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Figure 1: Samples of knitted garments designed and customized with our tool, and fabricated on a wholegarment industrial 
knitting machine. (A) Various garment prototypes on a 12 inch mannequin; (B) a glove with lace patterns on its palms; (C) an 
infinity scarf with noisy lace patterns; and (D) a sock with a ribbed cuff. 

ABSTRACT 

This work presents a novel interactive system for simple gar-
ment composition and surface patterning. Our approach makes 
it easier for casual users to customize machine-knitted gar-
ments, while enabling more advanced users to design their 
own composable templates. Our tool combines ideas from 
CAD software and image editing: it allows the composition 
of (1) parametric knitted primitives, and (2) stitch pattern 
layers with different resampling behaviours. By leveraging 
the regularity of our primitives, our tool enables interactive 
customization with automated layout and real-time patterning 
feedback. We show a variety of garments and patterns created 
with our tool, and highlight our ability to transfer shape and 
pattern customizations between users. 
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INTRODUCTION 

Recent advances in textile manufacturing are poised to revolu-
tionize our everyday garments [19], communication capabil-
ities [21], and possibly even our health monitoring [14, 21]. 
The maker community has also found various applications for 
textiles in additive manufacturing [22, 33, 6], made ingenu-
ous uses of programmable textiles [1, 18], and created novel 
processes [17] and low-cost machines that target industrial 
textile manufacturing [23, 34, 24]. This work is specifically 
interested in whole-garment knitting using industrial knitting 
machines [26, 28], which provide digital control over each 
single loop of yarn being created, while requiring minimal 
user intervention during the manufacturing process. 
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Figure 2: Left: the base stitch unit in black, its course con-
nections in purple, and its wale ones in orange. One can think 
of courses as "rows" and wales as "columns". Middle: width 
increase by split stitch. Right: width decrease by merging 
neighboring stitches using move transfers. 

These machines are capable of creating whole garments with 
full customization, but unfortunately their programming is 
complicated and requires skilled experts. Low-level machine 
programs are typically represented as colored needle-time im-
ages (Figure 8) whose pixels are per-needle operations that 
get compiled into machine instructions. Existing commer-
cial softwares also provide garment templates with a set of 
customizable properties (width, length, etc.) for predefined 
shapes (such as gloves, hats, or sweatshirts). However, tem-
plate parameters only modify the garment geometry (known 
as shaping); the surface texture and appearance (known as 
patterning) must be modified through separate tools, or by 
manipulating the local instructions generated from the tem-
plate [26]. 

Our system unifies and simplifies these existing approaches 
within a single workflow, while trying to alleviate two of their 
original limitations: (1) existing templates cannot be com-
posed, which limits their potential to a fixed set of predefined 
shapes, and (2) these templates lack a bidirectional decoupling 
between shaping and patterning, so any alteration of shape 
parameters requires recreating the associated patterns. 

We propose an interactive system to compose parameterized 
knitting primitives similar to knitting templates, while ensur-
ing knittability and allowing continuous user customization 
of both garment shape and patterns. The contributions of our 
work include: 

• A web interface for creating and customizing knitting tem-
plates for everyday garments 

• A domain specific language for patterning 

• A novel layered pattern representation with different resam-
pling behaviours for decoupling shapes and patterns 

Furthermore, we release our web interface and its source code 
to allow the democratization of computer-aided knitting. See 
the project page: http://knitskel.csail.mit.edu. 

BACKGROUND AND RELATED WORK 

We begin with a brief overview of knitted fabric and the mech-
anisms of the knitting machine we use to create it. 

The smallest unit of knitted fabric is a stitch (as illustrated in 
Figure 2). Typically, a stitch is created by pulling a yarn loop 
through a pre-existing stitch; this new loop is later stabilized 

Figure 3: Illustrations of important components of a V-bed 
knitting machine. Top-left: needle beds holding a tubular struc-
ture of yarn across both sides. Bottom-left: a corresponding 
top diagram. Right: example of that top diagram as part of our 
needle bed visualization. 

by having another stitch pulled through it. The neighborhood 
of each stitch defines the local topology of the fabric, and must 
fulfill certain criteria to prevent the fabric from unravelling. 
In this work, we refer to rows of stitches as courses, and 
columns as wales. Every stitch has two course neighbors, 
except when the yarn starts and ends. Regular stitches also 
have two wale neighbors: the preceding stitch it was pulled 
through, and the subsequent one that stabilizes it. However, 
irregular stitches have more or fewer wale connections due to 
increases, decreases, or the yarn’s start and end. 

