
Fun with Interfaces
(SVG Interfaces for Musical Expression)

Benedict R. Gaster and Nathan Renney
Computer Science Research Centre (CSRC)

Department of Computer Science and Creative Technology
University of West of England

Bristol, UK
(benedict.gaster,nathan.renney)@uwe.ac.uk

Carinna Parraman
Centre for Fine Print Research (CFPR)

Department of Creative Industries and Education
University of West of England

Bristol, UK
Carinna.Parraman@uwe.ac.uk

Abstract
In this paper we address the design and implementation of
custom controller interfaces, bridging the issue of user map-
ping between action and sound in interactive music systems.
A simple framework utilizing functional specifications for
musical interfaces and their mappings is presented, in terms
of a subset of Scalable Vector Graphics (SVG); interfaces can
be described using a simple Haskell based ‘controller DSL’ or
equally using a vector drawing application (i.e. Illustrator).

We demonstrate the practical use of our system for speci-
fying interfaces as SVGs combined with Faust, a functional
DSL for Digital Signal Processing (DSP), in the context of
building digital musical instruments. We combine these into
a hardware and software audio toolkit, with synthesizers,
a sampler, effects, and sequencers. Written in the systems
programming language Rust, it demonstrates utilizing the
output of our DSLs, providing a type safe and high-level
framework for DSP and interface development, with the
performance benefits of Rust. Working examples of custom
interfaces are described, using ROLI’s Lightpad and Sensel’s
Morph.

CCSConcepts •Applied computing→ Sound andmu-
sic computing; • Software and its engineering→ Func-
tional languages;

Keywords Haskell, Rust, SVG, DSL, DMI

ACM Reference Format:
Benedict R. Gaster and Nathan Renney and Carinna Parraman.
2019. Fun with Interfaces (SVG Interfaces for Musical Expression).
In Proceedings of the 7th ACM SIGPLAN International Workshop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FARM ’19, August 23, 2019, Berlin, Germany
2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6811-7/19/08. . . $15.00
https://doi.org/10.1145/3331543.3342579

on Functional Art, Music, Modeling, and Design (FARM ’19), August
23, 2019, Berlin, Germany. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3331543.3342579

1 Introduction
Controller and gesture interaction with audio and/or visual
media is today ubiquitous, requiring the development of intu-
itive software solutions for interaction design. Designing and
building these interfaces often require extensive domain ex-
pertise in audio and visual media creation, e.g. the musician,
but additionally in engineering and software development.
In this paper we focus on custom controller-based interactive
systems for sound and musical performance, with a focus
on an intuitive and simple design process that is accessible
to artists.

Our particular take is on the controller for these systems,
proposing a simple framework for describing them, com-
bining interface descriptions specified using Scalable Vector
Graphics (SVG) [20] and Open Sound Control (OSC) [8]. Un-
like authors such as Bongers and Jorda [3, 12], who look
at the Digital Musical Instrument (DMI), its interface and
sound generating engine, holistically, in this work we instead
isolate these two components in order to more completely
explore the controller. In doing so, it allows this work to
focus on the design, specification, and implementation of a
DMI interface, while utilizing a variety of off the shelf and
custom sound engines.

What is a musical interface? To answer this question, we
first consider the more general question, what is Digital
Musical Instrument? Following Miranda andWanderley [15],
Figure 1 defines the essence of what might be considered a
DMI. The division between the gestural interface and the
sound engine is bridged by what Magnusson [13] calls the
mapping engine, here defined within the instrumental model
as a core component of the instrument itself, while isolating
the controller.
Below we give a brief outline of these three components,

colouring the discussion slightly by splitting the controller
into interface control and interface layout.

As conceptualized in the side image below, an audio engine
is a set of functions to process and generate sound, whose
goal is to produce one or more channels of audible output.

https://doi.org/10.1145/3331543.3342579
https://doi.org/10.1145/3331543.3342579

FARM ’19, August 23, 2019, Berlin, Germany Benedict R. Gaster and Nathan Renney and Carinna Parraman

Controller
(physical

or
virtual)

Sound
Engine

Haptic feedback

Sonic feedback (music)

Musician

Mapping
engine

Coupled model

Instrumental model

Figure (1) Model of a Digital Musical Instrument, showing the separation between gestural controller and sound production.

An audio engine runs at
audio rate, e.g. 44,100Hz, but
is often modulated at control
rate, commonly in the range

of 1 to a few hundred Hz. Modulation might be internal to
the audio engine itself, e.g. sweeping the cut off frequency of
a low pass filter using an LFO, or directly controlled via user
input, e.g. a hardware slider to control the master volume
of a mixer. In general, the association between input sen-
sor and modulated value is defined by the user and sensors
and controlled via the mapping engine, which may addi-
tionally provide the ability to select or even define transfer
functions mapping one or more input values to one or more
output control values. Mapping might range from simple
linear functions, e.g. frequency control, to complex history
based functions, e.g. utilizing neural networks for gesture
processing.

As abstracted by the side
image, a user controls an in-
strument through a physi-
cal/virtual interface that in
turn produces control mes-
sages, sent to the mapping
engine, via an agreed commu-
nication protocol, e.g. USB or

UDP.
In general, an interface might consist of any form of input

sensor, however, for this work we consider a more restricted
palette based on common off the shelf controllers, such as
Ableton’s Push 2, for musical instruments, including touch
pads, sliders, potometers, buttons, and so on.

As conceptualized by the
side image, the layout of
an interface’s control compo-
nents can be varied andmany
design principles are at play

from their initial conception to physical (or virtual) manifes-
tation.
It is not always clear where the interface ends and the

sound engine begins, for example, the Fiddle whose interface,

its strings, directly plays a physical role in the instrument’s
timbre. For the purpose of this paper we choose to consider a
clear separation between the control interface and the sound
engine. Furthermore, as shown diagrammatically in Figure 1,
the mapping engine can be considered part of the sound
engine and is independent of the proposed framework.
In this paper we propose and demonstrate a simple func-

tional framework for describing custom controllers that
utilize Scalable Vector Graphics (SVG) XML as a Domain
Specific Language (DSL) for interface descriptions. Custom
SVG attributes enable semantic details of interfaces to be
described in a portable way, enabling interfaces to be initially
developed within an application such as Adobe Illustrator
and later described in a Haskell based interface DSL to supply
semantic information, such as control messages and func-
tions. An overview of our approach, with examples, is given
in Section 2.
Throughout this paper we demonstrate the practical use

of SVG interfaces in the context of the design and imple-
mentation of DMIs, through the audio application Muses
that we have developed. Muses is a hardware and software
application/toolkit, with synthesizers, a sampler, effects, and
multiple sequencers. Written in the systems programming
language Rust [2], it demonstrates the use of SVG interfaces
and additionally, utilizes the DSP functional programming
language Faust [16], providing a type safe and high-level
framework for DSP and interface development, with the
performance benefits of Rust.
We establish the utility of SVG interfaces to controllers

themselves by building a number of practical custom inter-
faces using Sensel’s Morph, a highly sensitive touch sensor
with both x, y, and pressure readings communicated over
USB. Additionally, we target ROLI’s Ligthpad Block1, also
a touch and pressure based sensor, demonstrating the di-
rect compilation of SVG interfaces to Lightpad’s interface
programming language, Littlefoot2. We also show interfaces

