

Vrije Universiteit Brussel

Modular Effects in Haskell Through Effect Polymorphism and Explicit Dictionary Applications:
A New Approach and the μVeriFast Verifier As a Case Study
Devriese, Dominique

Published in:
Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell

DOI:
10.1145/3331545.3342589

Publication date:
2019

License:
CC BY-NC-ND

Document Version:
Proof

Link to publication

Citation for published version (APA):
Devriese, D. (2019). Modular Effects in Haskell Through Effect Polymorphism and Explicit Dictionary
Applications: A New Approach and the μVeriFast Verifier As a Case Study. In Proceedings of the 12th ACM
SIGPLAN International Symposium on Haskell (pp. 1-14). (Haskell 2019 - Proceedings of the 12th ACM
SIGPLAN International Symposium on Haskell, co-located with ICFP 2019). ACM.
https://doi.org/10.1145/3331545.3342589

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 04. May. 2024

https://doi.org/10.1145/3331545.3342589
https://cris.vub.be/en/publications/modular-effects-in-haskell-through-effect-polymorphism-and-explicit-dictionary-applications-a-new-approach-and-the-verifast-verifier-as-a-case-study(a9e21cc2-547f-4c9f-8b11-1b570081cab2).html
https://doi.org/10.1145/3331545.3342589

Modular Effects in Haskell through Effect
Polymorphism and Explicit Dictionary Applications

A New Approach and the µVeriFast Verifier as a Case Study

Dominique Devriese
Software Languages Lab - Vrije Universiteit Brussel - Belgium

dominique.devriese@vub.be

Abstract

In applications with a complex structure of side effects, ef-

fects should be dealt with modularly: components should

be programmed against abstract effect interfaces that other

components can instantiate as required, and reusable effect

patterns should be factored out from the rest of the appli-

cation. In this paper, we study a new, general approach to

achieve this in Haskell by combining effect polymorphism

and the recently proposed coherent explicit dictionary appli-

cations. We demonstrate the elegance and generality of our

approach in µVeriFast: a Haskell-based reimplementation

of the semi-automatic separation-logic-based verification

tool VeriFast. This implementation features a complex in-

terplay of advanced side effects: a backtracking search of

program paths with angelic and demonic non-determinism,

interaction with an underlying off-the-shelf SMT solver, and

mutable state that is either backtracked or not during the

search. Our use of effect polymorphism improves over the

current non-modular implementation of VeriFast, allows us

to nicely factor out the backtracking search pattern as a new

AssumeAssert monad, and enables advanced features involv-

ing effects, such as the non-intrusive addition of a graphical

symbolic debugger based on delimited continuations.

CCS Concepts · Theory of computation → Control

primitives; · Software and its engineering→ Functional

languages; Polymorphism.

Keywords modular effects, Haskell, effect polymorphism,

monads, separation logic, symbolic execution, backtracking

search

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Haskell ’19, August 22ś23, 2019, Berlin, Germany

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6813-1/19/08. . . $15.00

https://doi.org/10.1145/3331545.3342589

ACM Reference Format:

Dominique Devriese. 2019. Modular Effects in Haskell through

Effect Polymorphism and Explicit Dictionary Applications: A New

Approach and the µVeriFast Verifier as a Case Study. In Proceedings

of the 12th ACM SIGPLAN International Haskell Symposium (Haskell

’19), August 22ś23, 2019, Berlin, Germany.ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3331545.3342589

1 Introduction

In this paper, we propose and study an approach to deal

modularly with side effects in Haskell. To motivate and ex-

plain it, we use VeriFast [15] as a case study. This is a semi-

automatic separation-logic-based verification tool for C and

Java programs. Figure 1 shows a C function with pre- and

postconditions in VeriFast syntax. The function takes an in-

teger pointer, increments its value and returns the old value.

The pre- and postconditions of f require exclusive owner-

ship of the memory location, define its value before and after

execution and specify the function result.

To verify components like f, VeriFast uses an approach

based on symbolic executionwith an underlying SMT solver1.

All execution paths of a program are searched in a backtrack-

ing search. During this search, VeriFast keeps track of the

symbolic heap and the path condition. The symbolic heap is

the list of atomic separation logic assertions that are available

for use at the current execution point. When verifying a func-

tion, the symbolic heap is initially filled with the assertions

in the precondition and is updated whenever a statement

is symbolically executed. For example in Figure 1, the sym-

bolic heap would contain just the predicate x 7→ n before

execution of line 5. After line 5, it would additionally contain

y 7→ 5 etc. The path condition is a logical assertion that

tracks purely logical information learned from the execution

path being explored. For example in Figure 1, the path con-

dition will contain n , 15 in the then branch and n = 15 in

the else branch.

Throughout verification, VeriFast uses an SMT solver as

an oracle for logical queries. This solver is incrementally

fed the path condition as an assumption and continuously

asked to verify logical assertions. For example, on line 9

of Figure 1, after the assignment, we have symbolic heap

x 7→ 16 and path condition n = 15. Because the program

1VeriFast uses either Z3 [10] or a simpler, custom-built solver called Redux.

1

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3331545.3342589
https://doi.org/10.1145/3331545.3342589

Haskell ’19, August 22ś23, 2019, Berlin, Germany Dominique Devriese

1 int f(int* x)

2 //@ requires x 7→ ?n

3 //@ ensures x 7→ n+1 &*& result = n

4 {

5 if(*x != 15) {

6 int *y = malloc(1*sizeof(int)); *y = 5;

7 free(y); return (*x)++;

8 } else {

9 *x = 16; return 15;

10 }

11 }

Figure 1. An example program that can be verified using VeriFast.

returns, VeriFast will assert that result = 15 and try to satisfy

the postcondition. Concretely, it will use x 7→ 16 to satisfy

x 7→ n + 1 and verify that result = n. The solver will confirm

result = n and 16 = n + 1 using the assumption n = 15.

Most non-deterministic choices during VeriFast’s back-

tracking search are demonic: verification must separately suc-

ceed for both choices. For example, in Figure 1, VeriFast will

verify the if-statement on lines 5-10 by non-deterministically

choosing the then or else branch. After verifying a branch, it

will backtrack and explore the other, and report success only

if both branches verify. However, when VeriFast has multiple

ways to satisfy an assertion, this choice is made angelically:

VeriFast will simply try all choices until one succeeds and

then continue verification. This choice is angelic: it suffices

that one choice succeeds and no others will be tried. Angelic

and demonic non-determinism have been used to formalise

VeriFast’s operation [16, 35].

VeriFast’s implementation in OCaml has to deal with the

complex interplay of side effects used:

• the backtracking search across angelic and demonic

branches

• the state of the symbolic heap, the current mapping

from program variables to their logical interpretation

• an environment of previously processed function dec-

larations and their contracts

• the state of the underlying SMT solver

• C control effects like return and break statements

• logging and internal statistics gathering

These different effects interact in non-trivial ways. For ex-

ample, mutable state and the underlying SMT solver need

to be rolled back when backtracking over a branch, but logs

and statistics should not be.

To manage these, VeriFast is written in a manual state-

passing, continuation-passing style. Figure 2 shows a sim-

plified excerpt of the actual VeriFast codebase2 and shows

how an if statement is verified. We recommend that you do

not try to understand the code snippet in detail, but simply

2Available as open source: https://github.com/verifast/verifast.

notice the points listed below. First, verify_stmt receives

quite a few arguments 3:

• three continuations: lblenv defines what to do for a

jump to a label, tcont represents the regular contin-

uation and return_cont defines what to do when a

return statement is reached (typically: skip subsequent

statements and verify the function’s postcondition).

• an environment variable (funcmap) that provides infor-

mation about declared functions and their contracts.

• three mutable variables (tenv, h and env) that define

the mappings of variables to their type and their in-

terpretation as logical term, and the current symbolic

heap. Note on line 5, how the continuation tcont is

passed an updated version of env (removing variables

added in the branches). Note also how the two invoca-

tions of verify_block receive the same value for env,

so that, when the first finishes, the environment will

effectively be rolled back before executing the second.

• the statement s to be verified

The manual state- and continuation-passing in Figure 2

generates complexity that is unrelated to the task at hand

(verifying an if-statement), tedious and error-prone. Addi-

tionally, it couples the code to a fixed set of side effects so

that, for example, adding extra backtrackable state requires

refactoring large parts of the codebase. The goal of this paper

is to improve such code by treating effects more modularly.