Our system is targeted at knitting garments on weft knitting 
machines. In particular, we target V-bed machines1, which 
consist of two parallel beds of stitch needles, angled toward 
each other in an inverted V shape. Individual needles can hold 
multiple loops of yarn in their hook, as illustrated in Figure 3. 
They can be actuated as one or multiple carriers bring yarn 
over the beds. The main per-needle operations include knit 
which pulls a loop of yarn through the current ones, tuck which 
adds an open loop in the needle hook, and miss which moves 
the yarn without triggering the needle operation. Furthermore, 
each needle on a given bed has a counterpart that is directly 
across the gap, on the opposing bed; these needle pairs can 
perform a loop transfer, which moves a loop from one bed to 
the other. Although the needle positions are fixed within each 
bed, the lateral offset between the two beds (known as racking) 
can be manipulated. Thus, the counterpart of a given needle 
can change. By combining racking and transfers, loops are 
able to move laterally along the beds. For a detailed review of 
how these machines work, we refer the reader to the knitting 
reference by Spencer [27], the thesis of Underwood [30], and 
the algorithmic review of McCann et al. [15]. 

Knitting As A Service 

Current industrial knitting machines are expensive. Although 
maker projects have attempted to create low-cost versions [23, 
24], we still would not expect users to own such machines be-
cause they require expertise to operate. Just as manufacturing-
grade 3D printing is generally not done at home but through 
a 3D printing service2, this work follows a recent vision of 

1This work uses a Shima Seiki SWG091N2 with 15-gauge needles. 
2 See https://www.shapeways.com/. 
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(a) Full time-needle bed layout (b) Compacted layout for local editing (c) Zoom on local yarn pattern 

Figure 4: The time-needle bed depicts the knitting process over time. We provide a compact version that collapses suspended 
stitches to allow a local composition of primitives instead of the traditional composition over time. By zooming on the layout, we 
can inspect the local patterning operations and the simulated pattern flow. Finally, the user can view either side of the garment. 

knitting as a service3, in which users send their knitting jobs 
to a company, which then ships back their customized knitted 
product. This requires a means for the user to specify their 
custom-made garment, which motivates our work. 

Knitting 3D Meshes 

Several early works have tackled the problem of converting a 
3D mesh to hand knitting instructions such as for plushes [8, 
9]. More recently, Narayanan et al. [16] tackled the automatic 
machine knitting of 3D meshes, and posited a theoretical 
description of machine knittable structures 4. This description 
motivates our shape skeleton. 

We avoid the external 3D modeling step, by building a CAD 
system for whole garment knitting in the traditional sense, 
where we assume modeling is done from scratch. The first 
motivation is that the primitives for garment knitting are less 
various than the diversity of topologies that can be represented 
by general 3D meshes. The second reason is that surface 
patterning requires specifying knitting patterns on top of the 
shape. Texture mapping could allow this on meshes, but it 
introduces several unnecessary challenges [38] and tightly 
couples the pattern with the shape. Instead, we seek to decou-
ple shape from pattern; thus, we use a novel layered pattern 
representation for general graphs. 

Shaping Primitives 

McCann et al. [15] built a similar CAD-like approach, with 
a language and algorithm for the machine knitting of general 
tubular shapes. One of their contributions was the time-needle 
bed visualization (see Figure 4), which we build upon. They 
also introduced machine knitting building blocks (e.g. sheets, 
tubes, short rows), which are manually instantiated onto the 
time-needle bed. Our system uses similar building blocks, but 
provides automatic bed layout. Additionally, we tackle the 
problem of surface pattern customization while allowing the 
continuous editing of both shape and pattern. 

3 See https://ministryofsupply.com/, https://unless.me/. 
4Note that machine knittability, which we require, is more constrain-
ing than hand knittability. 

Modeling Garments and Patterns 

Multiple works have looked at modeling the garment making 
process. Sensitive Couture [29] tackles the specification of 
sewing patterns for woven structures. Other works focus on 
modeling the yarn directly on top of specialized structures 
such as stitch meshes, with applications in realistic rendering 
[10, 37]. More recently, these have been translated to hand 
knittable structures [35, 36]. We build upon a similar stitch unit 
as theirs, but do not use 3D meshes. Instead, we use a multi-
layered 2D embedding that enforces machine knittability and 
allows pattern design similarly to image editing. This allows 
us to reuse the plethora of manually-codified pattern recipes [5, 
3], as well as those directly inferred from images [11]. 