1https://roli.com/products/blocks/lightpad-m
2https://github.com/WeAreROLI/JUCE/blob/master/modules/juce_
blocks_basics/littlefoot/LittleFoot%20Language%20README.txt

https://roli.com/products/blocks/lightpad-m
https://github.com/WeAreROLI/JUCE/blob/master/modules/juce_blocks_basics/littlefoot/LittleFoot%20Language%20README.txt
https://github.com/WeAreROLI/JUCE/blob/master/modules/juce_blocks_basics/littlefoot/LittleFoot%20Language%20README.txt

Fun Interfaces FARM ’19, August 23, 2019, Berlin, Germany

derived from an Implicit CAD3 backend for the system, but
due to being early in the development cycle do not present
the details.

The remainder of this paper is structured as follows:
• Section 2 provides an overview of the proposed system
for SVG interfaces;

• Section 3 details our approach to SVG interfaces, in-
cluding their specification as a Haskell based DSL, rep-
resentation as standard SVGs, and compilation to an
intermediate JSON format that can be consumed by
different backends, i.e. hardware platforms for the in-
terfaces themselves;

• Section 4 implements our ideas in the Muses audio
system, utilizing two external control surfaces, the
Sensel Morph and ROLI’s Lightpad, as targets for SVG
interfaces; and finally

• Section 5 discusses related work and concludes with
pointers to possible fruitful directions for the devel-
opment of SVG interfaces and the audio applications
they are intended to control.

More details about the project, our implementation, and ex-
amples are publicly available from https://muses-dmi.github.
io/.

2 Overview
We will provide a short overview of SVG interfaces by con-
sidering the MPC style interface shown in Figure (a) 2. The
image shown in Figure (b) 2 is a realization of the SVG inter-
face using Swell (Braille) paper to provide a tactile playing
surface. The swell print can be placed directly on a touch
based interface, such as Sensel’s Morph whose implementa-
tion is described in Section 4. In this section we will outline
how a user can develop such an interface with the proposed
SVG system for interfaces. For simplicity we consider just
the stop button, captured using its standard icon: a square
in between the play (triangle) and record (circle) in the top
right of both images in Figure 2.

2.1 A Little Programming Language
Interfaces are described using a controller DSL that is a
strongly typed functional language for an extended subset
of SVG, which includes structures for standard controller
types such as play and record, and more general ones such
as pads and sliders. Our stop button can be expressed as:

s t op ! #x 10 ! #y 10 ! # s i z e 3

The arguments x, y, size are required and like SVG attributes
are named. In this case using the notation, #name, to specify
an argument’s name, followed by the argument itself, in this
case 10. As per SVG arguments are ordered and multiple
arguments are combined with the combinator !. The above
code describes a stop button whose top left corner is (10,10)
3https://github.com/colah/ImplicitCAD

and a width and height of 3. Implicit in its definition is the
fact that interacting with a stop button, i.e. pressing it, will
cause it to output a " /stop/ " message.
More generally a stop button is an instance a pad and

could just as easily be defined as such:

pad ! #x 10 ! #y 10 ! # s i z e 3
! # add r e s s " / s t op / "

Here the additional argument address must be specified,
which in this case is the button’s " /stop/ " message, but more
generally can be any Open Sound Control (OSC) message
supported by the intended receiver.

Controllers can be composed together to form interfaces.
For example, the following describes not only the stop button
from Figure 2, but play and record too:

s t op ! #x 167 ! #y 20 ! # s i z e 25
<>
p l ay ! # v1 (1 6 2 , 3 2) ! # v2 (1 4 2 , 2 0)

! # v3 (1 4 2 , 4 5)
<>
r e co rd ! #x 209 ! #y 32 ! # r 12

Interfaces form a monoid [18] and the combinator <> is
Haskell’s standard Semigroup associative operator.

2.2 SVG Representation
An interface is represented as an SVG, for example, the stop
button above is compiled to an underlying SVG rectangle
and could have been defined more explicitly as:

r e c t 10 10 3 3 # i t y p e ipad
i a d d r e s s " / s t op / "

However, at this point much of the syntactic sugar has been
removed, for example, named arguments are now explicit
and order matters. Additionally, the controller’s type (ipad)
and message address must be explicitly defined, as an SVG
rect has no knowledge of this additional semantic informa-
tion. This example highlights the use of a restricted form of
reverse function application (#) to ‘apply’ non-standard SVG
attributes.

2.3 Compilation
Interfaces are designed, shared, and modified as SVGs, ei-
ther directly or using serialization and deserialization to and
from our programmatic interface DSL. However, while SVGs
interfaces can be printed they do not provide an execution
model per say. For this an SVG compilation model is defined,
enabling interfaces to be mapped to a variety of touch based
control surfaces. For example, the SVG interface captured
diagrammatically in Figure (a) 2 can be mapped directly to
Sensel’s Morph touch interface. The Morph provides the abil-
ity to lay a tactile materialization of an interface, in silicon
for example or as shown in Figure (b) 2 printed on Swell
paper, directly down on to its touch surface. In real time it

https://muses-dmi.github.io/
https://muses-dmi.github.io/
https://github.com/colah/ImplicitCAD

FARM ’19, August 23, 2019, Berlin, Germany Benedict R. Gaster and Nathan Renney and Carinna Parraman

(a) SVG Representation of MPC style interface. (b) Tactile MPC Style interface printed on Swell (Braille) paper.

Figure (2) Outputs of SVG (rendered) and Swell Paper.

generates a pressure image of interactions that can be pro-
cessed via USB. ROLI’s Lightpad on the other hand is a small
pressure based interface that supports execution of Littlefoot
DSL programs directly on the device itself. An example, SVG
interface for the Lightpad is shown in Figure 3,
Any execution model for SVG interfaces must be able to

support mapping directly to the Morph and Lightpad, along
with other interfaces, such as an iPad. For this we propose
and implement a compilation pipeline based on tessellation
and a human readable intermediate language (IR) based on
JSON.

