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Figure 1: GhostAR workflow. To author HRC tasks that achieve time-space coordination, (1) user first authors a human ghost by recording his body 
movement, (2) then using the ghost as a visual reference, (3) author collaborative robot actions. (4) When acting the task, our system’s collaborative 
model captures the body movement as input, maps it with the authored human motion, and outputs the corresponding collaborative robot motion. 

ABSTRACT 
We present GhostAR, a time-space editor for authoring and 
acting Human-Robot-Collaborative (HRC) tasks in-situ. Our 
system adopts an embodied authoring approach in Augmented 
Reality (AR), for spatially editing the actions and program-
ming the robots through demonstrative role-playing. We pro-
pose a novel HRC workflow that externalizes user’s authoring 
as demonstrative and editable AR ghost, allowing for spatially 
situated visual referencing, realistic animated simulation, and 
collaborative action guidance. We develop a dynamic time 
warping (DTW) based collaboration model which takes the 
real-time captured motion as inputs, maps it to the previously 
authored human actions, and outputs the corresponding robot 
actions to achieve adaptive collaboration. We emphasize an 
in-situ authoring and rapid iterations of joint plans without an 
offline training process. Further, we demonstrate and evaluate 
the effectiveness of our workflow through HRC use cases and 
a three-session user study. 
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CCS Concepts 
•Information systems → Spatial-temporal systems; Multi-
media content creation; •Human-centered computing → 
Interactive systems and tools; 

INTRODUCTION 
Robotics has been extensively used to automate a large num-
ber of particular and repetitive tasks with high accuracy and 
throughput in manufacturing environments. The tremendous 
economic and social impacts projected by robotics will be 
likely to expand in our future by infiltrating into broader fields 
in both commercial and consumer markets [37]. Unlike tra-
ditional manufacturing environments, these new segments, 
including medical, health care, and services, usually heavily 
involve human activities in the working environments. Thus, 
enabling robots to co-work with humans in collaborative tasks 
has become a significant pillar of the next generation robotics 
technology. 

A typical human-robot-collaborative (HRC) task involves gen-
erating a joint intention, planning actions, and acting coop-
eratively [10]. In a human-centered task, the joint intention 
usually aligns with humans’ implicit or explicit expressions. 
Explicit communications such as speech and gestures have 
been widely studied for commanding robots [20, 63]. How-
ever, using these modalities may cause inefficiencies and ambi-
guities in spatially and temporally coordinated collaborations 
that require a comprehensive understanding of the contexts. 
On the other hand, embodied demonstrations from humans di-
rectly convey the intentions to the robots. More importantly, to 
avoid programming robots’ behaviors for the highly dynamic 
human-robot interactions, researchers propose programming 
by demonstrations (PbD) to generate task and action plans 
for the robots [17]. Further, to safely and robustly execute 
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the action plans in a coordinated manner, humans and robots 
need to communicate with their status, actions, and intentions 
timely [38]. To this end, we primarily endeavor to explore 
the design of an embodied authoring workflow to support real-
time human motion inference, demonstrating example actions 
to robots and creating joint plans. 

The advents of mobile computing foster the evolution of au-
thoring workflows in an in-situ and ad-hoc fashion [42, 26]. 
However, existing workflows primarily target at pre-defined 
and rigorous tasks where robots operate in isolation and inter-
act with the environment only. To enable novice user-friendly 
PbD in the authoring workflows, we need to support human 
motion capture and inference which traditionally involve a 
motion capture system. Since a body-suit [7] or an external-
camera [3] based capture system requires heavy dependencies, 
demonstrations are often only captured off-line [8]. More-
over, for ad-hoc tasks, demonstrating with users’ bodies is 
preferable [17]. Recently, the emerging augmented/virtual 
reality (AR/VR) technologies, e.g., head-mounted AR/VR 
devices [1, 2], show a strong potential to enable embodied 
authoring [35]. Further, in HRC tasks, robot partners are de-
sired to adapt to and coordinate with humans’ actions. Thus, 
to create a joint action plan, the counterpart motions of the 
robots can only be demonstrated with the humans’ part as 
contexts. In this work, we promote a critical advantage of 
using AR/VR authoring, namely externalizing the users’ body 
asynchronously [41, 69]. This way, the users can always view, 
manipulate, and edit their own recorded actions, and use them 
as contexts when demonstrating the counterpart motions for 
robots. 