Parametric Design 

Our system takes inspiration from traditional CAD softwares, 
together with novel systems that they have inspired. One 
example is Robogami [25], which combines custom-made 
robot components for easy fabrication. Similarly to the shape-
and volume-authoring tools Antimony [12] and Foundry [32], 
we use composable primitives, and a pattern representation 
based on short function expressions that can be modified by 
the user. 

Domain Specific Language 

Various Domain Specific Languages have been designed to 
tackle dedicated problems, such as shade trees [4] for ren-
dering, or Lindenmayer systems [20] for generating complex 
structures. More recently, the Knitout language [15] proposes 
a set of low-level instructions and a compiler dedicated to 
making machine knitting independent from the machine target. 
Another recent set of instructions [11] targets machine knitting 
of patterns. We introduce a patterning DSL that employs this 
last instruction set within a two-stage process (select + apply) 
inspired by the dataset visualization language, D3.js [2]. 

KNITTING SKELETON OVERVIEW 

In this section, we present a typical workflow session, and then 
elaborate on several individual components and features of our 
system. The following sections detail the shaping primitives 
and patterning DSL, before discussing our user feedback and 
results. For interactive sessions, please see the project page. 
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Figure 5: Sideways view of a compact glove in our system. 
The underlying skeleton graph is highlighted on top, with 
tubular sheet nodes in blue and split nodes in fuchsia. 

Typical Workflow 

Our user starts from a base shape primitive (flat or tubular 
sheet) and modifies its shape parameters (e.g. size, layout, 
seams) by interactively manipulating them on the time-needle 
bed (Figure 4, detailed below). These interactions include 
dragging primitive boundaries for sizing, as well as dragging 
layout elements to change their location. 

The user can also use a contextual menu to directly edit all 
exposed properties. In the global context (no shape selected), 
users can create new shapes and define user parameters (such 
as a glove’s base finger length). While hovering over a shape 
primitive, users can rename it, delete it, or edit any of its 
properties. Finally, by clicking on a shape boundary (called an 
interface), the user can "extend" the given shape by connecting 
it to an available interface with valid matching parameters, or 
by creating a new primitive (which will automatically connect 
to the selected interface, and assume matching parameters). 

After creating the desired shape, the user switches to the pat-
tern editing mode, where the toolbar actions affect individual 
stitches. In this mode, the user can either (1) draw the desired 
pattern directly onto a shape primitive, similarly to a pixel 
editing program, or (2) write pattern programs using our DSL 
in an editor. As the user zooms in/out, we display varying 
levels of information, including the type of pattern operation, 
and the local yarn topology (course and wale connections). 

Finally, the user can visualize the yarn structure with a force 
layout tool, save the resulting skeleton, load a new one, or 
inspect and export the necessary machine code. 

Shape Skeleton 

The recent work of Narayanan et al. [16] showed that any 
shape whose skeleton can be drawn on a plane without self-
intersection can be machine knitted. This motivates our under-
lying shape representation, which is a skeleton graph whose 
nodes are shape primitives, and edges are connections between 
node interfaces, as illustrated in Figure 5. The garment shape 
is defined by the node types, connections and parameters. The 
final surface pattern is defined by pattern layers associated 
with each node, and applied on the stitches locally. Together, 
these produce the final knitted structure. 

By construction, our shape primitives allow for a continuous 
yarn path within each node and across interfaces, thus ensur-
ing knittable skeletons. However, issues can still arise since 

Figure 6: Warnings regarding a long-term dependency that 
would collapse the yarn (left). By highlighting the conflict 
dependencies, the user can more easily fix the pattern (right). 

(1) shape parameters across interfaces may be in conflict (e.g. 
different widths), and (2) user patterns may produce unsound 
structures or put excessive stress on the yarn. We identify such 
problems, but we do not fix them, because there is typically 
no “correct” solution without knowing the user’s intention. In-
stead, we issue warnings (detailed later), and let the resolution 
to the user. 

Time-Needle Bed 

The main visualization onto which the shape skeleton is com-
posed is the time-needle bed. This is a common representation 
for machine knitting [26, 15], illustrated in Figure 4. The 
actual bed layout is automatically computed as the user ex-
tends or modifies the underlying skeleton. This representation 
has two advantages: (1) it directly shows the time process 
followed by the knitting machine, which allows us to produce 
interpretable warnings if the user creates undesirable knitting 
structures (see Figure 6), and (2) it introduces a grid regularity, 
which allows the user to draw complex patterns in a manner 
similar to layered image editing. 