3 SVG Interfaces
In the previous section, we provided a short overview of
some basic primitives for building SVG interfaces and dis-
cussed their compilation to an intermediate representation
suitable for execution on a number of touch devices. In this
section, we describe SVG interfaces, how they can be de-
fined in terms of a controller based DSL embedded in the
functional programming language Haskell and a compilation
approach that enables real time execution of a variety hard-
ware platforms. All the time our interface design enables the
creation of tactile, physical interfaces that can be produced
directly from the SVG representation, independently of the
compilation method.

3.1 A Controller DSL
The core elements of the DSL are given in Figure 5. For
the most part the DSL itself is implemented in standard
Haskell, as defined by Marlow [14], however, to fit closer
with SVG’s named attributes it uses a variant of the Haskell
package Named arguments4. Named is a lightweight library
for named function parameters based on overloaded labels.
Like SVG attributes named arguments can be specified in any
order and additionally can provide call-site documentation,
whichwe have found useful when non-programmers develop
custom interfaces.
As values, named parameters take the form ! #x 123,

where ! indicates the use of a named argument, x is the
name of the argument (with # indicating a first class label
within the ! expression) and 123 is the argument’s value. For

4https://github.com/monadfix/named.

Attributes Description

inter_type Controller type (pad, vslider,
etc.)

inter_osc_address OSC address

inter_osc_args OSC static arguments (int or
float)

min min value for slider, endless
max max value for slider, endless
init initial value for slider, endless
incr increment for slider, endless

Table (1) Domain Attributes for Controllers.

types, the type constructor :! takes a label, represented as a
type promoted string, and the argument’s type, for example,
the expression ! #y 234 has type "x" :! Int .

With the exception of the endless controller, the domain
specific and global OSC address controllers are expressed
semantically in terms of the SVG shape controllers. These
three core controllers map directly to the corresponding SVG
shapes. For example, consider the expression:

s t op ! #x 167 ! #y 20 ! # s i z e 25

which describes a stop button controller object, with its right
most corner placed at position (167, 20) and with a width and
height of 25 (mm). When compiled it becomes the following
SVG shape element:

< r e c t i n t e r _ o s c _ a d d r e s s = " / s t op "
h e i gh t = " 25 " width= " 25 "
i n t e r _ t y p e = " pad " i n t e r _ o s c _ a r g s = " "
x= " 167 " y= " 20 " / >

The SVG shape rect has a number of standard attributes,
including "x", "y", "width", and "height", along with generic
shape attributes such as "fill", "stroke", etc. not specified in
this example, but it also uses a selection of interface custom
attributes, e.g. inter_osc_address . The meaning of the stan-
dard attributes are unchanged from the SVG specification
and are not considered further, instead we focus attention
on the custom attributes necessary for a controller to be well
defined.
Table 1 defines the domain specific attributes for con-

trollers. The first attribute reflects the kind of controller it

https://github.com/monadfix/named

Fun Interfaces FARM ’19, August 23, 2019, Berlin, Germany

l i g h t p a d =
mconcat (map p [(0 , 1 0 0) , (4 , 1 0 1) , (8 , 1 0 2) , (1 2 , 1 0 3)])

<>
mconcat (map s [(0 , 1 0 4) , (4 , 1 0 5) , (8 , 1 0 6) , (1 2 , 1 0 7)])
where

p = \ (x , cc) −> pad ! #x x ! #y 0 ! # s i z e 3 ! # add r e s s " / m id i c c "
i a r g s [cc] # f i l l " rgb (2 1 7 , 1 3 7 , 1 8 8) "

s = \ (x , cc) −> v e r t S l i d e r ! #x x ! #y 4
! #width 3 ! # h e i gh t 11 ! #min 0 ! #max 127 ! # add r e s s " / m id i c c "

f i l l " rgb (9 6 , 9 5 , 1 6 4) " # i a r g s [cc]

Figure (3) SVG DSL Example (4 pads and 4 sliders).

(a) SVG Representation of interface from Figure 3. (b) Interface in action, loaded on a ROLI Block.

Figure (4) Outputs of SVG (rendered) and Littlefoot (running on Block).

represents. For example, a vertical slider is represented by
a slider of type inter_type=" vslider ", while the above stop
button is of type inter_type="pad". The next two attributes
define the type of control messages produced by a given
controller. As discussed in Section 2 interfaces communicate
to the outside world using Open Sound Control (OSC).
OSC messages are typically transported via the internet

and within local subnets using UDP/IP, although for this
work we have focused on communication limited to same
machine, i.e. the loop back device. OSC messages consist of
an address pattern, a type tag string, 0 - n arguments, and an
optional time tag. Similar to URLs or Unix filenames, address
patterns form a hierarchical name space. Type tag strings
are a compact string representation of the argument types,
while arguments are represented in binary form and include
32-bit two’s complement signed integers and 32-bit IEEE
floating point numbers5.
In general, OSC messages have arbitrary addresses and

often describe a path where the message should be routed in
the receiver application, e.g. /sequencer/mutemight indicate
that the message is for a sound engine’s sequencer to mute
a particular channel. The actual channel could be specified

5OSC arguments can also include null terminated arrays and binary blobs
of data, however, they are not currently utilized in our system.

in the address, but rather is passed as one of the message’s
arguments. A complete message instructing the audio engine
to mute channel 2 might look like6:

/ s equence r / mute 1

In general a controller’s OSC address and static arguments
are defined by the user, but in some cases the SVG DSL
provides a small number of predefined global messages, as
shown in Figure 5 and the stop example above. Controllers
such as the one imagined above to send mute messages have
only static arguments, i.e. the channel being muted is known
during the specification of the controller, in general, this is
not the case. For example, consider a slider to control the
volume of channel 0 in a mixer component, expressed as:

v e r t S l i d e r #x (1 2 5 + chan ∗ 3 0) ! #y 90
! #width 15 ! # h e i gh t 45
! #min 0 ! #max 127
! # add r e s s " / mixer / volume " # a rg s [0]

The address is the path to the mixer’s volume control and
the single static argument specifies the particular channel

6Assuming channels are indexed from 0.