We promote an embodied authoring in AR for HRC tasks in 
this work because of the following reasons: (i) realistic vi-
sualization with contextual and spatial awareness, enabling 
creating, editing, and previewing the collaborative flow in-
tuitively; (ii) easy programming with natural embodied in-
teraction through real human demonstration via role-playing 
to establish time-space correspondence; (iii) supporting real-
time motion inference, activity detection, and visual feedback 
on robots’ intents when conducting the HRC. We present 
GhostAR workflow which uses AR with body-tracking to en-
able visual, spatial, and embodied HRC tasking authoring, as 
illustrated in Figure 1. A typical authoring session starts when 
users role-play the human’s actions. We render the recordings 
as AR ghost. Users can freely observe, edit, and infer the 
actions and use it as a reference when role-playing the robot’s 
counterpart actions. Then, users designate correspondences 
between humans’ action plan and the demonstrated actions for 
robots. Further, GhostAR provides visual preview with AR 
simulation in-situ. When users act the HRC tasks, GhostAR 
continues to capture the user’s motion and use it to derive the 
robot’s motion plan. Also, users can refer to the next-step 
guidance and the robot’s intentions with AR visual feedback. 
In summary, we highlight our contribution as follows. 

• A system workflow for authoring human-robot collabora-
tive task through AR ghost as contextual references and 
role-playing with natural embodied interaction. 

• A lead-assist collaboration model that achieves time-
space correlation for the human-lead-robot-assist adaptive 
collaboration task based on dynamic time warping (DTW) 
algorithm. 

• An AR interface and interaction design for human-robot 
ghost creation and visualization, editing, and manipulation, 
previewing and simulation, and guidance throughout a suc-
cessful collaborative action. 

RELATED WORK 

Human-Robot Collaboration Model 
Many cognitive frameworks and computational architectures 
have been proposed for enabling and supporting teamwork 
between humans and robots [65]. One of the keywords in 
human-robot collaboration (HRC) is adaption: a robot inter-
acting with people needs to reason over its uncertainty over 
the human internal state, as well as over how this state may 
change, as humans adapt to the robot [48]. While some previ-
ous work took the approach of human adapting to robot [49], 
and human-robot mutual adaption [52], the largest body of 
current HRC works have been focusing on a lead-assist collab-
oration type and empowering the robot to be an assistant and 
to adapt to human actions. Researchers have presented various 
mathematical models and formulations focusing on task alloca-
tion and communication via goal-oriented controller [61], im-
proving human-robot coordination through cross-training [51], 
and efficient learning with human inference with joint-action 
demonstrations [50]. Other researchers emphasized on robot 
learning methods and frameworks and proposed interactive 
primitive. Along this thread, a series of studies demonstrated 
cooperative task learning with single [8] and multiple [22] 
primitives. Further, probabilistic movement model has been in-
troduced to improve human-robot coordination [44] and action 
recognition [43]. Other alternative authoring and planning-
based methods have been proposed to achieve similar goals. 
For example, Koppula et al. developed a Markov Decision 
Processes (MDP) based model for human-robot-collaboration 
tasks in contextually rich environment [39], while Szafir et 
al. designed three collaborative interfaces to support human-
flying robot collaboration [64]. These work primarily targeted 
at general mathematical solutions and learning methods for 
specific collaborative scenarios. However, it is still challenging 
to achieve applicable human-robot collaboration in real-world 
setups. Most of the HRC tasks were pre-defined and simplified 
versions of intended scenarios [65]. Also, many of these work 
require offline training with pre-capture data, which is not 
desired for on-site HRC. 