Yarn Interpretation and Simulation 

Our system interprets the yarn path through time to provide 
warnings and errors to the user as they create their shape and 
combine patterns, as shown in Figure 6. The main issues we 
catch are (1) unsafe yarn tension prone to yarn breakage, (2) 
too many yarn loops on a needle, risking pile-up or failed 
operation, and (3) reverse stitches when the opposite bed is 
occupied (e.g. in full-gauge tubular knitting). We provide 
feedback both textually with the types of issue and potential 
fixes, and visually by highlighting the problematic stitches 
together with their conflict dependencies. 

We also provide a force-layout graph simulation [31] as an 
approximate preview of the yarn deformation after knitting, as 
illustrated for a glove in Figure 7. 

Low-Level Machine Code 

Finally, we provide a view to inspect the low-level code that 
is generated for the current layout, as illustrated in Figure 8. 
This allows experienced designers and machine operators to 
inspect the actual program used by the machine. 
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Figure 7: Force-layout simulation to preview the impact of the 
yarn stress forces on the final shape. 

Figure 8: Part of the low-level instructions for a simplified 
version of the glove, to be processed with KnitPaint [26]. The 
x axis corresponds to the needle bed. The y axis corresponds 
to time. The center shows individual machine instructions, 
and the sides include various options. 

SHAPING PRIMITIVES 

Each of our three knitting primitives (Sheet, Joint, and Split) 
play a specific role in the garment’s final shape. We detail 
each primitive and its properties, then provide more details on 
our skeleton editing paradigm. 

As skeleton nodes, all primitives have a name (for visualiza-
tion and pattern references), a pattern, and a gauge, which 
we detail in the next section. All nodes also define a set of 
interfaces which can be connected to other nodes. 

Sheet / Tube 

The Sheet primitive is the base component for knitting any flat 
or tubular structure. Its two main parameters are its length, 
defining the number of courses making up the sheet, and its 
width, defined over the length. While the default configura-
tion is a regular rectangle (sheet) or cylinder (tube), users can 
create more interesting shape profiles through stitch increases 

and decreases (illustrated in Figure 2). These modulate the 
number of stitches on consecutive courses, in order to grow 
and/or reduce the shape over the bed. At a high-level, the user 
can modulate the width as a piecewise linear function over 
the normalized length interval [0;1], yielding non-rectangular 
profiles. If desired, the user can also customize the stitch-
level shaping behavior (i.e. placement of stitch increases and 
decreases) using one of multiple predefined behaviours, or a 
user-provided function that specifies how to allocate wale con-
nections when changing the course width. We provide details 
for these functions in the supplementary material, including 
examples of how the shaping behaviour affects the appearance 
of the yarn with the location of seams. The primitive layout 
can be customized by choosing a specific alignment, which 
impacts both the bed layout and the yarn stress distribution. 
This primitive has two interfaces: the top and the bottom. 

width

le
n
g
th

Bottom Interface 
Top Interface 

Figure 9: A tubular sheet, and the table of its properties 

Joint 

Our Joint primitive captures the second shaping process, called 
short rows, which only knit across a subsection of the current 
course, while suspending the other stitches. These partial 
rows induce bending in the structure, as in a sock heel. A 
Joint represents a collection of such short rows. The user can 
specify the number of short rows, the width of each, and 
their respective alignment. Users can also specify a layout, 
which controls the normalized location of short rows along the 
interface boundaries, i.e. their offset for flat knitting, or the 
rotation for tubular knitting. The interfaces are the same as for 
the Sheet primitive. 

rows

Property Values 

Property Values 

Type Flat, Tubular 
Length Integer 
Width [0;1] ! R>0 

Shaping Uniform, Sides, 
Left, Right, 
Center, Custom 

Alignment Left, Right, 
Center 

Rows Integer 
Width [0;1] ! R>0 

Layout [0;1] or "auto" 
Alignment Left, Right, 

Center 

Bottom Interface 
Top Interface 

Figure 10: Joint primitive as the heel of a sock, and the table 
of its properties 
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restricted in any direction, this primitive can be used both to 
subdivide an interface or to merge multiple interfaces. 

degree=2 Property Values 

Degree Integer 

Layout [0;1]d or "auto" 
Alignment Uniform, 

Left, Right, 
Center 

Folded True or False 

Base Interface 
Branches List[Interface] 

Figure 11: Split primitive between one sheet branching into 
two, and the table of its properties 

Editing Primitive Parameters 

Our system allows multiple interaction strategies. One can 
work exclusively with the abstract skeleton graph, and edit 
parameters using a tabular inspection panel. Alternatively, one 
can drag the mouse to interactively extend the shapes on the 
bed layout. In this approach, more complicated parameters 
can be specified using the contextual menu that allows the 
same fine-grained control as the tabular parameter panel. 