Specifically, it should be oblivious to effects that it is not

itself concerned with, like state and continuations. Addition-

ally, other code should be free to instantiate the effects in

different ways, for example, adding extra backtrackable state

or delimited continuations (see Section 4.5).

In this paper, we make the following contributions:

• µVeriFast the Problem: a description of the complex

combination of effects with non-trivial interplays in

a real-life application. µVeriFast forms a challenging

benchmark for modular effect frameworks.

• modular effects through effect polymorphism and ex-

plicit dictionary applications: a new, general approach

to achieve modular effects in Haskell by combining

the existing approach of effect-polymorphism with

explicit dictionary applications [38].

• µVeriFast the Solution: a proof-of-concept reimplemen-

tation of VeriFast that solves µVeriFast the Problem

using the proposed approach for modular effects. We

demonstrate how it enables new advanced uses of ef-

fects like the non-intrusive addition of a graphical

debugger based on delimited continuations.

• some secondary contributions like the AssumeAssert

monad, which elegantly factors out VeriFast’s back-

tracking search and turns it into a reusable effect pat-

tern. It offers angelic and demonic non-determinism,

3 We have already removed ten further arguments for simplicity.

2

https://github.com/verifast/verifast

Modular Effects in Haskell through Effect Polymorphism and Explicit Dictionary Applications Haskell ’19, August 22ś23, 2019, Berlin, Germany

1 let rec verify_stmt lblenv funcmap tenv h env s tcont return_cont =

2 match s with

3 | IfStmt (l, e, ss1, ss2) ->

4 let w = check_condition tenv e in

5 let tcont _ h env = tcont tenv h (List.filter (fun (x, _) -> List.mem_assoc x tenv) env) in

6 (eval_h_nonpure h env w (fun h env t ->

7 branch

8 (fun _ -> assume t (fun _ -> verify_block lblenv funcmap tenv h env ss1 tcont return_cont))

9 (fun _ -> assume (ctxt#mk_not t) (fun _ -> verify_block lblenv funcmap tenv h env ss2 tcont return_cont))))

10 | ...

Figure 2. Verifying an if statement in VeriFast’s codebase (simplified excerpt).3

and can be combined with arbitrary underlying back-

trackable effects (specifically mutable state and the Z3

SMT solver).

For presentation, the code from µVeriFast shown in this

paper simplifies the real implementation, included as supple-

mentary material.

2 Modular Effects using Effect
Polymorphism

In this paper, we will achieve modular effects using effect

polymorphism, a widely-used technique that is known under

a variety of names in the Haskell and Scala communities:

MTL-style effects [see, e.g., 9] (after the use of type classes

from the Monad Transformer Library by Liang et al. [24]),

Tagless final [see, e.g., 2, 34] (after Carette et al. [8], who

used a related approach for representing lambda calculi) and

the van Laarhoven free monad [see, e.g., 1, 27] (because it

resembles an encoding of lenses by van Laarhoven [33]).

Consider programs interacting with mutable state through

the MonadState type class:

class Monad m => MonadState s m where

get :: m s

put :: s -> m ()

doubleState :: MonadState Int m => m ()

doubleState = do x <- get

put (x + x)

This MonadState Int m plays the role of an abstract effect

interface that offers effect primitives get and put to read and

write a mutable variable of type s. These primitives produce

side-effecting computations in m that can be combined with

other computations using the Monad primitives return and

bind (>>=) and the do-notation. The program doubleState

is not defined in Haskell’s IO monad or any other particular

monad. Instead, it is effect-polymorphic: it is defined to work

in an arbitrary monad m on the condition that there is an

instance of the type class MonadState Int for m. This means

that other code can invoke doubleState in any monad of its

choosing and provide its own implementation of the effect

primitives in MonadState Int for that monad.

2.1 The Lack of Local Instances

Unfortunately, while effect polymorphism offers modular

effects, it is not fully general and expressive in Haskell. Imag-

ine that we want to invoke doubleState in Haskell’s IO

monad. The function’s MonadState Int m constraint really

only says that the function needs access to a mutable state

variable of type Int. We would like to use the IO monad’s

ML-style mutable references IORef Int to instantiate this

variable:

client :: IO ()

client = do r <- newIORef 0

let put_ x = writeIORef r x

get_ = readIORef r

? -- invoke doubleState with put_ and get_ ?

In the above function client, we allocate a fresh mutable

reference r with initial value 0 and use it to implement func-

tions put_ and get_ that we want to instantiate MonadState

Int with. Unfortunately, this is not possible in Haskell. The

problem is that the mutable reference r exists only locally,

inside the monadic computation. However, in Haskell, an

instance must necessarily be top-level, and as such cannot

refer to local variables like r. As a result, the MonadState

type class is only ever used with other monads like the State

monad (State s a � s -> (a, s)). It cannot be used with

the IO monad, and its physical-memory-backed IORefs.

The restriction to top-level, closed instances is general,

but can be worked around in four ways, and we will discuss

two in detail. The others (reflecting values into types [22, 30]

and the ReaderT pattern [31]) are discussed in Section 6.

2.2 Explicit Effect Dictionaries

The first solution is to avoid type classes. At the cost of some

extra verbosity, we can replace the class MonadState Int m

with a data type StateD Int m:

data StateD s m = StateD { getM :: m s

, putM :: s -> m () }

doubleState :: Monad m => StateD Int m -> m ()

doubleState sd = do x <- getM sd

putM sd (x + x)

3

Haskell ’19, August 22ś23, 2019, Berlin, Germany Dominique Devriese

In other words, by not relying on type class resolution to

pass around effect dictionaries in the background, but doing

it manually instead, we can side-step the restriction above:

client :: IO ()

client = do r <- newIORef 0

let put_ x = writeIORef r x

get_ = readIORef r

doubleState (StateD get_ put_)

This approach is a general solution to achievemodular effects

and standard Haskell. However, manually passing around

dictionaries in real code can be verbose and tedious.

Note, by the way, that a StateD a m value is similar to a

mutable reference of type a in monad m, but more flexible. For

example, we can use a Lens a b (defining how to inspect and

modify a b value inside a values [12]), to convert a StateD

a m into a StateD b m.

lensStateD ::

Monad m => Lens a b -> StateD a m -> StateD b m

2.3 Implicit Effect Dictionaries

We contribute a different way to remove the restriction of ef-

fect polymorphism in Haskell, based on the GHC extension

DictionaryApplications, recently proposed by Winant

and Devriese [38]. This extension removes the restriction of

Haskell type classes mentioned above and allows one to in-

stantiate a type class constraint like MonadState Int mwith

an explicit dictionary. It imposes certain conditions on ex-

plicit dictionary instantiations to preserve desirable Haskell

properties like global instance uniqueness and coherence.

Using this extension, nomodifications to doubleState are

needed to invoke it with an IORef. Instead, we can satisfy the

MonadState constraint with an explicit dictionary of type

MonadState.Dict Int m. The current implementation uses

double parentheses as temporary syntax to denote such an

application (when the extension is enabled).4

{-# LANGUAGE DictionaryApplications #-}

getMonadD :: ∀ m. Monad m => Monad.Dict m

client :: IO ()

client = do r <- newIORef 0

let put_ x = writeIORef r x

get_ = readIORef r

doubleState ((MonadState.Dict

getMonadD get_ put_))

The MonadState dictionary is constructed from an imple-

mentation for get and put, as well as a dictionary for the par-

ent Monad constraint. This parent dictionary is obtained from

regular constraint resolution using a function getMonadD.

4Winant and Devriese [38] use a different syntax for dictionary applications:

doubleState @{MonadState.Dict getMonadD get_ put_}.

In this paper, we consistently use effect polymorphism for

dealing modularly with effects. For most effect interfaces, we

use type classes like MonadState and explicit dictionary ap-

plications. This allows us to keep abstract effect dictionaries

around as type class constraints when we just want to pass

them around regularly (like in doubleState), but turn them

into explicit dictionaries that can be manipulated when we

want to play more complicated tricks (see below).

In some situations, the more verbose explicit dictionar-

ies of the previous section 2.2 are in fact preferable. We do

this, for example, for state dictionaries, because we can then

easily use multiple state variables of the same type at the

same time. In other situations, we avoid implicit effect dic-

tionaries because explicit dictionary applications would not

be accepted for them, often due to limitations of GHC or the

DictionaryApplications extension (see Section 5.2).