On the other hand, our system complements the previous 
works by focusing on providing an in-situ HRC task authoring 
tool. We exploit the initiative of human users and enhance their 
capabilities with embodied interactions and AR interfaces. To 
better support a smooth workflow and rapid iteration of task 
plans, we adopt a real-time process for task authoring and col-
laboration acting without offline training. Taking advantages 
of the AR interface, we also provide active visual feedback 
with spatial and contextual reference so that human and robot 
are always aware of each other during the collaboration. 
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Robot Programming by Demonstration 
Robot programming by demonstration (PbD), also referred 
to as imitation learning, has become a popular method for 
programming and training robots. PbD reduces search space 
complexity for learning, supports natural means of embodied 
user interaction, thus enables flexible and user-friendly robot 
programming and training [11]. A large body of works have 
been done in developing methods and algorithms for learn-
ing individual motions [21, 62, 54] and compound motions 
[47, 19], as well as incremental teaching methods [53, 58]. 
So far, PbD has shown great success in training individual 
robots to do specific tasks with offline data captures. When ap-
plying PbD into collaborative scenarios, additional reference 
is needed since the robot is no longer operating in isolation. 
Instead, robots need to coordinate with the human partner, 
whose uncertainty depends on human’s internal states upon 
actions. To achieve PbD for HRC tasks, previous works pri-
marily relied on two people demonstrating the tasks where 
one of them plays the robot’s role. The human demonstration 
is captured with a motion tracking system offline and fed a 
computational model to generate robot policy at runtime [8, 
22, 44, 66, 67]. The above approach is intuitive to practice 
and has been used in HRC task authoring, including object 
handover and joint manipulation. However, this PbD approach 
is limited to pre-determined and straightforward task author-
ing due to the lack of visual interface for sophisticated editing. 
Moreover, as the offline demonstrations usually happened in 
a controlled lab environment, the collaboration volume was 
constrained, e.g., most of the presented collaboration tasks 
were executed using a stationary robot arm. 

GhostAR, on the other hand, exploits a visual interface and 
displays the captured human motion as ghost images in the 
AR scene. Using the AR ghost as time-space references, users 
can author the HRC tasks by manipulating a virtual avatar 
of the real robot collaborators. We emphasize instantiating 
PbD by supporting embodied authoring in our workflow. Our 
system allows for collaborative tasks authoring of robots with 
various types of configurations. Further, when users perform 
the collaborations with robots, we allow users to use the same 
self-contained AR interface for motion inference. 

Human-Robot Interaction through Augmented Reality 
An AR interface is spatially and contextually aware of the 
surrounding environment by its nature [12]. Thus, it serves 
as an ideal media to bridge the digital interface and physical 
reality. For example, it has been used for visual and spatial 
interactions with robots [29, 14, 36, 15] and smart devices [31, 
32]. AR for human-robot interaction has been widely explored 
across industrial motion planning [23, 24, 18], mobile tele-
operation [30, 40, 29, 36], sequential task planning [45, 42, 
34, 26, 56], and multi-robot controlling [25], analyzing [28], 
and debugging [46]. Previous works primarily treated AR as a 
control interface for robots operating in isolation. While AR 
was explored to display robot’s intent for user visualization 
to achieve better collaboration [27, 68, 59, 55, 9, 16], it has 
not been proposed to empower the entire life-cycle of HRC, 
from task authoring to collaboration acting. To the best of our 
knowledge, GhostAR is the first system that achieves the incor-

poration of AR within a full HRC workflow, enabling naturally 
embodied authoring with context-aware visual programming. 

The key to HRC task authoring is to provide a reference of 
the collaboration partner spatially and temporally during the 
authoring process, which in turn ensures correct time-space 
coordination when the HRC task is in action. By further 
exploring into human-human scenarios, we have found sev-
eral exciting AR works that achieve augmented collaboration 
through interactively reconstructing the surrounding environ-
ment [41], spatially visualizing the collaboration partners [33], 
and demonstratively externalizing user’s body [69]. Informed 
and inspired by these recent works, we introduce a novel ghost 
visualization serving in a human-robot scenario for collabo-
ration reference, authoring, and editing, as well as simulation 
and preview of authored joint action plans. 

DESIGN GOALS 
We have derived the following Design Goals (DG) from the 
design rationale of our approach. The motivation for DGs 
has been extensively discussed in the RELATED WORK. An 
essential requisite for HRC is the adaption between the two 
parties of the collaboration: the human and robot. We chose 
the lead-assist type of HRC due to the scope of this work, 
hence adapting the robot to the human (DG1). Program-by-
Demonstration (PbD) has been considered as one of the easiest 
ways of programming robot behavior through natural body 
movement with a shallow learning curve (DG2). AR can 
supplement PbD with a digital interface, that is in-situ and spa-
tially situated. This enables us to create an authoring interface 
with contextual awareness (DG3) and rich digital visualization 
(DG4). The in-situ nature also promotes fast iteration with 
real-time feedback (DG5). Later we will describe how these 
DGs guide the design of our system. 

DG1: Adapting robot behavior to human. Author human-
lead-robot-assist typed collaborative tasks that are initiated by 
a human, where the robot always act adaptively to the human 
partner’s actions. 