When specifying parameters through the input panel or the 

(a) Knit (b) Purl (c) Tuck 

(d) Miss (e) Move (f) Cross 

Split / Merge 

Finally, our Split primitive allows for more complicated struc-
tures (like gloves) that require topological branching and/or 
merging. It merely consists of a base interface and a set of 
branch interfaces. It has a branching degree together with a 
branch layout. For automatic layouts, the user can also pro-
vide the branch alignment. Furthermore, for tubular bases, 
the branching can be folded (tubular branches) or not (flat 
branches) as illustrated in Figure 12. Flat bases only allow 
flat branches. Finally, since the interface connections are not 

contextual menu, the user can enter either direct numbers, 
or #expressions that introduce global design parameters. 
These are global variables that can be reused across different 
inputs and node parameters, providing a means to expose 
important design parameters (such as a glove’s width or length 
scale). For example, the user could specify the length of a 
glove finger via (#Len + #LenDelta) which introduces two 
parameters, #Len and #LenDelta. Each of these could be 
independently applied for the other finger specifications, and 
any changes to the variable value would be reflected globally. 
These expressions can also refer to node properties with @prop. 
For example, the width of a sheet could be made equal to its 
length using the expression @length. 

PATTERNING 

Given a shape skeleton, our system assembles stitches for each 
of its nodes, and then merges stitch information at the inter-
faces, producing a stitch graph whose nodes are individual 
stitch units (see Figure 2). Initially, the stitch connections 
(course and wale) are defined by the shape primitives. Each 
stitch also includes a pattern operation that describes how to 
modify the stitch with respect to its surrounding neighborhood. 

(a) Tubular branches (b) Flat branches 
Folded = True Folded = False 

Figure 12: Diagram illustrating the difference between folded 
and non-folded splits for a tubular base across the two needle 
beds. The two branches are highlighted with different colors. 

Figure 13: The different stitch operations with 8 × 8 pattern 
illustrations, both as a diagram and a knitted artifact. 

These operations allow the user to design special surface tex-
tures and appearance on top of the shape. 

Pattern Operations 

For the pattern operations of each stitch, we use the instruction 
set of Kaspar et al. [11]. The main difference is that we apply 
those instructions not on a one-sided regular grid, but on the 
stitch graph, which is then projected back to the time-needle 
bed to generate the final low-level machine code. Figure 13 
illustrates the types of pattern operations we support. 

Importantly, our pattern operations do not create or delete 
stitch units. Instead, they modify how individual units are in-
terpreted, either by providing a different operation to the target 
needle (purl or tuck instead of the default knit), or by altering 
the wale connections (miss, move and cross). In the case of 
miss, any previous wale connections of the missed stitch are 
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Category Methods Explanation 

Filtering all(), filter(pred) Stitches that match a logic predicate 
Sets or(x,y), and(x,y), minus(x,y), inverse() Standard operations on sets of stitches 

Indexed wales(rng), courses(rng), select(c, w) Indexed stitches within a range 
Neighborhood neighbors(rng), boundaries() Stitches at some distance from selection 

Named named(), shape(name), itf(name) Stitches located by a named entity 
Masking stretch(grid), tile(grid), img(src) Stitches that match a given grid mask 

Table 1: Our categories of pattern queries with their main methods and usage explanation 

transferred to the subsequent one. Move and cross operations 
change the subsequent wale connection to a neighboring one 
along the next course. 

If a neighboring wale target does not exist (e.g. at the border 
of a flat sheet), then the operation is not applied. Note that 
courses of tubular sheets are treated as cyclic, so a neighboring 
wale connection always exists (possibly on the other bed). The 
system ignores move and cross operations on irregular stitches 
(increase/decrease) to ensure structural soundness. 

Patterning DSL 

To apply pattern operations on the stitch graph, we designed 
a domain specific language in which the user first specifies a 
subset of stitches of interest – the query – onto which they 
can apply a given patterning operation. 

Our types of queries are listed in Table 1, and a subset is illus-
trated in Figure 14. The main query is filter, on which all 
other queries are based (with some specialized implementa-
tions to improve speed). 

Drawing Layers 

All our patterns are synthesized using our DSL. We split the 
pattern specification into a sequence of layers: (1) an initial 
global layer spanning all stitches, (2) varying sequences of 
per-node layers modifying stitches of specific nodes, and (3) 
a final global layer. By default, all base layers are empty and 
we assume the base pattern is a standard knit stitch. 