FARM ’19, August 23, 2019, Berlin, Germany Benedict R. Gaster and Nathan Renney and Carinna Parraman

−− svg shape c o n t r o l l e r s
r e c t : : " x " : ! I n t −> " y " : ! I n t −> " width " : ! I n t −> " h e i gh t " : ! I n t −> Con t r o l l e r
c i r c l e : : " x " : ! I n t −> " y " : ! I n t −> " r " : ! I n t −> Con t r o l l e r
polygon : : " p o i n t s " : ! [(I n t , I n t)] −> Con t r o l l e r

−− domain s p e c i f i c c o n t r o l l e r s
pad : : " x " : ! I n t −> " y " : ! I n t −> " s i z e " : ! I n t −> " add r e s s " : ! Text −> Con t r o l l e r
t o g g l e : : " x " : ! I n t −> " y " : ! I n t −> " s i z e " : ! I n t −> " add r e s s " : ! Text −> Con t r o l l e r
h o r z S l i d e r : : " x " : ! I n t −> " y " : ! I n t −> " width " : ! I n t −> " h e i gh t " : ! I n t −>

"min " : ! I n t −> "max " : ! I n t −> " add r e s s " : ! Text −> Con t r o l l e r
v e r t S l i d e r : : " x " : ! I n t −> " y " : ! I n t −> " width " : ! I n t −> " h e i gh t " : ! I n t −>

"min " : ! I n t −> "max " : ! I n t −> " add r e s s " : ! Text −> Con t r o l l e r
c i Pad : : " x " : ! I n t −> " y " : ! I n t −> " r " : ! I n t −> " add r e s s " : ! Text −> Con t r o l l e r
e n d l e s s : : " cx " : ! I n t −> " cy " : ! I n t −> " or " : ! I n t −> " i r " : ! I n t −>

" add r e s s " : ! Text −> Con t r o l l e r

−− c o n t r o l l e r s with g l o b a l OSC add r e s s e s
s t op : : " x " : ! I n t −> " y " : ! I n t −> " s i z e " : ! I n t −> Con t r o l l e r
r e c o r d : : " x " : ! I n t −> " y " : ! I n t −> " r " : ! I n t −> Con t r o l l e r
p l ay : : " v1 " : ! (I n t , I n t) −> " v2 " : ! (I n t , I n t) −> " v3 " : ! (I n t , I n t) −> Con t r o l l e r

−− a t t r i b u t e s
bo rde r : : C o n t r o l l e r −> Con t r o l l e r
f i l l : : RGB −> Con t r o l l e r −> Con t r o l l e r
imin : : I n t −> Con t r o l l e r −> Con t r o l l e r
imax : : I n t −> Con t r o l l e r −> Con t r o l l e r

Figure (5) SVG DSL

number, but the actual value of the slider cannot be speci-
fied statically. It is only known when it is initialized7 and
when the user adjusts the value by interacting with the con-
troller physically. In this case the behaviour of a slider, when
physically interacted with, causes it not only to emit static
arguments, but also to include the slider’s position value, in
this case a number between 0 (#min 0) and 127 (#max 127).

3.2 Intermediate Compilation
Individual devices intended as targets for an SVG interface
can differ considerably with respect to how they materialize
an interface in a practice. For example, the Sensel Morph, de-
tailed in Section 4.1, provides a C API for reading contact in-
formation from the device with USB, while ROLI’s Lightpad,
whose implementation is described in Section 4.2, works as
an embedded device capable of executing programs described
in the C like DSL, Littefoot. While SVGs provide an interest-
ing and practical approach to describing interfaces they offer
some challenges when mapping them to devices themselves.
In particular, while describing controllers in terms of 2D

7An initial value can be specified using the attribute # init , otherwise it is
assumed to be zero.

vectors, combined with domain specific attributes, provides
an accessible design methodology for humans, it can come
at a cost for a device driver, e.g. for the Sensel, and is even
more of an issue for resource constrained embedded devices,
such as ROLI’s block. The driver or embedded code must
provide a high performance path from human gesture, i.e.
interacting with the physical interface, and output messages.
In the remainder of this section we outline an intermedi-

ate representation, generated automatically from interface
SVGs, which enables straight forward implementation in dri-
ver code and compilation to embedded DSLs, such as ROLI’s
Littlefoot, with little run time performance impact. In partic-
ular, the intermediate representation removes the need for
complex collision detection of gesture to action. Of course,
our representation does not prevent complex transfer func-
tions, i.e. the interpretation of a gesture to an action, which in
general can be arbitrarily complex. Although the current set
of supported sliders, pads, and so on do not introduce much
computational complexity, there is nothing in our approach
that prevents more complex controller transfer functions
being added.

Fun Interfaces FARM ’19, August 23, 2019, Berlin, Germany

JSON is used as an intermediate representation for inter-
faces, that can either be loaded directly by a device backend,
see the Sensel Morph example in Section 4.1, or an additional
translation step can be performed to produce a representa-
tion suitable for upload on to hardware, see the ROLI Light-
pad implementation described in Section 4.2 for an example
of this approach. Alternatives to JSON are likely to be just
as suitable for our needs, however, JSON was chosen as it is
a simple open standard, in wide use, and is human readable.

The IR itself is specified as a JSON schema8, emitted here
for space, but can be found on the project’s documentation
pages9. As an example consider the SVG interface specified
in Figure 3 and shown in Figure 4. The following JSON, cut
down for space, is outputted via our SVG compiler:

{
" c o n t r o l l e r s " : [

{
" t y p e _ i d " : " pad " ,
" i d " : 1 ,
" rgb " : " rgb (2 1 7 , 1 3 7 , 1 8 8) " ,
" a r g s " : [

100
] ,
" a dd r e s s " : " / m id i c c "

} ,
. . .
] ,

" b u f f e r " : [
[

1 , 1 , 1 , 0 , 2 , 2 , 2 , 0 , 3 , 3 , 3 , 0 , 4 , 4 , 4 ,
1 , 1 , 1 , 0 , 2 , 2 , 2 , 0 , 3 , 3 , 3 , 0 , 4 , 4 , 4 ,
1 , 1 , 1 , 0 , 2 , 2 , 2 , 0 , 3 , 3 , 3 , 0 , 4 , 4 , 4 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,
5 , 5 , 5 , 0 , 6 , 6 , 6 , 0 , 7 , 7 , 7 , 0 , 8 , 8 , 8 ,

]
] ,
" i n t e r f a c e " : " l i g h t p a d "

8http://json-schema.org/draft-07/schema#
9https://github.com/muses-dmi/svg-creator/blob/master/docs/interfaces.
md

Shape Assembly

Shape Tessellation

Rasterization

1 2 3 4

5 6 7 8

5

555555555555

Figure (6) Interface Rasterization Pipeline

}

The controllers section contains a mapping from the SVG at-
tributes for a controller, with a unique identifier assigned to
each one. This identifier appears in the buffer array, which
represents a 2-dimensional map from (x,y) touch events
produced by the hardware controller to a control’s identifier.
The buffer is a one to one mapping with the intended device,
for example, here the 2-dimensional space is 15x15, repre-
senting the touch sensor array on ROLI’s Lightpad. Further
details of the table and how it is produced from SVG shape
descriptions is the topic of the following sub-section.