DG2: Programming with natural interaction. Lower the 
barrier for users to effectively program complex HRC tasks, 
with natural body movement and intuitive interactions. 

DG3: Authoring with contextual awareness. Provide spatial 
and contextual awareness that is important for Human-Robot 
task authoring. Both parties need to be aware of each other’s 
position and status, as well as the surrounding environment. 

DG4: Visualizing with realistic simulation. Give active and 
accurate visual feedback about what the user has authored, 
to ensure efficiency and correctness of the authoring through 
realistic simulations. 

DG5: Iterating with real-time feedback. Enable a real-time 
process and rapid iterations from collaborative task authoring 
to action, with no need for offline programming and testing. 

GHOSTAR 

Human-Robot Collaboration Model (lead-assist type) 
It is important to first define the meaning of collaboration in 
our work as it touches a wide range of aspects, even just for 
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tasks between humans and robots. In GhostAR, we essentially 
present a robot programming tool that controls robots’ actions 
based on its human partner’s body movement. In other words, 
the robot collaborates with the human in the sense that it 
must act adaptively according to its human partner (guided by 
DG1). To achieve this, we present a collaboration model that 
is dynamically generated based on the user’s authoring and is 
able to output robot action corresponding to the input human 
motion. 

In a human-lead-robot-assist HRC task, we achieve motion 
coordination by defining user’s action segments first. Our sys-
tem allows users to record their body movement as a Human 
Motion Clip (a sequence of Motion Frames with different 
timestamps) and to use it to create HRC tasks. Note that the 
authored human motion could consist of several meaningful 
movements, and the user can put them into Groups to author 
HRC tasks correspondingly. For example, the human charac-
ter in Figure 2 records the following motion: he/she walks, 
stops, and waves his/her hand, then walks for some distance 
and waves again. The HRC task the user wishes to author is to 
make the robot come over when he first waves, follow him and 
shoot videos for him as he walks, and then leaves when he/she 
waves hand again. To achieve this, the user needs to put the 
two hand wavings and a walking into three Groups and author 
the robot to behave as come over, follow and shoot videos, 
and leave correspondingly in these three Groups. For each 
Group of human motion, our system provides two types of col-
laborative tasks for the user to author. They are Synchronize 
and Trigger tasks. 

• A Synchronize task authors a robot action to take place at 
the same pace of the reference human group. In this type 
of HRC task, robot and human will perform their own task, 
but at the same speed or progress, i.e., if the human moves 
faster, the robot will move faster to keep up, and vice versa. 
This applies to HRC tasks such as joint object manipula-
tion, motion following for lighting or camera shooting, and 
coordinated movements like hand-shaking, etc. 

• A Trigger task authors a robot action to take place after 
the human group. In this type, the robot starts executing 
its authored task right after the human has completed the 
reference group, i.e., human snaps his finger, and the robot 
starts sweeping the floor. This applies to HRC scenarios 
such as sequential joint assembly, and gesture signaling, 
etc. 

Figure 2: Authoring collaborative robot actions using Groups. The user 
first creates Human Motion Clip by acting out the human’s part in the 
HRC tasks. Then, the Human Motion Clip is segmented into different 
Groups to define robot collaboration for Trigger or Synchronize tasks. 

Figure 3: GhostAR collaboration model. The model consists of (1) a 
user-generated HRC TaskSequence and (2) motion mapping algorithm 
based on Dynamic Time Warping (DTW). During the collaborative ac-
tion, this model takes real-time human motion as input and outputs the 
corresponding robot behavior based on DTW progress estimation. 

As for the example in Figure 2, the user will author the come 
over and leave robot action as Trigger tasks for the two hand-
wave Groups, and author the follow and shoot video as a 
Synchronize task for the walk Group. 

So far, the user has been preparing the collaboration by cre-
ating the HRC TaskSequence. As shown in Figure 3, the 
HRC TaskSequence is a list of Groups that represents the au-
thored task in an accessible and manageable manner. Note 
that adjacent ungrouped human Motion Frames will be auto-
matically grouped as Empty Groups. The HRC TaskSequence 
together with the Motion Mapping module, form the collab-
oration model of GhostAR. When the HRC action is started, 
the user needs to repeat his authored motion in the sequential 
order. Meanwhile, our system will activate the first Group and 
start the motion mapping between the real-time captured hu-
man motion and the grouped Human Motion Clip. When the 
mapping progress indicates the current Group is completed, 
our system activates the next one and repeats this process un-
til all Groups in the HRC TaskSequence are completed. For 
a Synchronize task, the system calculates the progress and 
output robot behavior at the corresponding timestamp. For 
Trigger task (which is generally shorter), the system focuses 
on recognizing the completion of the human movement and 
then issues commencement instructions for the authored robot 
actions. Note that Empty Group will be treated the same way 
as a Synchronize Group, for proper progress monitoring and 
activation of the next Group. 