2.4 Allocating Fresh Effects

To actually implement an effect, we often steer clear of clas-

sic Haskell monads like State or Writer. Instead, the state

or output effects which those monads implement, can be ob-

tained more efficiently5 and more flexibly on top of physical

hardware memory, as offered by IO or ST.

As we have seen above, Haskell’s standard IO monad

allows dynamically allocating fresh mutable variables as

IORefs. To model this dynamic allocation of fresh mutable

state variables, we use the following AllocD effect interface

(an allocator) or its type class variant MonadAlloc:

data AllocD m = AllocD {

allocM :: ∀ s. s -> m (StateD s m) }

class Monad m => MonadAlloc m where

alloc :: ∀ s. s -> m (StateD s m)

The method allocM in interface AllocD m allocates a fresh

mutable variable with a given initial value and returns a

StateD interface for manipulating it. Explicit dictionary ap-

plications are currently not allowed for MonadAlloc (see

Section 5.2), so we use AllocD instead.

AllocD can be implemented for IO using newIORef:

allocIO :: AllocD IO

allocIO = AllocD allocImp

where allocImp :: s -> IO (StateD s IO)

allocImp v = do r <- newIORef v

return (refToStateD r)

refToStateD :: IORef s -> StateD s IO

refToStateD r = StateD (readIORef r)

(writeIORef r)

The idea of dynamically allocating a fresh instance of an

effect extends to other kinds of effects. For example, the fol-

lowing EnvD interface models a read-only environment vari-

able, and a fresh instance can be allocated using an AllocD:

5Caveat emptor: any efficiency claim in this paper is based purely on our

expectations, not yet on benchmarks.

4

Modular Effects in Haskell through Effect Polymorphism and Explicit Dictionary Applications Haskell ’19, August 22ś23, 2019, Berlin, Germany

data EnvD r m = EnvD { envM :: m r }

allocEnvD ::

Monad m => AllocD m -> r -> m (EnvD r m)

2.5 Local Effects

Using effect polymorphism, functions like doubleState can

be run in the IO monad, without giving the function access

to all possible primitive effects in IO. This removes one of the

reasons for using classic monads like State, namely restrict-

ing the effects that a function can perform. However, we use

such monads also to enable effects locally within a restricted

scope, but remain purely functional toward outside clients.

For example, the purely functional clientPure produces a

value of type Int by invoking our previous doubleState

example with a local mutable variable:

withLocalStatePure ::

s -> (forall m. MonadState s m => m a) -> a

clientPure :: Int

clientPure = withLocalStatePure 0 client'

where client' = doubleState >> get

To obtain this local mutable state variable, clientPure uses

the function withLocalStatePure, which takes an initial

value and the effect-polymorphic computation that needs the

variable. Internally, withLocalStatePure uses the classic

State monad to instantiate the universally quantified m in

the argument computation’s type:

-- evalState :: State s a -> s -> a

withLocalStatePure v cmd = evalState cmd v

In fact, several other monads are designed to offer effects

locally. For example, Launchbury and Peyton Jones [23]’s ST

monad offers ML-like mutable variables locally. A reference

to a mutable variable of type a is represented by an STRef s

a and can be allocated and used (read from/written to) inside

a monad ST s. The monad comes with a function runST that

executes a stateful computation in ST s and returns its result

as a pure value.

runST :: ∀ a. (∀ s. ST s a) -> a

To guarantee that the impurity of the computation cannot

be observed from the outside, and that allocated mutable

references cannot leak, runST’s type ensures that it can only

be applied to functions universally quantified over s.

In our approach, we offer a different API to the same effect:

withLocalAlloc ::

(∀ m. Monad m => AllocD m -> m a) -> a

The idea here is that there’s no reason to expose the user

to the ST monad directly. Instead, in the spirit of effect

polymorphism, we can just require the computation cmp

to be universally quantified over the entire monad it exe-

cutes in. It just needs to know that this monad supports the

MonadAlloc interface. In addition to fitting better into our

effect polymorphism-based approach, this alternative API

has the advantage that it doesn’t expose the user to unnec-

essary detail like the difference between STRef and IORefs,

which needs to be abstracted from again elsewhere [32].

The implementation of withLocalAlloc is very similar

to withLocalStatePure above. We simply instantiate the

effect-polymorphic computation in the ST monad, for which

we can provide an implementation of AllocD in the same

way as for IO before:

allocST :: AllocD (ST s)

withLocalAlloc cmp = runST (cmp allocST)

Another type of effect we will use is exceptions:

class MonadThrow e m where throwM :: e -> m b

As for state, we can locally allow the use of exceptions:

withLocalThrowPure ::

(∀ m. (Monad m, MonadThrow a m) => m a) -> a

This function enables the MonadThrow effect locally, for an

exception type a equal to the result type of the computation.

A remaining limitation in APIs like withLocalStatePure

and withLocalThrowPure is that they only allow us to lo-

cally add effects in computations that are otherwise pure.

In the next, final section about our approach to effects, we

explain how to extend them to locally allow extra effects in

computations that are already impure.

2.6 Lifting Effect Interfaces

Imagine, for example, that we use the MonadThrow effect in

a function inner, and we want to invoke it from a function

outer that should not itself throw exceptions, i.e. all excep-

tions thrown by inner should be caught inside outer. At

the same time, both functions need access to another type

of effects: a StateD Int dictionary representing a mutable

variable of type Int:

inner :: MonadThrow () m => StateD Int m -> m ()

outer :: Monad m => StateD Int m -> m ()

To invoke inner from outer, withLocalThrowPure can-

not be used, because it only supports computations of type ∀

m. (Monad m, MonadThrow a m) => m a, i.e. computations

that only use exceptions. Instead, we can use the following

function withLocalThrow:

withLocalThrow ::

Monad m => (∀ n. (Monad n, MonadThrow a n) =>

LiftD m n -> n a) -> m a

As above, withLocalThrow takes a computation running in

an arbitrary monad n for which MonadThrow is available.

However, unlike withLocalThrowPure, the monad n does

not stand on its own, but is connected to an outer monad

m through an interface LiftD m n, which models a monad

morphism from m to n:

data LiftD m n = LiftD {

liftDM :: ∀ a. m a -> n a }

5

Haskell ’19, August 22ś23, 2019, Berlin, Germany Dominique Devriese

The method liftDM turns a computation in m to one in n.6

With LiftD m n linking the new monad n to the existing

monad m, we can now lift existing effects in m into n:

liftStateD ::

LiftD m n -> StateD s m -> StateD s n

liftStateD liftD sd =

StateD (liftDM liftD (getM sd))

(\v -> liftDM liftD (putM sd v))

This then enables what we set out to do: invoke inner from

within outer by (1) using withLocalThrow to make the

MonadThrow effect available locally in a newmonad n, (2) lift-

ing the existing StateD effect into n and (3) invoking inner

in monad n, with these two effects available:

outer sd = withLocalThrow (\ liftd ->

inner (liftStateD liftd sd))

While this lifting of effects from monad m into nmay seem

tedious boilerplate, there are sometimes good reasons to be

explicit about lifting effects, for example when an underlying

effect can be lifted into the new monad in different ways.

For example, AllocD can be lifted in a standard way along

a LiftD, but in Section 3.2, we will see an entirely different

way to lift an AllocD into a particular monad.

3 Factoring Out the Backtracking Search

Let us now demonstrate our approach for modular effects in

practice using µVeriFast: our Haskell-based reimplementa-

tion of the VeriFast verifier. However, before we do that in

Section 4, this Section first describes an abstraction to cap-

ture VeriFast’s backtracking searchwith angelic and demonic

non-determinism in a modular and separately reusable form.

3.1 Angels and Demons in Retreat...

Essentially, this backtracking search can be described in

terms of the following type class and the five primitive oper-

ations modeled by its methods.

class MonadAssumeAssert m where

branchDem :: ∀ a. m a -> m a -> m a

branchAng :: ∀ a. m a -> m a -> m a

failure :: ∀ a. m a

absurdState :: ∀ a. m a

once :: ∀ a. m a -> m a

First, there are angelic and demonic binary non-deterministic

branch operators, modeled by branchDem and branchAng.

Additionally, a failure primitive indicates that the search

has discovered a failed state. Another primitive absurdState

indicates that the search has reached a contradictory state

that should be considered succesful (because unreachable)

and not explored further. The latter would, for example, be

6In addition to LiftD, withLocalThrow really also provides an UnliftD

m n for lifting more complicated APIs, that do not just produce but also

consume computations in m.

invoked by µVeriFast when it notices that the current ex-

ecution point is not reachable (e.g. the then-branch of an

if(false) statement).