3.2.1 Tessellation
As discussed above, a touch interface is a transfer function
between user input (touch), captured as one or more (x,y
) positions in 2-dimensional Euclidean space, to an action,
e.g. sending a control message. In general, such interactions
would require complex collision detection, however, taking
inspiration from the process of rendering an SVG on a screen,
we note that it is possible to describe the intersection problem
as a function from 2D coordinates, the touch event, to a point
within a shape or path describing the controller. Once the
shape and this controller is uniquely determined, then an
action’s function is by definition also determined.

http://json-schema.org/draft-07/schema##
https://github.com/muses-dmi/svg-creator/blob/master/docs/interfaces.md
https://github.com/muses-dmi/svg-creator/blob/master/docs/interfaces.md

FARM ’19, August 23, 2019, Berlin, Germany Benedict R. Gaster and Nathan Renney and Carinna Parraman

Figure (7) Tessellation of MPC style interface

The function in question, from a 2-dimensional vector
description of a shape, simple (e.g. SVG rect) or complex
(e.g. SVG Bezier curves and paths [9]), can be described by
the pipeline shown in Figure 6.

The function is the well known and is simply the process
of rasterization [1], but rather than storing colours in the
resulting "image", a unique ID for the controller is written
out instead. Unlike general collision detection the resulting
function has O(1) complexity.
The algorithm iterates over an interface’s set of shapes

and for each shape first preforms Shape Assembly, which
among other things assigns a unique identifier; the resulting
shape is then tessellated into simple triangles; and finally
the resulting set of triangles are rasterized with each "pixel"
within the triangle mapped to the corresponding position in
the output bitmap, storing the shapes unique identifier. Ras-
terization is the most complex phase and simple interfaces,
particularly ones containing non convex-polygons, can lead
to a large number of resulting triangles. For example, the
MPC style interface given in Figure 2 generates the triangle
mesh shown in Figure 7, which contains 2862 vertices using
our Rust based tessellation algorithm10.

Given a triangle mesh rasterization is implemented using
the standard half-space algorithm [17], common to graphics
APIs such as DirectX11 and Vulkan12. Unlike these graphics
APIs our rasterization algorithm does not utilize optimiza-
tion techniques such as depth buffering or front face culling.
Moreover, the pipeline presented in Figure 6 is implemented
completely in software and GPU acceleration was found to
only complicate the implementation and provided no addi-
tional performance benefits. While interfaces can contain
many controllers, in the range of 10-100, the number of re-
sulting triangles is very small when compared to even simple
2D/3D graphics scenes and furthermore the compilation of
interfaces is offline and thus is not a performance bottleneck.

10The Rust tessellation algorithm is based on the Muses’ 2D renderer, which
it turn is implemented with the Rust library Lyon.
11https://docs.microsoft.com/en-us/windows/desktop/direct3d12/
what-is-directx-12-
12https://www.khronos.org/vulkan/

Figure (8) Screen short of Muses audio application

4 Interfaces in Practice
Until now we have looked at the uses of SVGs for DMI in-
terfaces from a design perspective, presenting a framework
for describing them. In this section we show the use of the
framework in practice through the Muses audio application
we have developed within the context of a larger research
project, Printing the Muses, we are undertaking in conjunc-
tion with the Fine Print Research Centre at the University
of West of England, into the design and implementation of
Digital Musical Instruments. The Muses audio platform sup-
ports multiple sequencers, audio synthesis engines, effect
sends, and a 4 track style digital tape recorder. For the most
part it is written in the systems programming language Rust,
supported by a selection of programs, e.g. the SVG interface
compiler, written in the functional programming language
Haskell. The architecture is modular in design supporting
audio engines, for both synthesis and effects processing, to
be added easily. An example screen shot of the application
is given in Figure 813.
The audio and effect engines are developed in the DSP

functional programming language Faust [16, 22], which is a
small functional DSL capable of generating C++ and Rust,
along with a selection of other backends. As standard in
audio applications a high priority thread is utilized for audio,
along with threads for handling the UI and input via Open
Sound Control (OSC) [8]14.

The design and implementation of the Muses application
is not the focus of this paper and instead the remainder of this
section we cast our eye on SVG interfaces and their use for
describing control surfaces for two customizable controller
surfaces, the Sensel Morph and ROLI Lightpad.

13Muses 2D graphical interface was original inspired from the amazing
audio Raspberry PI project OTTO, although we have diverged somewhat
now. The is highlighted within the screen shot, where we have implemented
a variant of OTTO’s reverb UI.
14MIDI is also supported, but is intended for off the shelf interfaces that do
not support OSC, e.g. keyboard controllers.

https://github.com/nical/lyon
https://docs.microsoft.com/en-us/windows/desktop/direct3d12/what-is-directx-12-
https://docs.microsoft.com/en-us/windows/desktop/direct3d12/what-is-directx-12-
https://github.com/topisani/OTTO

Fun Interfaces FARM ’19, August 23, 2019, Berlin, Germany

Attribute Value

width 240mm
height 140mm
viewBox 0 0 230 130
interface_device sensel

Table (2) Global SVG Attributes.

4.1 Printing Interfaces with Sensel Morph
The Sensel Morph15 is a velocity sensitive, and swappable
control interface that enables tactile response. It supports
a pre-defined set of interfaces, allowing the user to define
either MIDI or OSC message mappings, or the ability for
custom interfaces via a C API. Sensel support users building
custom interfaces for the Morph in two ways:

• The Sensel Application provides the ability to cus-
tomize the messages produced, either OSC or MIDI,
with off the shelf controllers, such as keyboard and
drum pads, that Sensel sell. The application also sup-
ports defining simple, regular pads and sliders, in a
simple GUI interface that can be printed out and con-
figured for OSC and MIDI; and

• the Sensel API, which is a small C based API for com-
municating with the Sensel over USB, providing func-
tionality for device discovery, configuration, and re-
trieving user contact information.

The interfaces presented in this paper are compiled to
JSON and loaded via an application written in Rust, which
using FFI calls to the Sensel API to process contact frames
from the Morph via USB. The frames are processed and OSC
messages are generated and communicated over UDP.