Embodied Authoring with Augmented Reality 
Our system’s interaction workflow is implemented as a state 
machine, where a HRC task is authored with the following five 
modes: Human Authoring Mode, Robot Authoring Mode, 
Observation Mode, Preview Mode, and Action Mode. At the 
beginning of a new task authoring session, a user is first asked 
to choose the robot collaborator(s). Note that in the case of 
simultaneously collaborating with multiple robots, each robot 
will share the same Human Motion Clip but has its own HRC 
TaskSequence. After initialization, the user will be promoted 
to the Human Authoring Mode to create the first Human Mo-
tion Clip. After finishing the creation, the current tasks are 
displayed as AR ghost for visualization and manipulation in 
the Observation Mode. The user uses the cursor to perform a 
Grouping operation, and authors robot tasks for the selected 
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Figure 4: GhostAR system interface. (1) The user first acts out the human part of an HRC task in Human Authoring Mode via embodied movement. (2) 
The human motion is captured and represented as AR ghosts for editing in Observation Mode. (3) Using the human ghosts as the time-space contextual 
reference, the user then authors collaborative robot action in the Robot Authoring Mode. (4) During the Action Mode, the user plays out HRC task 
while following the AR ghost to repeat his previously authored human motion. 

Group in the Robot Authoring Mode. Our system adopts robot 
authoring via manipulating a virtual AR robot, as opposed 
to a real robot. This approach enables easy programming of 
a mobile robot with spatial movement and object interaction 
while using the human ghost as a time-space reference. The 
authored robot behavior will then be displayed as robot ghosts, 
together with human ghosts. The human-robot ghosts form an 
expressive and editable HRC. In the Observation Mode, user 
can choose to enter Preview Mode to visualize the entire HRC 
task simulation with AR ghost animation. Once the user is 
satisfied with the authored task, he/she can act out the authored 
HRC tasks by entering the Action Mode. The system utilizes 
the dynamically generated collaboration model to derive the 
corresponding robot behaviors based on the user’s real-time 
motions. 

Human Authoring Mode. The Human Motion Clip is the 
baseline of the HRC task authoring. It contains the human 
motion that the robot will collaborate with, as well as the 
movement that the user needs to repeat during the Action 
Mode. Guided by DG2, the authoring of the Human Motion 
Clip is achieved through natural embodied movement, where 
the system records the user’s body motion by tracking the 
position and orientation of the AR headset and two hand-held 
controllers. Then the Human Motion Clip will be represented 
by segmented ghost avatars and displayed in the user’s AR 
view, as illustrated in Figure 4-(1). The ghost avatar also plays 
the authored human movement repeatedly as an animation in 
real-time scale for review. To extend the Human Motion Clip, 
the user first needs to trigger the last pose in the recorded clip 
and then act new human motion, which will automatically be 
tailed to the end of the current Human Motion Clip. 

Robot Authoring Mode. Once the Human Motion Clip is 
created, user can pick a segment from it and generate a Group, 
then author a Synchronize or Trigger robot task for it. For each 
selected robot collaborator, there exists a virtual robot avatar 
in GhostAR that mimics the behavior of the real robot. User 
can control the virtual robot, with the hand-held controllers 
and physical movements, to facilitate the robot motion author-
ing. Guided by DG3, we establish the time-space correlation 
between the robot and the human by utilizing the human ghost 
as the contextual reference. For a Synchronize task, the time-
length of the robot clip is equal to that of the human group. As 
the user is authoring robot and progressing, the human ghost 
with the same timestamp will be displayed as AR reference 
to assist the user, as illustrated in Figure 4-(3). The user can 
pause/resume and walk around anytime during the authoring 
process in order to observe and operate the robot avatar from 
the optimal perspective. In terms of a Trigger task, the user 
authors robot actions independently which will be placed af-
ter the Trigger Group. Once robot authoring is finished, the 
authored HRC task will be animating repeatedly, with both 
human and robot ghosts, to visualize and preview the task 
before the user decides to accept or redo (guided by DG4). 