Interestingly, absurdState and failure are, respectively,

neutral elements for branchDem and branchAng. Intuitively,

an always succesful branch will never be demonically chosen

and an always-failing branch will never be angelically cho-

sen. Finally, the once primitive sets a boundary for angelic

branching: once a single succesful state is reached in a com-

putation cmp, once cmp will succeed and forget about any

remaining angelic branches within cmp, i.e. the backtracking

search will not return to those alternative choices even if

subsequent computations reach a failure.

In addition to MonadAssumeAssert, we provide a default

implementation of the backtracking search. It can be used

on top of arbitrary underlying effects and can backtrack

underlying effects at appropriate times during the search.

Backtracking hooks for underlying effects can be provided

by instantiating the following interface:

data BacktrackHooksD m = BacktrackHooksD {

pushBacktrackBoundM :: m ()

, backtrackM :: m ()

, commitM :: m ()

}

Threemethods need to be instantiated: pushBacktrackBoundM

registers an additional backtracking boundary, backtrackM

rolls back effects up to the most recent backtracking bound-

ary and commitM drops the most recent backtracking bound-

ary without rolling back any effects.

Our implementation of MonadAssumeAssert is made avail-

able as a local effect (see Sections 2.5 and 2.6), taking an

instance of BacktrackHoodsD m as a parameter:

withAssumeAssertSimple ::

Monad m => BacktrackHooksD m ->

(∀ n. (Monad n, MonadAssumeAssert n) =>

LiftD m n -> n ()) -> m Bool

Given backtracking hooks for the underlying monad m, this

withAssumeAssertSimple will execute a computation in

another monad n, for which MonadAssumeAssert is imple-

mented. Additionally, like withLocalThrow in Section 2.6,

the computation can use a LiftD m n interface for lifting

operations in the underlying monad m into n. Underneath, n

will be instantiated with amonad transformer inspired by the

LogicT monad of Kiselyov and Shan [22]. For space reasons,

we do not provide further details about this implementation,

but it can be found as part of our implementation.

3.2 Plugging Effects Underneath

Throughout its search of program execution paths, VeriFast

incrementally feeds logical assumptions and queries to an

underlying SMT solver. When the search backtracks, the

solver is told to backtrack its stack of assumptions. µVeriFast

6

Modular Effects in Haskell through Effect Polymorphism and Explicit Dictionary Applications Haskell ’19, August 22ś23, 2019, Berlin, Germany

achieves this using a BacktrackHooksD instance that in-

vokes the appropriate SMT functions:

smtBacktrackD :: MonadSMT m => BacktrackHooksD m

µVeriFast currently supports only one underlying SMT

solver (Z3 by de Moura and Bjùrner [10]), which it interfaces

with through a type class MonadSMT:

class MonadSMT m where

assertTerm :: Term -> m ()

check :: m Bool

{- ... -}

Combining MonadSMT and MonadAssumeAssert, we can im-

plement two pervasive helper functions assume and assert.

The functions invoke the corresponding Z3 operations, but

also check satisfiability/provability. In the case of absurd

assumptions and unprovable assertions, they cut short the

search by unconditionally succeeding resp. failing.7

-- Make the SMT solver believe that a term is true

assume :: (Monad m, MonadSMT m,

MonadAssumeAssert m) => Term -> m ()

assume t = do assertTerm t

sat <- check

unless sat absurdState

isProvable :: (Monad m, MonadSMT m) =>

Term -> m Bool

-- Verify that a term is provable

assert :: (Monad m, MonadSMT m,

MonadAssumeAssert m) => Term -> m ()

assert t = do prv <- isProvable t

unless prv failure

A second type of backtrackable effects that we plug under-

neath the backtracking search is mutable state. To accomo-

date this, we use a dynamic mutable registry of Backtrack-

Hooks, which provides an interface DynBacktrackD m with

a single method registerBTHookM:

data DynBackTrackD m = DynBackTrackD {

registerBTHookM :: BacktrackHooksD m -> m ()

}

Using this mutable registry, we provide a backtracking imple-

mentation of the AllocD interface that registers appropriate

backtrack hooks for every newly allocated mutable variable:

backtrackingAllocD :: Monad m =>

DynBacktrackD m -> AllocD m -> AllocD m

backtrackingAllocD = (implementation omitted)

In fact, we now have two different implementations of the

AllocD interface: for allocating mutable state that is back-

tracking and non-backtracking respectively. As a result, the

µVeriFast code can allocatemutable state variables and choose

to use backtracking or non-backtracking ones as appropriate.

7Note that we use the term assert in the same meaning as C’s assert, i.e.

to verify that a certain sanity condition is true.

4 A Look at the Code

With this tooling in place, we can start building µVeriFast. In

this section, we show and explain a few sections of the code

that are relevant to the treatment of side effects: interpreting

C expressions, C statements, and two symbolic debuggers (a

textual and graphical one).

4.1 Interpreting C Expressions

To verify a C program like the one in Figure 1, we need to ver-

ify and interpret C expressions like *x != 15, free(y) and

(*x)++. These examples already make it clear that C expres-

sions can be effectful and include function calls. They are still

simpler than C statements though, which may additionally

contain control flow primitives like return or break.

Still, interpreting expressions is far from trivial. For exam-

ple, interpreting the expression *x != 15 is only valid when

the current environment maps x to a logical term t , the sym-

bolic heap contains a predicate t1 7→ t2 and the SMT solver

confirms that t1 = t . The result of the interpretation value

will depend on the term t2. The expression (*x)++ does not

even just inspect the symbolic heap, but also modifies it, and

expressions like y += 10 or z = 3 modify the environment.

Interpreting a call like free(y) is only possible if we know

the contract that has been declared for free and all of the

above expressions of course need to be able to fail and re-

port errors. In other words, interpreting an expression may

produce side effects: writing to the current environment and

symbolic heap, reading contracts and reporting errors.

So, let us make interfaces for these effects available to the

function interpExpr. We use the following data types:

data Pred = PointsTo Term Term

type SymHeap = [Pred]

type Environment = Map Ident Term

Atomic separation logic predicates are represented in the

type Pred. Pred only models simple points-to predicates x

7→ y, where x and y are SMT terms Term. Symbolic heaps

(SymHeap) are simply lists of atomic predicates with SMT

terms Term. Finally, environments Environment map vari-

able identifiers of type Ident to SMT terms Term.

The effects we need in interpExpr are then captured by

the following type classes:

class MonadLog String m => MonadAnalysis m where

errorM :: ∀ a. CodeLocation -> String -> m a

contractsS :: StateD (Map Ident Contract) m

class (MonadAnalysis m, MonadSMT m,

MonadAssumeAssert m) => MonadSepC m where

symHeapS :: StateD SymHeap m

impEnvS :: StateD Environment m

The MonadAnalysis method errorM signals a verification

error, and the contractsS state dictionary gives access to

a registry of declared contracts. MonadSepC provides state

dictionaries for the symbolic heap and environment.

7

Haskell ’19, August 22ś23, 2019, Berlin, Germany Dominique Devriese

The function interpExpr is then defined as an effect-

polymorphic function with the constraint MonadSepC m.

Please ignore the MonadDebug m constraint for now; we

will come back to it in Section 4.4.

interpExpr ::

(Monad m, MonadSepC m, MonadDebug m) =>

CExpr -> m (Maybe LValue, Term)

The function takes a C expression in a representation from

the language-c library8, which we use for parsing and type-

checking C code. It interacts with the side effects mentioned

above and returns the result as an SMT term Term. Addition-

ally, for C expressions which are l-values (i.e. values that may

be used as assignee in an assignment), interpExpr returns

an LValue which we use elsewhere to interpret assignments.

The function is defined by case analysis on the expres-

sion AST CExpr. Let us look at some of the cases, to see

how the side effects are produced. Constant expressions are

interpreted trivially, without producing any effects:

interpExpr (CConst cnst) =

return (Nothing, interpConstant cnst)

More interesting is the interpretation of variables, where we

make use of the environment of local variable interpretations

that are available as a mutable state variable:

interpExpr (CVar x info) =

do env <- getM impEnvS

case Map.lookup x env of

Just t -> return (Just (LVVar x), t)

Nothing -> errorM info "Var not found"

We get the current environment using the impEnvS dictio-

nary of type StateD Environment m that we have access

to through MonadSepC m. We then simply return the inter-

pretation of the variable, if any, and fail otherwise.