The Morph has a surface of interaction that is 230x130mm
and the API can be configured to produce (x,y) and pressure
for multiple touches against a high resolution sensor array
made of a grid of 185x 105 of what Sensel terms "sensels".
The device is configured such that when a contact is made,
several sensels are activated, each having its own pressure
reading, and the driver combines them to generate touch
events. While it is possible to process the raw, CCD like date
stream, directly, the Morph provides an embedded micro-
processor that can analyze the image using computer vision
techniques to identify individual touches, the force of each
individual touch, the size, and so on. The maximum frame
rate at which data can be read from the device is 2KHz.
Table 2 defines the set of "global" attributes for SVG in-

terfaces. By requiring that the width, height, and view port
map directly to the visible area on the Morph we avoid map-
ping and transform issues when performing tessellation and
rasterization to the Morph JSON IR. Of course, we already
preform basic clipping during rasterization and combining

15https://sensel.com/pages/the-sensel-morph

pub t r a i t C o n t r o l l e r {
/ / / the name o f t h i s c o n t r o l l e r
fn name(& s e l f) −> & ' s t a t i c s t r ;

/ / / p r o c e s s a touch event , ou t pu t s
/ / / OSC messages to s o c k e t
fn touch (&mut s e l f ,

c o n t a c t : &Contact ,
s o c k e t : &UdpSocket)

−> Resu l t < () , & ' s t a t i c s t r > ;
}

Figure (9) Controller Trait.

this with support for SVG transformations this restriction
could likely be removed.

On start up the Morph backend loads the JSON IR creating
a 2-dimensional non-mutable array representation of the IR
buffer and then a 1D array of controllers is allocated, one
element for each controller ID in the buffer, corresponding
to the controllers field in the JSON IR. Elements of the
controller array are instances of the Rust trait in Figure 9.
An implementation of this trait is provided for each con-

troller type. Each instance, internally handles the mainte-
nance of any state required to implement a controller’s se-
mantics, for example, a slider tracks the current position
and outputs OSC messages of values within the range as
specified in the JSON IR. The struct Contact contains data
taken directly from the Sensel capturing information about
the particular touch event.
For the most part individual controller implementations

are straightforward. The endless controller, which allows for
continuous rotation around a circle, is probably the mostly
complicated implementation, as it tracks user movements
around a unit circle, but is easily handledwith basic trigonom-
etry. Processing a touch event is reduced to just three mem-
ory reads, one for each of the look-up tables, and one for
transferring control via a ‘vtable’ to the controller function
itself. This is then followed by computing the OSC message,
which in turn is written out (asynchronously) to the socket.

4.2 Controlling Grids with ROLI Blocks
ROLI’s Lightpad Block16 is a small wireless (Bluetooth LE)
controller for musical expression. Like the Sensel it sup-
ports pressure based touch, but also enjoys a 15x15 matrix
of bright RGB LEDS. Although a much smaller resolution
Blocks can be "snapped" together with ROLI’s DNA connec-
tors, enabling building complex controller interfaces.
ROLI support users building custom interfaces for the

Lightpad in a variety of ways, including:

16https://roli.com/products/blocks/lightpad-m

https://sensel.com/pages/the-sensel-morph
https://roli.com/products/blocks/lightpad-m

FARM ’19, August 23, 2019, Berlin, Germany Benedict R. Gaster and Nathan Renney and Carinna Parraman

Type Attributes

pad fill ="rgb(I , I , I) " preset=I
toggle fill ="rgb(I , I , I) " preset=I
vertical slider fill ="rgb(I , I , I) " preset=I
horizontal slider fill ="rgb(I , I , I) " preset=I

Table (3) ROLI Lightpad Attributes.

• The ROLI Dashboard application provides a set of
predefined interfaces for Lightpads, that can be cus-
tomized with respect to the particular MIDI messages
they produce;

• the Blocks code application supports compilation of
Littlefoot programs, a small C like language for Block
interface development, that can be uploaded and run
on a Lightpad; and

• the Blocks SDK is a C++ framework for developing
Windows, OS X, and Linux host applications that uti-
lize Lightpad blocks, supporting compilation and in-
stalling of Littlefoot programs, direct communication,
and more.

In general, the interfaces described in this paper are com-
piled to Littlefoot and the result can be used either with
Blocks Code or the Blocks SDK to load interfaces on to a
Lightpad. To date we have not utilized direct heap allocation
and communication from a Lightpad to a driver application,
but there is nothing in the approach described below that
prevents such a development path.
Like the Sensel Morph the Lightpad is capable of recog-

nizing multiple touch events, however, unlike the Morph it
has a soft silicon surface, layered on top of a 15x15 matrix
of programmable RGB LEDs. The reader might observe that
x/y resolution of the Lightpad is considerably smaller than
the Morph and places limitations on the kinds of controllers
that can be easily represented, particular if more than a few
are live at any given time.

To this end the set of possible controls is restricted, where
we assume the attributes described previously, plus the addi-
tional ones shown in Table 3.

Specifying the fill attribute enables a control to utilize the
Lightpad’s tri-colour LEDs as can be seen from the example
given in Figure 3. As fill is a standard SVG attribute the
resulting SVG can be visualized as per any other SVG with
the specified colour applied to the corresponding shape.
The preset attribute enables a control to be associated

or grouped with a set of controls that are active only if the
particular preset is active. For example, Figure 10 implements
a Lightpad interface containing four pads, two, red pads,
assigned to the preset zero and the other two, green pads,
assigned to preset one:
This example highlights a downside to the approach for

presets, as it means that displaying the resulting SVG in a
drawing application, such as Adobe Illustrator, will present

pad ! # x 0 ! # y 0 ! # s i z e 3
! # a dd r e s s " / m id i c c " # p r e s e t 0
i a r g s [0] # f i l l " rgb (2 5 5 , 0 , 0) "

<>
pad ! # x 4 ! # y 0 ! # s i z e 3

! # a dd r e s s " / m id i c c " # p r e s e t 0
i a r g s [0] # f i l l " rgb (2 5 5 , 0 , 0) "

<>
pad ! # x 0 ! # y 0 ! # s i z e 3

! # a dd r e s s " / m id i c c " # p r e s e t 1
i a r g s [0] # f i l l " rgb (0 , 2 5 5 , 0) "

<>
pad ! # x 4 ! # y 0 ! # s i z e 3

! # a dd r e s s " / m id i c c " # p r e s e t 1
i a r g s [0] # f i l l " rgb (0 , 2 5 5 , 0) "

Figure (10) Preset example for ROLI’s Lightpad.

one set of buttons on top of the other. On the other hand
it demonstrates that a more programmatic approach to de-
scribing SVG interfaces can have further advantages.