Ghost Visualization and Manipulation. Our system pro-
vides in-situ authoring experience by exploiting the advantage 
of AR interfaces, thus promotes rapid iteration without of-
fline preparation (guided by DG5). In the Action Mode, the 
authored tasks are displayed as AR ghosts for the user to 
preview and manipulate. The ungrouped raw human ghosts 
are displayed as transparent segmented snapshots while the 
grouped ghosts are displayed with Start/End Motion Frames 
with a uniquely assigned color and a floating 3D icon indi-
cating its collaboration type, as illustrated in Figure 4-(2). 
Using the interactive cursor, user can edit the Human Motion 
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Clip and perform operations such as Grouping, unGrouping, 
‘trimming’, etc. If the cursor is pointing at any unGrouped 
raw human ghost, the pointed ghost Human Frame will be 
highlighted. Otherwise, if the cursor is inside a Group, the 
Human-Robot task of that group will animate repeatedly until 
the cursor is moved outside. Note that the user can also enter 
the Preview Mode and visualize the entire task as a continuous 
simulated AR ghost animation. 

Action Mode. The Action Mode is where the user carries out 
the collaboration tasks. In this Mode, the system captures the 
real-time movement of the user and maps it with the recorded 
Human Motion Clip, then issues corresponding instructions 
to drive the robot and perform the collaborative task. To help 
the user repeat his authored motion and alleviate the mental 
burden of memorization, the system provides numerous AR 
guidance to assist the user. As illustrated in Figure 4-(4), our 
system not only projects a dotted trail for the user to follow, 
but also plays the next-to-act Group’s animation to refresh 
the user’s memory. Therefore, the user only needs to focus 
on the current task, and the system is guiding him/her step-
by-step. Besides, our system also provides numeric progress 
information for the user to keep track of him/herself as well 
as the robot’s working status. 

Motion Mapping using Dynamic Time Warping 
We describe how our system achieves motion mapping for 
both Synchronize and Trigger tasks. Essentially, in order to 
recognize the user’s status, we rely on positions of the user’s 
head and both hands which are provided by our AR interface. 
We then introduce DTW to infer the user’s activities using 
the nine degree-of-freedom (DOF) inputs. At the time ti, the 
user’s state is represented by a R9 vector: 

head head head le f t le f t le f t right right right ]Tvti = [x ,y ,z ,x ,y ,z ,x ,y ,zti ti ti ti ti ti ti ti ti 

In this manner, each Human Motion Clip derives a R9 curve 
as: Lrecord = [v1,v2,v3, · · · ,vN ]. And we denote the human 
motion in Group Gi as lGi which is a continuous segment 
within Lrecord . 

To reduce the DOF of the inputs and to keep the most relevant 
information from the raw gesture data lGi , we apply principal 
component analysis (PCA) [13] to project this R9 curve onto 
a R2 plane. A projected curve f Gi 

and a projection matrix 
PGi are derived as well as in Algorithm 1. For each activated 
Group Gi, the real time data vtnow is projected by PGi and then 
compared with the f Gi 

to acquire the corresponding progress 
in Gi. 

Algorithm 1 Calculate Projected Curve and Projection Matrix 

1: procedure PCAPROJECTION(lGi [1 . . .n]) 
2: lGi ← (ΣlGi )/(9∗ n) 
3: V ← (lGi − lGi )(lGi − lGi )

T 

4: Let v1 and v2 be two eigen vectors associated with the 
largest eigen values of V . 

5: output PGi ← [v1, v2]
T 

6: output f Gi 
← PTi lTi 

Algorithm 2 Calculate DTW Distance Matrix 

1: procedure DTWDISTANCEMATRIX(s[1 . . . n],t[1 . . . m]) 
2: D ← array[0 . . .n,0 . . .m] 
3: for i ← 1,n do D[i, 0] ← ∞ 
4: for i ← 1,m do D[0, i] ← ∞ 
5: for i ← 1,n do 
6: for j ← 1,m do 
7: D[i, j] ← ks[i] − t[ j]k + min(D[i − 1, j],D[i − 

1, j − 1],D[i, j − 1]) 
8: return D 

Trigger Task Detection. Assume that an activated Group 
Gi is a trigger Group and we want to determine whether 
the user has finished performing the human motion lGi . We 
first collect the motion that the user has just performed: 
lrealtime = [vtnow−n+1, · · ] where n is the length· ,vtnow−1,vtnow 
of lGi . Then, we get the projected curve f realtime = PGi lrealtime 
and compare it with f Gi 

