The total loss is the weighted sum of context loss
and document loss. A hyper-parameter 𝛼 is used to assign weights.
Total loss 𝐿𝑡𝑜𝑡𝑎𝑙 is obtained by:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼 × 𝐿𝑐𝑛𝑡𝑥 + (1 − 𝛼) × 𝐿𝑑𝑜𝑐 (5)

𝐿𝑡𝑜𝑡𝑎𝑙 is then minimized to update model variables. In particu-
lar, 𝐿𝑐𝑛𝑡𝑥 and 𝐿𝑑𝑜𝑐are responsible for capturing local and global
relations among sentences respectively. 𝐿𝑑𝑜𝑐 also guarantees an
effective aggregation for sentence vectors.

3.4 Inference of document representation
For a document 𝐷 , its representation is the length adjusted average
of sentence vectors from all sentences in it. No extra training is
needed for new documents seen for the first time. Notice that it
is exactly the context vector 𝑣𝑐𝑛𝑡𝑥used for calculating 𝐿𝑑𝑜𝑐 . It is
explicitly used during model training on purpose. This leads the
model to learn sentence vectors that can be effectively aggregated
by average. Also, the aggregated representation is guaranteed to
be informative since it is also learned during training.

4 EXPERIMENTS
We first test our model on the widely used IMDB review dataset
[5] for SA. To go further, we test our model on the Beeradvocate
beer review dataset [6] for aspect-based SA. This dataset challenges
document representations with much more fine-grained SA.

4.1 Sentiment analysis
4.1.1 Dataset. We use IMDB review dataset in this sentiment anal-
ysis experiment. The dataset consists of 100k movie reviews. 25k
of the data are labeled for training and another 25k are labeled
for testing. The rest 50k reviews are unlabeled. Both training and
testing data are balanced, containing equivalent number of reviews
labeled as semantically positive and negative.

4.1.2 Experiment design. We follow the design of Chen[2] to assess
our model under two settings: use all available data for represen-
tation learning or exclude testing data. Both of them make sense
since representation learning is totally unsupervised. After model
training, a linear SVM classifier is used to classify learned docu-
ment representation under supervision. The performance of the
classifier, evaluated by accuracy, indicates the quality of learned
representation.

We compare ourmodel with intuitive baseline methods including
Bag-of-Words,Word2Vec+AVG andWord2Vec+IDF, word-embedding
based method like SIF [1], sequential models including RNN lan-
guage model, Skip-thought Vectors [3] and WME [9], and non-
sequential models including Denoising Autoencoder [8], Paragraph
Vectors [4] and Doc2vecC [2]. Representative models from both
sequential and non-sequential families along with some intuitive
baselines are compared with.

We use a shared word embedding table of 100 dimensions and
train it from scratch. Dimensions of learned document represen-
tation are set as 100, which can be inferred from the outputs of
sentence encoders. Dropout rate is 0.5 and 𝛼 is tuned to be 0.7.

4.1.3 Results and discussion. The results are shown in Table 2.
Our model considerably outperforms state-of-the-art models. As
we discussed, sequential models suffer from long text and non-
sequential models lose semantic information for discarding ordering
of words. Our model, on the other hand, successfully overcomes
the difficulties encountered by both families of methods. Our model
considers ordering of words within each single sentence, which is

Table 2: Sentiment analysis results on IMDB dataset in accu-
racy (%). Extra adv. column marks extra advantages out of
experiment settings. D for representation dimension greater
than 100, E for external data other than IMDB dataset used,
S for supervision by label during training. Methods in the
sequential family are marked with (Seq.). Results sources:
[9] for WME, [1] for SIF and [2] for others.

Methods Extra adv. Acc.(%) Acc.(w/o test,%)

Skip-thought Vectors (Seq.) D, E - 82.58
SIF with GloVe E - 85.00
RNN-LM (Seq.) S 86.41 86.41
Word2Vec + AVG E 87.89 87.31
Bag-of-Words D 87.47 87.41

Denoising Autoencoders - 88.42 87.46
Paragraph Vectors - 89.19 87.90
Word2Vec + IDF E 88.72 88.08

Doc2VecC - 89.52 88.30
WME (Seq.) E - 88.50

Our model (Seq.) - 92.78 90.83

considered the fundamental unit of a concept. At the same time,
instead of processing long text at once, pieces of concepts extracted
from sentences are effectively aggregated to form a meaningful
representation of documents.