Lightpads do not provide support for OSC and instead the
generated Littlefoot produces and consumes only MIDI mes-
sages. This means that the receiving application must either
handle MIDI messages directly or otherwise we provide a
simple MIDI to OSC mapper application. The previously dis-
cussed Muses audio application, for example, supports both
MIDI and OSC and has direct support for Lightpad interfaces
that produce a set of predefined MIDI CC messages, plus
MIDI note, pitch bend, and so on.
In general, generating Littlefoot is straightforward, the

lack of any form of product or sum types requires that sets of
global variables are allocated for all controllers with state, e.g.
sliders, endless, etc., and functions are created that calculate
properties for specific controllers, indexed via their IDs. Lit-
tlefoot expects callbacks to be implemented for touch events
and these are additionally generated, mapping (x,y) touch
to particular sliders. The process is somewhat complicated
by the fact that Littlefoot does not support arrays and so the
implementation converts the mapping function implied by
the IR’s buffer to a set of conditionals testing for a specific
identifier. A draw callback is generated, which utilizes the re-
quired fill attribute to set the LEDs that map to a controller,
as a function of the state of the controller, e.g. a section of
slider will be black if the range is not covered by the current
settings. Finally, presets are easily supported by adding an
additional layer of indirection, again using conditionals as
Littlefoot’s only form of indirection, and the ROLI’s control
block or incoming midi messages are used to receive change
requests.

Lightpad interfaces are a strict subset of the general SVG
interface description described in Section 3 and the Sensel

Fun Interfaces FARM ’19, August 23, 2019, Berlin, Germany

Morph interfaces of Section 4.1, all be it with additional
attributes for specifying fill colours and controller presets.

5 Discussion
In this paper we described a simple yet practical approach
for the design and implementation of custom interfaces for
musical expression. Its use was demonstrated with imple-
mentations for Sensel’s Morph and ROLI’s Blocks within
the context of the design of new Digital Music Instruments,
in this case the Muses application. While our design goals
focus round the design and implementation of new DMIs the
proposed system communicates over OSC or MIDI messages
and as such can be used with many existing software and
hardware digital musical instruments.

5.1 Related work
5.1.1 Musical Interfaces
The design and implementation of the interface for DMIs is
an active field, often referred generally as New Interfaces for
Musical Expression (NIME) in reference to the conference.
Since its inception there has been a wide variety of work at
NIME that looks theoretically at musical control of comput-
ers, in particular seminal work by Wessel and Wright that
set out to report on the problems (or challenges) associated
with the notion of the computer as a musical instrument [21].
Additionally Cook’s earlywork also defined a number of prin-
cipals for the design of computer musical instruments [5]. In
the following decade authors such as Tanaka and Magnus-
son [13, 19] generalized these approaches to accommodate
an ever expanding notion of computer, including the intro-
duction of the smart phone. Today the market for control
interfaces for musical expression is a huge multi-national
operation, companies such as Ableton, originally a software
only company, sell highly polished mass produced products
in their thousands. The emergence of iOS and Apple’s Audio
Unit v3 has made the phone and tablet professional plat-
forms for audio. However, with the exception of certain iOS
applications the controllers have only limited features for
customization, it is, of course, possible to control what mes-
sages they produce, but the interface’s control surface is
fixed during design and manufacture.

iOS applications such as Touch OSC17 provide a modular
approach to describing OSC control interfaces, however, un-
like our approach they are limited and constrained by the
iPhone and iPad screen interface. In particular, their inter-
faces provide no tactile control and their controls are the
standard set of uniform shapes. Work by Glowacki [10], for
example, combines the iPad’s capacitive touch screen with a
more tactile experience, with fabric overlays, however, to our
knowledge this or a similar approach has not been applied
in the area of interface design for musical instruments. It
might be an interesting area of future work.
17https://itunes.apple.com/gb/app/touchosc/id288120394?mt=8

5.1.2 Output-Directed Programming
Direct manipulation interfaces, such as Adobe Illustrator,
are useful in many domains, often providing interfaces ac-
cessible to designers and non-programmers. However, their
lack of programmability in a high-level language makes it
difficult to develop complex and reusable content. Output-
Directed Programming, as described by Chugh el al [4, 11],
aims to bridge the gap between direct manipulation and
programming—their system Sketch-n-Sketch provides the
ability to design and shape the desired output by example,
e.g. dragging and stretching shapes on a canvas, and the ap-
plication infers program transformations to match, possibly
introducing variables, functions, and arithmetic relationships
into the program. Conversely, the designer can add code pro-
grammatically and shapes are added to the canvas, which
again can be directly modified with the mouse.
Sketch-n-Sketch lacks the domain specific focus of our

interface DSL, rather looking at simple SVG generation and
other similar applications, and is limited with respect to as-
pects of the program that can be directly synthesized. Origi-
nally Sketch-n-Sketch presented a simple Lisp like language
to the design, but more recently replaced it with the web
programming language Elm18. While Elm is a good fit for the
browser based Sketch-n-Sketch it lacks some of the advanced
features, in particular dependent types, utilized in the inter-
face DSL. There seems to be a close synergy with respect to
design goals between the two projects and it seems likely
that ideas of Sketch-n-Sketch and the more general field of
output-directed programming could provide a foundation for
an interface design tool, merging features from both direct
manipulation and programming in a high-level language.

5.1.3 Monoids and Diagrams
Monoids have gained particular attention recently in there
use to model the denotational meaning of common com-
putational structures, including Monads, Applicative Func-
tors, and Arrows [18]. Our interface DSL is based on the
mathematical structure Monoid and is an instance of the
corresponding Haskell type class, enabling composition of
controllers.
Monoids have also been used in the context of diagram

specification, including SVG composition, and in particular
the work on the Haskell DSL Diagrams [23, 24] was a key
inspiration for our work and shares many ideas. In particular,
Diagrams supports a compositional approach for describing
images, similar to ours, however, the intention is different—
Diagrams aims to provide a framework for programmatically
generating images, while our goal is to enable both the design
and implementation of musical interfaces.