Users can write their own program, use pre-existing ones, or 
interactively draw node pattern layers in a manner similar to 
image editing softwares that allow pixel-level modifications. 
We preview the impact of the patterns on the wales, as illus-
trated in the right of Figures 4 and 6, where move operations 
displace the upper wale targets. 

Our pattern layers can be exported, imported and resampled 
for different shapes and sizes. The resampling behaviour can 
be specified by using different types of layers. We provide 
three pattern drawing types – singular, scalable and tileable 
– whose behaviours are illustrated in Figure 15. 

Singular Layers 
This is our default drawing mode, which does not resample 
the initial pattern, but simply modifies its location to account 
for the change in size (e.g., by centering the original pattern). 

Scalable Layers 
These layers resample their pattern by nearest neighbor resiz-
ing. In this mode, we do not allow cross operations, which are 

Initial Range of wales . . . of courses 

Area select Union neighbor 

img mask tile mask Filter with noise 

Figure 14: Illustrations of some of the main pattern queries, 
each highlighted on a 30 × 30 flat sheet. 

coupled in paired groups and typically applied with a limited 
local range constraint to prevent yarn breakage. 

Tileable Layers 
These layers resample their pattern by applying a modulo 
operation so as to create a tiling of the original pattern. 

From Drawings to Programs 
Drawings are stored as semi-regular grids of operations, which 
can be empty (for no operation, the default). To apply the 
drawing, we transform it into a basic program that makes 
use of the drawing data together with a resampling function 
depending on the type of layer. Singular layers relocate the 
drawing information, whereas scalable and tileable layers use 
the stretch and tile functions, respectively. 

Half-Gauge Knitting 

For each primitive, the user can choose a desired gauge (ei-
ther full or half ). This property is important because pattern 
operations that modify the side of the stitch operation (regular 
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(a) Pattern (b) Singular behaviour (c) Scalable behaviour (d) Tileable behaviour 

Figure 15: A base 3 × 3 pattern and the different resampling behaviours of each of our layer types. 

(a) Tubular in full gauge. 
width = 10 

(b) Tubular in half gauge. 
width = 5 

Figure 16: Illustration of the gauge parameter. The width is 
modified to keep the same bed support. The half-gauge variant 
uses different offsets between beds to allow reverse stitches. 

vs reverse, or “purl”) can only occur on a given stitch if the 
needle directly across from it (on the opposite bed) is empty. 
In the case of tubular fabric, the opposite bed holds the other 
side, which can lead to conflicts. In such case, half-gauge 
knitting is a typical solution, which consists in knitting on 
every other needle, with both sides offset such that any nee-
dle’s counterpart on the opposite bed is empty, as shown in 
Figure 16. Note that the need for half-gauge depends on both 
the shape and the pattern. Even if it is unnecessary, it may still 
be desirable because it creates looser fabric. Thus, we do not 
automatically choose which gauge to use, but let the decision 
to the user. For full-gauge primitives, we detect conflicting 
patterns and show a warning to suggest switching gauge. 

RESULTS 

Our first results explore the range of garments that are machine-
knittable using our shaping primitives. We then consider the 
use of our different pattern layers, and their behaviors as node 
parameters change. 

Span of Shaping Primitives 

Our first collection of knitted results is illustrated on the 12 
inch mannequin shown in Figure 1, together with adult-size 
versions of a patterned infinity scarf and a ribbed sock. We 
show the individual pieces in Figure 17, each knitted with a 
different yarn color. This includes: 

• a hat using one cylindrical sheet with a narrow closed top 
and a wide open bottom; 

• a scarf with pocket ends, using one main flat sheet and ends 
that are split-converted into cylinders (one end is open to let 
the other end through, and the other is closed as a pocket); 

Figure 17: The individual garment pieces from Figure 1. The 
scarf uses a single-sided part that would curl on itself by 
default. Thus we used simple 2 by 2 ribs to keep it flat. 

• a yoked shirt using one open tube split into three tubes (two 
for the sleeves, one for the main body); 

• sweatpants as a waist tube with a split branching into two 
tubular structures; 

• two socks using a joint for the heel and two tubes, one of 
which narrows down to the toes where it closes. 

Pattern Layers in Action 

The top part of Figure 19 illustrates how shape modifications 
alter two overlapping patterning layers. The background con-
sists of a tileable layer repeating a sequence of left and right 
moves to create lacy holes, whereas the foreground is a scal-
able image mask applying normal knit stitches. As the sheet 
size changes, the layers behave differently: the background 
keeps tiling the same small move sequence, whereas the cat 
foreground expands with the size. The bottom part illustrates 
an extension that includes a pure program layer for the mar-
gin, and two complementary scalable foregrounds layers with 
different stitch operations (knit and purls). 