. This method is close to a conven-
tional human action recognition problem [60]. We use Dy-
namic Time Warping (DTW) algorithm [57] to calculate the 
similarity. DTW is an algorithm to find the alignment between 
two time series data. Given two time series s = [s1,s2, · · · ,sn] 
and t = [t1, t2, · · · , tm] with length n and m, a distance matrix 
D is calculated using Algorithm 2. Each element D[i, j] in the 
distance matrix D is the distance between s[1 : i] and t[1 : j] 
with best alignment. And we define D[n,m] as DTW dis-
tance between s and t, note as < s, t >. In our specific case, if 
< f realtime , f Gi 

> reaches its global minimum, we assume that 
the user finishes performing Gi at the current time. However, 
the future behavior of the user is unavailable, so it is hard to 
identify when the global minimum is achieved. To this end, 
we use a threshold ε to conclude a global minimum given the 
existing behaviors of the user. Basically, if < f realtime , f Gi 

,> 
reaches a local minimum and this minimum value is smaller 
than ε , we assume that this minimum value is the global value 
and report to the system that Gi is triggered by the user. To 
adapt this threshold for different f Gi 

with various lengths, we 
set ε = a ∗ n where a is a fixed coefficient. 

Synchronize Task Progress Estimation. 

If an activated Group Gi is a Synchronize task, we need the 
user’s progress (0% ∼ 100%) in order to temporally coordinate 
the robots’ motions. We propose to compare the the real time 
data lrealtime = [vtstart , · · ] with the sub-sequences· ,vtnow−1,vtnow 
of lGi : lGi [1], lGi [1 : 2], · · · , lGi [1 : n], where tstart is the time 
when Gi is activated. And we derive the user’s progress as 
n ∗ /n if the sub-sequences lGi [1 : n ∗ ] approximates lrealtime the 
most. In other words, we first project lrealtime to f realtime using 
PGi and calculate the DTW distances between f realtime and the 
sub-sequences of f Gi 

: f Gi 
[1], f Gi 

[1 : 2], · · · , f Gi 
[1 : n], noted 

as d1,d2, · · · ,dn. And find n ∗ = argmin1≤i≤n(di). However, 
we note that the scale of di is influenced by the length of the 
sub-sequence f Gi 

[1 : i]. To eliminate this influence, a modified√ 
DTW distance di 

0 = di/ i (i = 1,2, · · · ,n) is introduced. Then 
we determine a sub-sequence f Gi 

[1 : n ∗ ] that is best aligned 
with f realtime while n ∗ is given by n ∗ = argmin1≤i≤n(di 

0), and 
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thus the user’s progress is n ∗/n. Recall the property of DTW 
distance matrix D, d1, d2, · · · ,dn are actually the last row of 
D, so in practice, we use Algorithm 3 to calculate D and n ∗ 
iteratively. 

Algorithm 3 Progress Estimation Using DTW 

1: dold ← array[0 . . .n], dnew ← array[0 . . . n] 
2: for i ← 0,n do dold [i,0] ← ∞ 
3: for i ← 0,n do dnew[i,0] ← 0 
4: while Synchronized Task Si has started do 
5: is updated thenif vtnow 
6: ftnow ← PSivtnow 
7: for i ← 1,n do 
8: dnew[i] ← k f Si 

[i] − ftnow k + min(dnew[i − 
1], dold [i− 1], dnew[i]) √ 

9: n ∗ ← argmin1≤i≤n(dnew[i]/ i) 
10: dold ← dnew 
11: output progress ← n ∗/n 

IMPLEMENTATION 

System Setup and Development 
We build our see-through AR platform by attaching a stere-
ocamera (ZED Dual 4MP Camera (720p)) in front of a VR 
headset (Oculus Rift). Four external Oculus IR-LED Sensors 
track the human body motion with an active working area of 
5mx5m. Two Oculus Touch Controllers enable interactions 
used in the system. The major part of GhostAR software sys-
tem is developed with Unity3D engine and Robot Operating 
System (ROS)[5], including the AR interface and embodied 
interaction, motion recording, and DTW calculation, etc. The 
authored Human Motion Clip and robot clips are recorded at 
the rate of 90Hz. It is worth to note that this prototyped AR 
platform still relies on external tracking and tethered computer, 
which limits the interaction volume. However, with the newly 
developed mobile AR/VR technologies, e.g., Hololens [1] and 
Oculus Quest [2], we believe that implementing GhostAR 
with stand-alone devices would not involve much effort. 