Also interesting are pointer dereferencing expressions *e:

interpExpr (CUnary op e info) =

do (lv, t) <- interpExpr e

interpUnaryOp info op (lv, t)

interpUnaryOp info CIndOp (_, ptr) =

do PointsTo _ val <-

assertPred (PointsTo ptr DummyPat)

return (Just (LVDeref ptr), val)

interpExprwill first recursively interpret e to a logical vari-

able t and then interpret the indirection operator * using a

second function interpUnaryOp. That function will assert

the presence of an atomic separation logic predicate t 7→ val,

using the function assertPred.9 The latter is returned as

the interpretation result, along with an appropriate LValue.

The function assertPred will first non-deterministically

take an arbitrary predicate from the symbolic heap using a

function takePred, match it against the required arguments

8http://hackage.haskell.org/package/language-c
9The DummyPat is a remnant of a pattern matching system that we have

simplified away.

and return the result. The non-determism used is angelic, so

that it is sufficient if one of the chosen predicates makes the

subsequent matches succeed. As a final example of the use

of side effect interfaces, we take a closer look at takePred:

data MonadPlusD m = (implementation omitted)

select :: [a] -> [(a, [a])]

chooseM :: Monad m => MonadPlusD m -> [a] -> m a

angelicChoice, demonicChoice ::

MonadAssumeAssert m => MonadPlusD m

takePred :: (Monad m, MonadSepC m) => m Pred

takePred = do heap <- getM symHeapS

(p, heap') <-

chooseM angelicChoice

(select heap)

putM symHeapS heap'

return p

This takePred function gets the symbolic heap using the

dictionary symHeapS that is available through the constraint

MonadSepC m. It then uses function select to split the list

into a single atomic predicate and the remaining ones, in all

possible ways, and then uses the function chooseM to non-

deterministically choose one. To do this, chooseM requires

a dictionary of type MonadPlusD. Through the constraint

MonadAssumeAssert m, two implementations of this dictio-

nary are available: angelicChoice and demonicChoice, and

we choose the former. Next, takePred updates the symbolic

heap to remove the chosen predicate and returns it.

We hope the reader agrees that the above code and its

type signatures are elegant and not that hard to follow. Inter-

actions with side effects are only apparent in those functions

that directly use them and they are kept nicely abstract.

Functions with effects are defined in an arbitrary monad m

(i.e. they are effect-polymorphic), but otherwise look quite

standard.

4.2 Function Invocations

Another interesting case is the verification of function invo-

cations, in the function interpFunCall:

localSM :: Monad m =>

StateD r m -> (r -> r) -> m a -> m a

getsM :: Monad m => StateD s m -> (s -> a) -> m a

interpExpr (CCall (CVar f _) args info) =

do res <- interpFunCall info f args

return (Nothing, res)

interpFunCall ::

(Monad m, MonadSepC m, MonadDebug m) =>

CodeLocation -> Ident -> [CExpr] -> m Term

interpFunCall info f args =

do Just (Contract retTy argvars pre post) <-

getsM contractsS (Map.lookup f)

argvals <-

8

http://hackage.haskell.org/package/language-c

Modular Effects in Haskell through Effect Polymorphism and Explicit Dictionary Applications Haskell ’19, August 22ś23, 2019, Berlin, Germany

forM args (\e -> do (_, v) <- interpExpr e

return v)

let cenv = buildEnv argvars argvals

localSM impEnvS (_ -> cenv) $ do

consumeAsn pre

res <- freshValue "result"

localSM impEnvS (Map.insert "result" res)

(produceAsn post)

return res

where buildEnv = ...

Interpreting a function call in VeriFast means (1) looking up

the function’s contract, (2) consuming the function’s precon-

dition and (3) producing its postcondition. In interpFunCall,

we do (1) using contractsS of type StateD (Map Ident

Contract) m: themutable reference to the repository of func-

tion contracts that we have access to through the MonadSepC

constraint. To perform (2) and (3), we must not interpret the

pre- and postcondition under the environment that is active

during the function call, but under an environment where the

pre- and postcondition’s free variables are defined appropri-

ately. Those free variables are the function’s arguments and

the values for them (argvals) can be found by interpreting

the argument expressions of the invocation. We temporarily

activate this environment to consume the precondition using

localSM. The postcondition has an additional result variable

in scope, which we postulate as a fresh logical variable, add

to the environment, and return as the function call’s result

after producing the function’s postcondition.

4.3 Interpreting C Control Flow

To demonstrate how we can specify and pass precisely the

effect interfaces we need, let us take a look at verifying C

statements. The main difference with expressions is that we

need to deal with C control effects: goto, continue, break

and return. The function interpStmt requires interpreta-

tions for these effects in an effect interface MonadCControl:

class MonadCControl m where

labelsM :: Ident -> m ()

continueM :: m ()

breakM :: m ()

returnM :: Term -> m ()

interpStmt ::

(Monad m, MonadSepC m, MonadCControl m,

MonadDebug m) => CStat -> m ()

The implementation of interpStmt is another big case

analysis of the statement at hand. Statements that are just

expressions are simply passed to interpExpr:

interpStmt (CExpr e) = do _ <- interpExpr e

return ()

Notice how the effect interfaces required by interpStmt are

transparently filled in by the ones available for interpStmt,

automatically ignoring the unnecessary MonadCControl.

For an if-statement, we interpret the conditional expres-

sion and demonically branch between the then and else

branches (with appropriate assumptions about the condi-

tional expression’s result):

interpStmt (CIf e s1 s2) =

do (_,t) <- interpExpr e

branchDem (assume t >> interpStmt s1)

(assume (Not t) >> interpStmt s2)

In the case analysis of interpStmt, the control effect inter-

pretations from MonadCControl are used for the appropriate

C statements:

interpStmt (CGoto lbl) = labelsM lbl

interpStmt (CCont) = continueM

interpStmt (CBreak) = breakM

interpStmt (CReturn (Just e)) =

do (_ , v) <- interpExpr e

returnM v

Finally, what’s interesting is how these effects can be im-

plemented by other components. For example, here’s an

excerpt of how we invoke interpStmt from the function

interpFunDef that verifies a top-level function declaration:

interpFunDef params pre post stmt = ...

where

interpFun :: (Monad n, MonadSepC n,

MonadDebug n) => n ()

interpFun =

do mapM_ instantiateParam params

_ <- produceAsn pre

withLocalThrow (\ liftd unliftd ->

interpBody

((liftMonadSepC liftd unliftd

getMonadSepCDict))

((liftMonadDebug liftd

getMonadDebugDict)))

_ <- consumeAsn_ post

leakCheck

interpBody :: (Monad n, MonadSepC n,

MonadDebug n,

MonadThrow () n) => n ()

interpBody = interpStmt ((ccont)) stmt

where returnK ret =

do assignVar "result" ret

throwE ()

notInLoopE = errorM "not in loop!"

gotoK l = (implementation omitted)

ccont = MonadCControl.Dict gotoK

notInLoopE

notInLoopE returnK

interpFunDef will first instantiate the function parameters

with fresh SMT variables and make available assertions from

the function’s precondition. What’s interesting here is how

9

Haskell ’19, August 22ś23, 2019, Berlin, Germany Dominique Devriese

we use withLocalThrow (see Section 2.6) to add the extra

exception effect, and lift other APIs to the new monad using

liftd and unliftd and the functions liftMonadSepC and

liftMonadDebug:

liftMonadSepC :: LiftD m n -> UnliftD m n ->

MonadSepC.Dict m -> MonadSepC.Dict n

liftMonadDebug :: LiftD m n ->

MonadDebug.Dict m -> MonadDebug.Dict n

In addition to LiftD m n, lifting MonadSepC also requires an

UnliftD m n (also provided by withLocalThrow) for lifting

certain operations.

With the MonadThrow interface that is available inside

interpBody, we can then use the throwM effect to escape

when a return statement is reached. Concretely, the MonadCControl

dictionary ccont deals with return this way (after assigning

the return value to the variable result). It throws errors for

breaks (since we’re not in a loop yet) and deals with gotos

in a way that we don’t go into.

4.4 A Console Debugger

When VeriFast complains about missing separation logic

assertions (for example, to satisfy the assumptions of a func-

tion call), it can be useful to inspect or manipulate the state

of the symbolic heap, environment or path condition at a

specific location in the code. VeriFast accomodates this with

a symbolic debugger. The programmer can put a breakpoint

in the code, inspect state, single-step the program, continue

verification or abort. Adding this feature to µVeriFast is a

nice example of modular effects, and in this section and the

next, we discuss how to add a console and a GUI debugger

with only minimal modifications to the interpretation of

expressions and statements.