In Figure 18, we visualize the mesh of a patterned infinity 
scarf, which uses a layer decomposition similar to the tiled 
lace. However, the tiled lace is applied within a program mask 
that makes use of 2D simplex noise to create a random area 
selection. Its boundaries are mapped to regular stitches within 
2 stitches, and to purls from 3 to 4 stitches away. 
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Figure 18: Visualization of the pattern of our infinity scarf (left) with our mesh visualization (center) and a close-up (right). 

Figure 19: Top: impact of shape size on a two-layer pattern. 
The holes are tileable moves from Figure 13. The foreground 
cat is scalable and stretches with the shape. Bottom: a similar 
four-layer pattern with an additional programmatic margin, 
and two scalable foregrounds for different shades of a Corgi. 

Then in Figure 20 we transfer the global hole pattern to two 
nodes of a glove skeleton with open fingers. This figure also 
illustrates the potential impact on shaping that some patterns 

Figure 20: Patterning the glove for the teaser from left to 
right: base shape, cuff in half gauge, half-gauge cuff with a rib 
pattern, and final glove with transferred hole pattern on main 
palm, as well as an additional pattern for the 4 fingers palm. 

have. Here, the cuff of the glove has a constant width that 
matches the palm node. The ribbed cuff shrinks considerably 
even though it is knitted over the same bed width (in half 
gauge). This is the same glove as in Figure 1. 

USER EXPERIENCE 

To verify that our interface could be used by non-expert users 
and receive important feedback, we asked two potential users 
without prior knitting experience to use our system. 

Procedure 

The users were provided a 30 minute introduction to the basic 
operations involved in machine knitting, including the notions 
of shaping and the types of stitches. We also supplied a few 
sample videos of expert user sessions, and an introductory 
document for our user interface. We asked them to complete a 
few tasks: the first ones about patterning, and the later one for 
shape and pattern customization. 

Patterning Task 
For the first subtask, the users were given a base skeleton with 
a single flat sheet, featuring an initial program pattern that 
flattens its margins (to prevent the single-sided fabric from 
curling up). Their task was to draw some additional patterns 
on the sheet. 
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Figure 21: A reference beanie on the left and two customized 
beanies on its right. The rightmost one required a few passes 
to adjust the lace pattern and its tension. 

In the second subtask, we provided examples of lace patterns, 
and asked the users to create their own lace involving at least 
a few move operations. 

For the last subtask, we provided a more complicated template 
of a wristband, which is similar to the pocketed scarf in 17. 
The users had to import a pattern from their previous subtasks 
and apply it on the main part of the wristband. Please see the 
supplementary material for these results. 

Shaping / Patterning Customization Task 
The second task was to customize an adult-size garment of 
their choice, given an initial skeleton. 

Our users chose to customize a beanie and a glove. For the 
beanie, users had to change the shape profile of the top section, 
and optionally modify the pattern of the brim or core sections. 
For the glove, the goal was to change global, shared design pa-
rameters (finger length and width, and/or cuff length) instead 
of directly changing the individual node widths. The corre-
sponding results are shown in Figures 21 and 23. Figure 22 
shows a closeup on the laced beanie and its brim. 

Feedback and Results 

Although none of the users had prior knitting skills, each 
one successfully designed sophisticated, machine-knittable 
structures that we were able to fabricate. Users were surprised 
by their new ability to customize garments, especially larger 
ones (e.g., the beanie). 

During the design process, users cited a mismatch between 
their perception of the garment size (based on our bed visu-
alization), and size of the actual knitted result. This suggests 
that, beyond local editing, it may be worth tuning the relative 

Figure 22: Beanie closeup showing the main section’s lace 
and the curled brim with a knit/purl zigzag. 

size of wales and courses to perceptually match that of the real 
yarn. However, realistic sizing is an open problem, as current 
tension parameters are hand-tuned and must be adapted for 
complicated patterns (e.g., changing the tension impacts the 
garment size substantially). It will require a better simulation 
that takes the yarn tension into account. 

Our users generally found the patterning interface intuitive, 
as the image editing analogy was sufficiently familiar. Still, 
it was difficult for them to reason about the ultimate effect 
of complex lace patterns. Eventually, they discovered that 
the mesh simulation was more helpful to preview the pattern 
impact, and made extensive use of it. They alternated between 
the two views (layout and mesh). Furthermore, one user found 
that complex skeleton constraints could hinder pattern exper-
imentation. Instead, they preferred to design their patterns 
on separate, flat sheets, then import the design onto the final 
structure. These behaviours emerged organically. 