18https://elm-lang.org/

https://itunes.apple.com/gb/app/touchosc/id288120394?mt=8
https://elm-lang.org/

FARM ’19, August 23, 2019, Berlin, Germany Benedict R. Gaster and Nathan Renney and Carinna Parraman

5.2 Future work
Utilizing Adobe Illustrator to build users interfaces is on the
one hand a practical solution as it is an industrial heavy
weight when it comes to vector drawing, but comes with
a heavy learning curve and features outside of the domain
of interface design. In truth we utilize only a tiny subset of
what Illustrator is capable of and in fact it is easy to build
SVGs that are not compatible with our infrastructure, e.g.
SVG gradients are not supported. More importantly defining
custom SVG attributes is not well supported. To address this
we plan to develop a simple SVG interface editor applying
output-directed design combined with programming style
editing of attributes and other interface properties, similar
to the style of Hempel et al [11].
A feature often requested by users is the ability to map

multiple output values, i.e. OSC messages, to a single con-
troller, which in itself is straightforward, but of more interest
and harder to achieve is the ability to morph from one set of
values to another. It is likely that this would require some
form of gesture recognition, via a Regression Neural Network
(RNN), for example, similar to that described by Fiebrink and
Francoise et al [6, 7].
An important area of future work is to consider the use

of SVG interfaces to design and build non conventional con-
trollers. For example, we are developing an instrument for
studying and teaching polyrhythmic patterns, the Polyrhyth-
mic Ring Sequencer, that utilizes SVG interfaces to describe
a sequencer built on the Sensel Morph.

Finally an important area of future work in relation to our
parent project, Printing the Muses, is to investigate the use of
various approaches to printing tactile interfaces from SVGs,
analyzing material properties and how they function under
different real life conditions, e.g. in a night club, and how
musicians handle differences in friction and other tangible
qualities.

Acknowledgments
We thank our colleagues from the Computer Science Re-
search Centre and Creative Technologies Lab for interesting
discussions on all things programming, musical, and visual.
In particular TomMitchell provided feedback throughout the
development of SVG interfaces and the larger Muses project.
Nat Roberton introduced us to Swell Paper and provided us
with many enlightening discussions about design.

The OTTO audio project has been a huge inspiration for
our work, particularly the Muses audio application. This
work would not have been possible without Haskell’s Dia-
grams package, whose design and ideas we have continually
returned to for inspiration.

References
[1] Michael Abrash. 1997. Michael Abrash’s Graphics Programming Black

Book, with CD: The Complete Works of Graphics Master, Michael Abrash

(10th ed.). Coriolis Group Books, Scottsdale, AZ, USA.
[2] Jim Blandy. 2015. The Rust Programming Language: Fast, Safe, and

Beautiful. O’Reilly Media, Inc.
[3] Bert Bongers. 2000. Interaction Theory and Interfacing Techniques

for Real-time Performance. Trends in Gestural Control of Music (2000),
41–70.

[4] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016.
Programmatic and Direct Manipulation, Together at Last. In PLDI’16:
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 341–354.

[5] Perry Cook. 2001. Principles for Designing Computer Music Con-
trollers. In CHI’01: Workshop on New Interfaces for Musical Expression.

[6] Rebecca Anne Fiebrink. 2011. Real-time Human Interaction with Su-
pervised Learning Algorithms for Music Composition and Performance.
Ph.D. Dissertation. Princeton.

[7] Jules Françoise. 2013. Gesture–Sound Mapping by Demonstration in
Interactive Music Systems. In MM ’13: Proceedings of the 21st ACM
international conference on Multimedia. 1051–1054.

[8] Adrian Freed and Andy Schmeder. 2009. Features and Future of Open
Sound Control version 1.1 for NIME. In NIME ’09: Proceedings of the
Conference on New Interfaces for Musical Expression. 1–5.

[9] Jean Gallier. 1999. Curves and Surfaces in Geometric Modeling: Theory
and Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[10] B.R. Glowacki. 2018. Mixed play spaces: Augmenting digital story-
telling with tactile objects. Interactions 25, 2 (2018), 58–63.

[11] Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Program-
ming via Direct Manipulation. In UIST ’16: Proceedings of the 29th
Annual Symposium on User Interface Software and Technology. 379–
390.

[12] Sergi Jordá. 2005. Digital Lutherie Crafting musical computers for new
musics’ performance and improvisation. Ph.D. Dissertation.

[13] Thor Magnusson. 2010. Designing Constraints: Composing and Per-
forming with Digital Musical Systems. Computer Music Journal 34, 4
(2010), 62–73.

[14] Simon Marlow. 2010. Haskell 2010 Language Report.
[15] Eduardo Reck Miranda and Marcelo Wanderley. 2006. New Digital

Musical Instruments: Control And Interaction Beyond the Keyboard (Com-
puter Music and Digital Audio Series). A-R Editions, Inc., Madison, WI,
USA.

[16] Y Orlarey, D Fober, and S Letz. 2004. Syntactical and Semantical
Aspects of Faust. Soft Computing 8, 9 (9 2004), 623–632.

[17] Juan Pineda. 2005. A parallel algorithm for polygon rasterization. In
SIGGRAPH ’88: Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques, Vol. 22. 17–20.

[18] Exequiel Rivas and Mauro Jaskelioff. 2017. Notions of Computation as
Monoids. Journal of Functional Programming 27 (2017).

[19] Atau Tanaka. 2010. Mapping Out Instruments , Affordances , and
Mobiles. In NIME ’10: Proceedings of the Conference on New Interfaces
for Musical Expression. 15–18.

[20] W3C. 2011. Scalable Vector Graphics (SVG).
[21] David Wessel and Matthew Wright. 2002. Problems and Prospects for

Intimate Musical Control of Computers. Computer Music Journal 26, 3
(2002), 11–22.

[22] Dominique Fober Romain Michon Yann Orlarey, Stéphane Letz. 2017.
FAUST Tutorial for Functional Programmers. In FARM 2017: Proceed-
ings of the 5th ACM SIGPLAN International Workshop on Functional
Art, Music, Modelling and Design.

[23] Ryan Yates and Brent A. Yorgey. 2015. Diagrams: a Functional EDSL for
Vector Graphics. In FARM 2015: Proceedings of the 3rd ACM SIGPLAN
International Workshop on Functional Art, Music, Modelling and Design.

[24] Brent A Yorgey. 2012. Monoids: Theme and Variations (Functional
Pearl). In Haskell ’12: Proceedings of the 2012 Haskell Symposium.

	Abstract
	1 Introduction
	2 Overview
	2.1 A Little Programming Language
	2.2 SVG Representation
	2.3 Compilation

	3 SVG Interfaces
	3.1 A Controller DSL
	3.2 Intermediate Compilation

	4 Interfaces in Practice
	4.1 Printing Interfaces with Sensel Morph
	4.2 Controlling Grids with ROLI Blocks

	5 Discussion
	5.1 Related work
	5.2 Future work

	Acknowledgments
	References