We start by adding a MonadDebug type class which defines

a hook beforeStmtM. The only modification we make to

already-discussed code is that we invoke this hook before

executing any statement, to check whether a breakpoint has

been reached.

class MonadDebug m where

beforeStmtM :: CodeLocation -> m ()

interpStmt :: (Monad m, MonadSepC m,

MonadCControl m, MonadDebug m) =>

CStat -> m ()

interpStmt s = do beforeStmtM (annotation s)

interpStmt' s

interpStmt' :: (Monad m, MonadSepC m,

MonadCControl m, MonadDebug m) =>

CStat -> m ()

interpStmt' = (cases shown before)

Implementing a debugger then amounts simply to instan-

tiating the MonadDebug constraint for the monad in which

interpStmt is invoked. For example, a trivial debugger can

be defined to just ignore every invocation of the beforeStmtM

hook:

noopMonadDebug :: Monad m => MonadDebug.Dict m

noopMonadDebug =

MonadDebug.Dict (\ _ -> return ())

For a console front-end of µVeriFast, we can implement

a more interesting debugger consoleMonadDebug, which

gives the user a Read-Eval-Print Loop (REPL) for inspecting

µVeriFast’s state:

consoleMonadDebug ::

(Monad m, MonadSepC m) =>

LiftD IO m -> StateD [Int] m ->

MonadDebug.Dict m

consoleMonadDebug lio bpsd =

MonadDebug.Dict beforeStmtM

where beforeStmtM :: CodeLocation -> m ()

beforeStmtM info =

do bpts <- getM bpsd

let break = elem (lineNo info) bpts

when break doDebug

doDebug :: m ()

doDebug = do liftDM lio (putStrLn "> ")

cmd <- liftDM lio getLine

exec cmd

exec :: String -> m ()

exec "fail" = failure

exec "continue" = return ()

exec "heap" = printHeap >> doDebug

exec _ = do liftDM lio (putStrLn "Err?")

doDebug

This console debugger takes a mutable reference bpsd of

type StateD [Int] m to the currently registered breakpoints

(i.e. a list of line numbers). When the MonadDebug hook is

invoked, it checks whether the line number of the current

statement is in this list and if so, starts the debugger REPL.

This loop is then implemented by using the MonadSepC m

effects interface, together with a LiftD IO m interface that

lets us produce arbitrary external IO effects (and particularly

interact with the console).

4.5 A Graphical Debugger

Console interfaces are not to everyone’s liking, so we also im-

plement a GUI debugger as part of µVeriFast’s GUI front-end.

This is a bit harder because that front-end is an asynchro-

nous application. When verification stops at a breakpoint,

we cannot just block for user input and continue verification

when it arrives. Instead, when a breakpoint is reached, we

have to suspend the verification, store its state and update

the GUI to reflect the interrupted state. When user input

arrives through the invocation of a button press handler, we

must then resume verification in the captured state.

10

Modular Effects in Haskell through Effect Polymorphism and Explicit Dictionary Applications Haskell ’19, August 22ś23, 2019, Berlin, Germany

This calls for a form of delimited continuations [13], cap-

tured by the following MonadShift type class:

class MonadShift r m n where

shiftM :: ((a -> m r) -> m r) -> n a

We cannot give a thorough explanation of delimited contin-

uations for space reasons, but essentially, MonadShift m n

expresses that computations in monad n execute in a delim-

ited continuation scope where continuations live in monad

m and have return type r. To produce a computation of type

n a, shiftM :: ((a -> m r) -> m r) -> n a allows us

to suspend and reify the continuation of type a -> m r and

return a result of type m r directly. The continuation of type

a -> m r may be used zero, one or multiple times.

For our GUI debugger, we put the continuation delimiter

around the verification of a source file, and its result will be

of the following VerifyResult m type:

data VerifyResult m = VSuccess

| VFail CodeLocation String

| VPaused (DebugIntf m)

data DebugIntf m = MkDebugIntf {

diContinue :: m (VerifyResult m) }

That is: we return whether the verification was successful,

failed (at a given source location with a given error message),

or paused (i.e. a breakpoint was hit). In the latter case, we

return a value of type DebugIntf m that allows us to continue

the verification.

In terms of this interface, we implement our GUI debugger.

The function guiDebugger takes a mutable reference to the

currently registered breakpoints (as a list of line numbers)

and returns a dictionary for the MonadDebug type class.

guiDebugger ::

(Monad m, Monad n, MonadSepC n,

MonadShift (VerifyResult m) m n) =>

StateD [Int] n -> MonadDebug.Dict n

guiDebugger bpR = MonadDebug.Dict beforeStmtM

where

beforeStmtM :: CodeLocation -> n ()

beforeStmtM info =

do bpts <- getM bpR

let break = elem (lineOf info) bpts

when break doDebug

doDebug :: n ()

doDebug = shiftM (\k ->

return (VPaused (MkDebugIntf (k ()))))

In the beforeStmtM hook, we again check whether the line

number is in the list of breakpoints. If so, we use shiftM

to get the current continuation, and return a VPaused value

that invokes this continuation in the continue callback. This

callback is then appropriately invoked by the GUI.

5 Discussion

Now that we have shown our technical results, this section

takes a step back and discusses our results from a few angles.

5.1 Modular Effects

Our implementation of µVeriFast demonstrates the value of

modular effects. The code described in Section 4 is imple-

mented in terms of abstract effectful interfaces, and remains

oblivious to the precise way that VeriFast’s backtracking

search or other effects are implemented. In fact, the code

was entirely unaffected when we started to run it in a con-

tinuation monad for the GUI debugger, and if we wanted,

there would be no problem using the guiDebugger and con-

soleDebugger together in the same application. It would be

interesting to implement µVeriFast using alternative modular

effect libraries (see Section 6.3) and use µVeriFast’s advanced

effect interactions as a benchmark to compare them.

5.2 Dictionary Applications

As the DictionaryApplications extension by Winant and

Devriese [38] is still new and non-final, it is useful to evaluate

our experience with it. Our use of explicit dictionary appli-

cations for effect interfaces demonstrates that the extension

effectively enables important new Haskell design patterns.

Technically, some lessons can be learned from our use of

the extension, related to the conditions which Winant and

Devriese require on explicit dictionary applications (to pre-

serve the properties of global instance uniqueness (GIU) and

coherence). We ran into a number of cases where the global

uniqueness criterion was overly restrictive and although we

were able to work around the restrictions (sometimes by

just using explicit dictionaries instead), we suggest sound

relaxations of the criterion.

Higher-order roles A restriction in the non-higher-order

role system of GHC [7] leads to an overly conservative

inference for the role of type variables m that are used

within an argument of another type variable. An example

is the argument m of the class MonadAlloc in Section 2.4,

because of how m is used in the type alloc :: s -> m

(StateD s m). This may be solvable by building on the

QuantifiedClassConstraints GHC extension [6, 29].

Simultaneous dictionary applications The current GIU

criterion could deal better with cases where a Haskell func-

tion is explicitly applied to multiple dictionaries simultane-

ously, for example in interpBody from Section 4.3. When re-

garding these applications separately, the second is rejected,

but DictionaryApplications could accept them together

without compromising soundness.

Applying a dictionary for a class but not its parent

Finally, type class constraints can currently only be instan-

tiated together with all of their superclasses. It would be

11

Haskell ’19, August 22ś23, 2019, Berlin, Germany Dominique Devriese

useful for the extension to support instantiating a subclass

but not its parent.

There are also some questions to be looked at in more de-

tail. For example, it is not clear how DictionaryApplications

would work for classes with FunctionalDependencies.

We believe this paper provides strong evidence for the

usefulness of the DictionaryApplications extension, and

hopefully strengthens the case for working it out further.

5.3 Effect Polymorphism

Compared to other approaches to modular effects, our use

of effect polymorphism brings two unique advantages.

First, effect-polymorphic types like ∀ m. (Monad m,

MonadState Int m) => m Bool are not that hard to under-

stand. They only make use of two very common Haskell fea-

tures: parametric polymorphism and monads. To fully under-

stand the types that are at play in some other approaches [20],

it is necessary to understand non-trivial category-theoretical

concepts like free monads and left Kan extensions.