Although our users were allowed to create new shapes, they 
did not actively try to do so in our task setup. This suggests 
that non-experts would likely prefer to start from templates. 
Our tool might also be valuable for professionals, designers 
and other expert users, but we have not validated such cases. 

Knittability Constraints 
Flat patterns were always knitted successfully on the first try. 
However, this was not the case for complex patterns on tubular 
structures, such as for the adult-size garments. 

We show three result beanies, the right one having required 
multiple iterations to work properly. Our machine translation 

Session 1A: Knitting, Weaving, Fabrics
 

UIST '19, October 20–23, 2019, New Orleans, LA, USA

62



Figure 23: Three glove variants. The green one took multiple 
attempts because of the complicated tension requirements 
associated with continuous cross patterns. 

had very few issues, but some patterns triggered complications 
during the knitting process, mainly because of fabric pile-up, 
which arises from non-optimal yarn tension. 

In the case of the gloves, all fully knitted from start without 
pile-up, but we discovered that the sequence of knitting had 
some unexpected impact on the yarn. Fingers are typically 
suspended on the bed before being knitted over to create the 
palm and one user decided to use complex patterns on the 
fingers themselves. This led to previous fingers being exces-
sively stretched while suspended, and the yarn locally broke. 
Finding the appropriate tension was the main complication 
for both the patterned beanie and glove, which required a few 
trial-and-error attempts. We show the evolution of the green 
glove of Figure 23 in the supplementary material. 

DISCUSSION 

We first discuss some of our design decisions, and then go over 
our system limitations, highlighting potential improvements. 

Scope of Our Primitives 

By composing three types of primitives (Sheet, Joint and Split), 
our design space already spans many common garments in-
cluding varieties of gloves, socks, scarves, headbands, hats, 
pants and sweatshirts. The garments which we do not handle 
nicely are traditionally sewed garments such as pullovers with 
Raglan sleeves or drop shoulders. The general challenge is 
specifying continuous interfaces that glue primitives over mul-
tiple courses. We provide further details and an investigation 
of potential solutions in the supplementary material. 

Smarter Pattern Layers 

Our pattern layers are not guaranteed to behave nicely when 
resampled or applied to a shaped primitive. A “correct” be-
haviour is often ill-defined: for example, at the top of a verti-
cally striped hat, should the stripes become thinner or merge 
together? Thus, it is reasonable to defer to the user in such 
scenarios, as we do. A different, recently proposed strategy [7] 
would be to adapt calibrated patterns to the local context. 

Handling Multiple Yarn Carriers 

We do not yet support multiple yarns on the bed at once (e.g., 
for intarsia). However we envision that such specification of 
the yarn can be done similarly to our patterning by additionally 
introducing a stack of yarn at each stitch. The main modifi-
cation would be that yarn tracing would now also involve the 
specification and optimization of the different yarn interac-
tions. This would allow not only intarsia but also functional 
fiber routing, yarn inlays, spacer fabric, and pockets. 

Large-Scale Interactivity 

Our system runs in a browser and can currently remain inter-
active with human-sized gloves, socks and beanies. Patterning 
or shaping full-sized sweaters or sweatpants is challenging 
because of their scale. Computationally, the garments require 
processing a very large amount of stitches. Their size also 
presents challenges for user pattern specification, as simple 
pixel-based operations are insufficient. 

We expect to solve the computational challenge by using hi-
erarchical data structures that do not instantiate all stitches 
but only the required information (e.g., at the boundaries or 
where the size changes). As for the design issue, we assume 
a similar hierarchical process would help. We envision using 
meta-patterns on higher-level stitch representations to be in-
stantiated for the machine. Finally, recent patch-level pattern 
simulation [13] has shown promising interactive results. 

Machine Independence 

Currently, our system exports machine code for a set of specific 
machine targets (Wholegarment® knitting machines [26]). 
However, our design assumptions are that of general V-bed 
machines. Since our system uses very regular course struc-
tures, it should be easy to support exporting Knitout code [15], 
allowing us to potentially target other V-bed machines as well. 

CONCLUSION 

We presented a novel interactive system for composing knitted 
primitives that encompass a large variety of common garments. 
This work also introduced a domain specific language for 
patterning, along with novel pattern layers that enable pattern 
specification akin to image editing, complete with different 
resampling behaviours. Many works follow, including the 
support for multiple yarn carriers, which will allow more 
complex appearance and functional customization. We are 
also interested in optimizing the interactivity using hierarchical 
stitch representations, and providing more realistic simulation. 
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