4.2 Aspect-based sentiment analysis
Aspect-based sentiment analysis is a more challenging task for
document representation. Besides capturing an overall image of
a document, detailed information mentioned in only part of the
document has to be recognized and well preserved. We test the
ability of our model to learn a single representation that includes
information from all different aspects. We compare our model with
doc2vecC on this task, since it is the strongest competitor in the
sentiment analysis experiment without any extra advantage.

4.2.1 Dataset and Experiment design. We choose the Beeradvocate
beer review dataset for aspect-based SA task. It consists of over 1.5
million beer reviews; each has four aspect-based scores and one
overall score. All the scores are in the range of 0 to 5 and given by
the reviewers. The four aspects are appearance, aroma, palate and
taste. For a fair comparison with the SA experiment, we only use
the first 500k reviews of the dataset.

To follow the settings of the SA experiment, we reassign labels
to each aspect to simplify it to a binary classification task. A review
is labeled as positive/negative on a certain aspect if its score on
the aspect is not lower/higher than 4.5/3.5. For each aspect, we
construct two pools of positive and negative reviews respectively.
We randomly select 50k samples from each pool. The selected data
are split in half for training and testing. Now we have 50k balanced
data for training and 50k data for testing for each aspect.

In this experiment, all available data (500k data used in the ex-
periment) are used for representation learning. For each aspect, a
linear SVM classifier will be trained. We use the same parameters
as on IMDB review dataset.

Table 3: Results of aspect-based sentiment analysis on Beer-
advocate dataset. Reported numbers are accuracy (%).

Model Appearance Aroma Palate Taste Overall

doc2vecC 80.826 82.810 82.500 86.154 82.366
Our model 85.070 86.695 86.795 91.020 87.280

4.2.2 Results and discussion. Results of the experiment are shown
in Table 3. Our model far outperforms doc2vecC on every aspect-
based classification tasks including overall. The results indicate that
information of all aspects is better captured and stored in a single
vector learned by our model. It also illustrates the generality of our
model to perform well on different aspects and tasks with different
difficulties.

We notice that even though doc2vecC does not explicitly consider
ordering of words, it still achieves an acceptable accuracy on aspect-
based classification. This may be caused by the fact that manywords
used in the reviews are aspect-related on its own. For instance,
“delicious” is a strongly taste-related word that is useful for aspect-
based sentiment analysis even without knowing its context.

Surprisingly, we find in experiments that performance of our
model is hardly sensitive to any of the hyper-parameters except 𝛼 .
We tuned 𝛼 in the range between 0 and 1 and picked 0.7. We find
the value generalizable to different tasks and datasets. As for other
hyper-parameters, we find the model insensitive to them in a wide
range. That is why we use exactly the same parameters on both
IMDB and Beeradvocate datasets. This observation indicates the
effectiveness as well as robustness of our model design.

5 CONCLUSIONS
Experimental results show that our model outperforms state-of-the-
art unsupervised document representation learning methods by a
large margin on both classic SA task and its aspect-based variance.

We attribute this improvement to the design of our model that
enables it to reserve ordering of words and aggregate sentence vec-
tors effectively at the same time. Splitting long text into sentences
avoids the curse of length for sequential models. Aggregation with
average is made effective by explicitly using the obtained represen-
tation during training.

REFERENCES
[1] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simplebut tough-to-beat

baseline for sentence embeddings. In ICLR.
[2] Minmin Chen. 2017. Efficient vector representation for documents through cor-

ruption. In ICLR 2017.
[3] R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler.

2015. Skip-thoght vectors. In In Advances in neural information processing systems.
[4] Q. V. Le and T. Mikolov. 2014. Distributed representations of sentences and

documents. In In ICML, volume 14.
[5] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Ng, and

Christopher Potts. 2011. Learning word vectors for sentiment analysis. In ACL.
[6] Julian McAuley, Jure Leskovec, and Dan Jurafsky. 2012. Learning attitudes and

attributes from multi-aspect reviews. In In Proceedings of ICDM. IEEE.
[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word

representations in vector space. In arXiv preprint arXiv:1301.3781.
[8] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. 2008. Extracting and

composing robust features with denoising autoencoders.. In ICML.
[9] Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Fangli Xu, Avinash Balakrishnan, Pin-

Yu Chen, Pradeep Ravikumar, and Michael J. Witbrock. 2018. Word mover's
embedding: From word2vec to document embedding. In EMNLP.

	Abstract
	1 Introduction
	2 Related works
	3 The proposed model
	3.1 Overview
	3.2 Architecture
	3.3 Training
	3.4 Inference of document representation

	4 Experiments
	4.1 Sentiment analysis
	4.2 Aspect-based sentiment analysis

	5 Conclusions
	References