Second, effect-polymorphism in a parametrically polymor-

phic language like Haskell automatically implies parametric-

ity results, i.e. free theorems [37]. This effect parametricity

implies interesting results about how computations remain

independent of the implementation of effect interfaces and

has already been studied by Voigtländer [36].

There are also deep connections with the semantics of

object-oriented languages. Devriese et al. [11] have used

effect parametricity at a semantic level to formalise capability

safety. This language property characterises object-capability

languages, a type of programming language with important

security applications [25].

6 Related Work

In addition to the relatedwork alreadymentioned in previous

sections, we relate our work to other approaches to modular

effects in Haskell.

First, as mentioned in Section 2.1, there are two additional

ways to work around the lack of local instances in Haskell,

when applying effect polymorphism: the ReaderT design

pattern and a technique known as reflection. In sections 6.1

and 6.2, we explain them briefly and the advantages of our

use of dictionary applications, compared to them. Essentially,

this will show that our approach is the first to enable full

use of effect polymorphism in Haskell, without unnecessary

syntactic and runtime overhead.

In Sections 6.3 and 6.4, we look at more distant related

work based on algebraic effects and free monads, and other

ideas.

6.1 The ReaderT Design Pattern

The first alternative is known as the ReaderT design pat-

tern [31]. Essentially, computations are also formulated as

effect polymorphic functions with effect interfaces like our

doubleState from Section 2. However the effects are instan-

tiated differently:

instance MonadState Int

(ReaderT (IORef Int) IO) where

get = do x <- ask

liftIO (readIORef x)

put v = (implementation omitted)

client :: IO ()

client = do r <- newIORef (2 :: Int)

runReaderT doubleState r

Computations are not executed in a monad m, but in ReaderT

env mwhere env is a type that contains all the data necessary

for implementing the effect interfaces.

Essentially, we think the ReaderT pattern can be applied to

the same effect as our DictionaryApplications. However,

it is more difficult to understand, requires more boilerplate

code and sometimes the use of UndecidableInstances. Some

(but not all) boilerplate can be avoided using the recent

DerivingVia extension [5, 14]. While a dictionary appli-

cation directly desugars to a single function application, the

ReaderT will add a function application to every monadic

bind in effect-polymorphic functions, leading to a possible

performance overhead, unless the compiler is able to re-

eliminate those applications.

6.2 Reflection

A second way to bypass the lack of local instances in Haskell,

is based on the reflection library, designed after a proposal by

Kiselyov and Shan [22]. We do not go into details for space

reasons, but this approach also allows to invoke a function

like doubleState with an arbitrary MonadState instance

containing local values. However, it is technically complex

and requires additional boilerplate like spurious newtype

definitions and instances. When more than a single value

is needed in the definition of a (set of) local type instances,

the syntactic overhead is even larger. Additionally, defining

the instances for the newtype wrappers sometimes requires

UndecidableInstances (or technical tricks to avoid it).

6.3 Algebraic Effects and Handlers

Algebraic effects and handlers [3, 26], another approach to

modular effects, offer a way to define and combine effect

interfaces, to define functions that use them and to invoke

those functions with a specific implementation of the effects

(handlers). The approach has been implemented in Haskell

libraries by Kammar et al. [19] and Kiselyov et al. [21].

In these frameworks, effectful functions are not imple-

mented in an arbitrary monad that offers the necessary effect

interfaces (like in our approach), but in a kind of universal

monad: the free monad, parametrised by the effects available.

This free monad is encoded differently in different frame-

works, often using category-theoretical concepts.

12

Modular Effects in Haskell through Effect Polymorphism and Explicit Dictionary Applications Haskell ’19, August 22ś23, 2019, Berlin, Germany

A problem with this approach is that instantiating effects

in several steps leads to several encodings and decodings

of the free monad, and ultimately suboptimal performance,

although people have worked to fix this [39]. Our approach

does not require changing the representation of effectful code

just for instantiating effect interfaces and as such, avoids this

source of suboptimal performance.

It is worth noting that certain problems related to proper

scoping of effect handlers [4, 40] simply do not arise in our

approach, essentially because we pass around effect imple-

mentations through already well-scoped function arguments

and type classes, rather than build a separate mechanism

for dispatching effects. This contrasts, for example, with the

approach by Kiselyov et al. [21], which problematically relies

on runtime type information to dispatch effects.

6.4 Other Related Work

Jaskelioff [18] describes the effects library Monatron, which

uses a form of explicit dictionaries, similar to what we de-

scribed in Section 2.2. He combines an explicit dictionary

like our StateD s m with a companion type class StateM s

m like the following:

class StateM s m where stateM :: StateD s m

Compared to our approach, this means an effectful function

must either take an explicit StateD dictionary argument,

allowing for non-unique and local implementations of the

effect, at the cost of extra bookkeeping to pass around the

explicit dictionary, or use a StateM constraint with no book-

keeping, but no support for non-unique or local implementa-

tions. Jaskelioff also defines a uniform way to lift dictionaries

like StateD s m to a transformed monad t m, which would

be useful for us too, especially if it can support the lifting

over arbitrary monad morphisms supported by us and the

monatron theory [17].

Schrijvers and Oliveira [28] also use monad morphisms

as part of a framework for working with monad transformer

stacks, albeit for quite different purposes.

7 Conclusion

This paper combines effect polymorphism with the recently

proposed DictionaryApplications extension to obtain a

new, general way to deal modularly with effects in Haskell.

We have demonstrated the power of the approach using the

case study of reimplementing VeriFast. The resulting code

is much cleaner and more modular, providing evidence for

the importance of modular effects in real applications, but

also for the practicality of our approach at modular effects.

As a side result, we hope our results encourage someone

to nurture the DictionaryApplications GHC extension to

maturity.

Acknowledgments

We thank Bart Jacobs and Andrey Mokhov for their com-

ments and suggestions on this paper.

References
[1] Aaron Levin. 2016. Extensible Effects in the van Laarhoven FreeMonad.

(Jan. 2016). http://aaronlevin.ca/post/136494428283/extensible-effects-

in-the-van-laarhoven-free-monad

[2] Andreas Hartmann. 2018. Structuring Functional Programs with Tag-

less Final. (June 2018). https://www.becompany.ch/en/blog/2018/06/

21/tagless-final

[3] Andrej Bauer and Matija Pretnar. 2015. Programming with Algebraic

Effects and Handlers. Journal of Logical and Algebraic Methods in

Programming 84, 1 (2015). https://doi.org/10.1016/j.jlamp.2014.02.001

[4] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski.

2019. Abstracting Algebraic Effects. Proc. ACM Program. Lang. 3, POPL

(Jan. 2019), 6:1ś6:28. https://doi.org/10.1145/3290319

[5] Baldur Blöndal, Andres Löh, and Ryan Scott. 2018. Deriving via:

Or, How to Turn Hand-Written Instances into an Anti-Pattern. In

Proceedings of the 11th ACM SIGPLAN International Symposium on

Haskell (Haskell 2018). ACM, New York, NY, USA, 55ś67. https://doi.

org/10.1145/3242744.3242746

[6] Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S.

Oliveira, and Philip Wadler. 2017. Quantified Class Constraints. In

Proceedings of the 10th ACM SIGPLAN International Symposium on

Haskell (Haskell 2017). ACM, New York, NY, USA, 148ś161. https:

//doi.org/10.1145/3122955.3122967

[7] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and

Stephanie Weirich. 2014. Safe Zero-Cost Coercions for Haskell. In

Proceedings of the 19th ACM SIGPLAN International Conference on

Functional Programming (ICFP ’14). ACM, New York, NY, USA, 189ś

202. https://doi.org/10.1145/2628136.2628141

[8] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2009. Finally

Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler

Typed Languages. Journal of Functional Programming 19, 5 (Sept. 2009),

509ś543. https://doi.org/10.1017/S0956796809007205

[9] John A. De Goes. 2018. No More Transformers: High-Performance

Effects in Scalaz 8. (May 2018). http://degoes.net/articles/effects-

without-transformers

[10] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of

Systems (Lecture Notes in Computer Science), C. R. Ramakrishnan and

Jakob Rehof (Eds.). Springer Berlin Heidelberg, 337ś340.

[11] Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Rea-

soning about Object Capabilities Using Logical Relations and Effect

Parametricity. In European Symposium on Security and Privacy. IEEE.

https://doi.org/10.1109/EuroSP.2016.22

[12] Sander Evers, Peter Achten, and Jan Kuper. 2005. A Functional Pro-

gramming Technique for Forms in Graphical User Interfaces. In Im-

plementation and Application of Functional Languages (Lecture Notes in

Computer Science), Clemens Grelck, Frank Huch, Greg J. Michaelson,

and Phil Trinder (Eds.). Springer Berlin Heidelberg, 35ś51.

[13] Mattias Felleisen. 1988. The Theory and Practice of First-Class Prompts.

In Principles of Programming Languages (POPL ’88). ACM. https://doi.

org/10.1145/73560.73576

[14] Andreas Herrmann and Arnaud Spiwack. 2018. Capability: The

{ReaderT} Pattern without Boilerplate. (Oct. 2018). https://www.tweag.

io/posts/2018-10-04-capability.html

[15] Bart Jacobs, Jan Smans, and Frank Piessens. 2010. A Quick Tour

of the VeriFast Program Verifier. In Programming Languages and

Systems. Lecture Notes in Computer Science, Vol. 6461. Springer Berlin

Heidelberg, 304ś311.

13

http://aaronlevin.ca/post/136494428283/extensible-effects-in-the-van-laarhoven-free-monad
http://aaronlevin.ca/post/136494428283/extensible-effects-in-the-van-laarhoven-free-monad
https://www.becompany.ch/en/blog/2018/06/21/tagless-final
https://www.becompany.ch/en/blog/2018/06/21/tagless-final
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/3290319
https://doi.org/10.1145/3242744.3242746
https://doi.org/10.1145/3242744.3242746
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/2628136.2628141
https://doi.org/10.1017/S0956796809007205
http://degoes.net/articles/effects-without-transformers
http://degoes.net/articles/effects-without-transformers
https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.1145/73560.73576
https://doi.org/10.1145/73560.73576
https://www.tweag.io/posts/2018-10-04-capability.html
https://www.tweag.io/posts/2018-10-04-capability.html

Haskell ’19, August 22ś23, 2019, Berlin, Germany Dominique Devriese

[16] Bart Jacobs, Frédéric Vogels, and Frank Piessens. 2015. Featherweight

VeriFast. Logical Methods in Computer Science Volume 11, Issue 3 (Sept.

2015). https://lmcs.episciences.org/1595/pdf

[17] Mauro Jaskelioff. 2009. Modular Monad Transformers. In Programming

Languages and Systems (Lecture Notes in Computer Science), Giuseppe

Castagna (Ed.). Springer Berlin Heidelberg, 64ś79.

[18] Mauro Jaskelioff. 2011. Monatron: An Extensible Monad Transformer

Library. In Implementation and Application of Functional Languages

(Lecture Notes in Computer Science), Sven-Bodo Scholz and Olaf Chitil

(Eds.). Springer Berlin Heidelberg, 233ś248.

[19] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in

Action. In ICFP. ACM.

[20] Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible

Effects. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell

(Haskell ’15). ACM, New York, NY, USA, 94ś105. https://doi.org/10.

1145/2804302.2804319

[21] Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible

Effects: An Alternative to Monad Transformers. In Haskell Symposium.

https://doi.org/10.1145/2503778.2503791

[22] Oleg Kiselyov and Chung-chieh Shan. 2004. Functional Pearl: Implicit

Configurationsśor, Type Classes Reflect the Values of Types. In Haskell

Workshop. ACM, 33ś44.

[23] John Launchbury and Simon L. Peyton Jones. 1994. Lazy Functional

State Threads. In Programming Languages Design and Implementation.

ACM, 24ś35.

[24] Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers

and Modular Interpreters. In Principles of Programming Languages.

ACM. https://doi.org/10.1145/199448.199528

[25] Mark S. Miller. 2006. Robust Composition: Towards a Unified Approach

to Access Control and Concurrency Control. Ph.D. Dissertation. Johns

Hopkins University.

[26] Gordon Plotkin andMatija Pretnar. 2009. Handlers of Algebraic Effects.

In Programming Languages and Systems. Lecture Notes in Computer

Science, Vol. 5502. Springer Berlin Heidelberg, 80ś94.

[27] Russell O’Connor. 2014. Van Laarhoven Free Monad. (Feb. 2014).

http://r6.ca/blog/20140210T181244Z.html

[28] Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and

Views: Virtualizing the Monad Stack. In International Conference on

Functional Programming. ACM, 32ś44.

[29] Ryan Scott. 2018. HowQuantifiedConstraints Can Let Us Put Join Back

in Monad. (March 2018). https://ryanglscott.github.io/2018/03/04/how-

quantifiedconstraints-can-let-us-put-join-back-in-monad/

[30] Austin Seipp. 2013. Reflecting Values to Types and Back. School

of Haskell (Aug. 2013). https://www.schoolofhaskell.com/user/

thoughtpolice/using-reflection

[31] Michael Snoyman. 2017. The ReaderT Design Pattern. (June 2017).

https://www.fpcomplete.com/blog/2017/06/readert-design-pattern

[32] Henning Thielemann. 2013. Mutable Variable. (June 2013). https:

//wiki.haskell.org/Mutable_variable

[33] Twan van Laarhoven. 2009. CPS Based Functional References. (July

2009). https://www.twanvl.nl/blog/haskell/cps-functional-references

[34] Vasiliy Kevroletin. 2018. Introduction to Tagless Final. (Dec. 2018).

https://serokell.io/blog/2018/12/07/tagless-final

[35] Frédéric Vogels. 2012. Formalisation and Soundness of Static Verification

Algorithms for Imperative Programs (Formalisatie en correctheid van

statische verificatiealgoritmes voor imperatieve programma’s). Ph.D.

Dissertation. https://lirias.kuleuven.be/retrieve/204848

[36] Janis Voigtländer. 2009. Free Theorems Involving Type Constructor

Classes: Functional Pearl. In International Conference on Functional

Programming. ACM, 173ś184.

[37] Philip Wadler. 1989. Theorems for Free!. In Functional Programming

Languages and Computer Architecture. ACM, 347ś359.

[38] Thomas Winant and Dominique Devriese. 2018. Coherent Explicit

Dictionary Application for Haskell. In Haskell Symposium.

[39] Nicolas Wu and Tom Schrijvers. 2015. Fusion for Free. In Mathematics

of Program Construction. https://doi.org/10.1007/978-3-319-19797-5_15

[40] Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-Safe Effect

Handlers via Tunneling. Proc. ACM Program. Lang. 3, POPL (Jan. 2019),

5:1ś5:29. https://doi.org/10.1145/3290318

14

https://lmcs.episciences.org/1595/pdf
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.1145/199448.199528
http://r6.ca/blog/20140210T181244Z.html
https://ryanglscott.github.io/2018/03/04/how-quantifiedconstraints-can-let-us-put-join-back-in-monad/
https://ryanglscott.github.io/2018/03/04/how-quantifiedconstraints-can-let-us-put-join-back-in-monad/
https://www.schoolofhaskell.com/user/thoughtpolice/using-reflection
https://www.schoolofhaskell.com/user/thoughtpolice/using-reflection
https://www.fpcomplete.com/blog/2017/06/readert-design-pattern
https://wiki.haskell.org/Mutable_variable
https://wiki.haskell.org/Mutable_variable
https://www.twanvl.nl/blog/haskell/cps-functional-references
https://serokell.io/blog/2018/12/07/tagless-final
https://lirias.kuleuven.be/retrieve/204848
https://doi.org/10.1007/978-3-319-19797-5_15
https://doi.org/10.1145/3290318

	Abstract
	1 Introduction
	2 Modular Effects using Effect Polymorphism
	2.1 The Lack of Local Instances
	2.2 Explicit Effect Dictionaries
	2.3 Implicit Effect Dictionaries
	2.4 Allocating Fresh Effects
	2.5 Local Effects
	2.6 Lifting Effect Interfaces

	3 Factoring Out the Backtracking Search
	3.1 Angels and Demons in Retreat...
	3.2 Plugging Effects Underneath

	4 A Look at the Code
	4.1 Interpreting C Expressions
	4.2 Function Invocations
	4.3 Interpreting C Control Flow
	4.4 A Console Debugger
	4.5 A Graphical Debugger

	5 Discussion
	5.1 Modular Effects
	5.2 Dictionary Applications
	5.3 Effect Polymorphism

	6 Related Work
	6.1 The ReaderT Design Pattern
	6.2 Reflection
	6.3 Algebraic Effects and Handlers
	6.4 Other Related Work

	7 Conclusion
	Acknowledgments
	References