Figure 5: Robot implementation workflow with ROS-Gazebo for realis-
tic back-end simulation and Unity for front-end interaction and visual-
ization. 

Robot Simulation and Prototyping 
We have prototyped several robots, including three physical 
robots (GripperBot, CamBot, Armbot) and a virtual robot 
drone, for use case demonstration and studying the effective-
ness of robot authoring user interaction. The CamBot is an 

omni-mobile robot with a camera mounted. The ArmBot is 
a fixed 6-DOF robot arm (Arduino Tinkerkit Braccio). The 
GripperBot is an omni-mobile robot with the 6-DOF robot 
arm sitting on top of it. As is illustrated in Figure 5, the mobile 
robot base is powered by 3 DC motors (locally controlled by 
Arduino) driven by omni wheels that are capable of moving 
towards any direction while rotating. The robot is equipped 
with an NVIDIA Jetson TX1 Development Kit running ROS 
as the robot’s central controller and with a SICK TiM 561 2D 
LIDAR for SLAM navigation. The robot is powered by four 
LiPo batteries (11.1V, 5000mAh for each battery). During 
the Robot Authoring Mode, in order to deliver realistic vir-
tual robot simulation that closely resembles the dynamics and 
physical behavior of the real robot, we adopt ROS-Gazebo [4] 
as back-end robot simulator, the workflow is illustrated in Fig-
ure 5. In detail, the controller inputs are sent to ROS-Gazebo 
using ROS#-Unity protocol[6] via WiFi communication. ROS-
Gazebo then simulates the motion of the robot under dynamic 
and physical constraints (maximum torque, speed, accelera-
tion, etc). Meanwhile, it simultaneously pushes the real-time 
robot status back to Unity3D where the virtual robot is then 
rendered accordingly in the user’s AR view. In this way, users 
can experience realistic robot manipulation and visualization 
with virtual robot avatars. Within the Action Mode, our collab-
oration model derives the corresponding robot behavior into 
ROS-Gazebo, which then instructs the physical robot to act 
accordingly. 

USE CASE SCENARIOS 
Figure 6 illustrates four use case scenarios of GhostAR. Fig-
ure 6-(1) demonstrates our primary use case, involving the 
human user simultaneously collaborating with two robots for 
both Synchronize and Trigger tasks. In this use case, the hu-
man walks towards the table with a red object in his hand to be 
put onto the table in the designated area. His body motion of 
‘bending over and place the object’ is authored as a Trigger for 
the robot arm to grab the red object and place it into the basket. 
Meanwhile, the human motion when he is walking towards 
the table is authored as a Synchronize task for the CamBot to 
follow and videotape the whole process, in order to get the best 
shooting angle. Figure 6-(2) demonstrates a joint assembly 
task with the ArmBot where the user provides the bottom part 
of the assembly, and the ArmBot grabs the top part and assem-
bles them. The task is authored as a Trigger action and can be 
performed repeatedly. Figure 6-(3) demonstrates a scenario 
where a drone is providing spotlight for the user while he/she 
walks towards the couch, sits down, and puts the round object 
into the container. The entire HRC action is authored as one 
Synchronize task. Figure 6-(4) demonstrates a Synchronize 
hand-shaking scenario where the robot reaches out its gripper 
at the same pace as the human reaches out his/her hand, e.g., 
it pauses if the human pauses, and proceeds when the human 
proceeds. 

USER STUDY 
To evaluate our collaboration model accuracy, robot authoring 
interactivity, and overall usability of our system, we invited 12 
users (11 male, age ranging from 19 to 31) to our three-session 
preliminary user study, with 10 of them from engineering back-
ground and the other 2 from management background. Eight 
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Figure 6: Use cases. (1) Object handover with CamBot videotaping and 
following. (2) Joint assembly with ArmBot. (3) Object manipulation 
with drone providing spotlight. (4) Handshaking with GripperBot. 

users had VR experience while five had AR experience. None 
of the users had prior experiences with our system. The study 
was conducted in a 5mx5m area using only virtual robots (the 
GripperBot and the Drone) for safety concerns. The study 
for each user cost about 2 hours cumulatively and each user 
was paid 20 dollars for compensation. The entire process was 
video recorded for post-study analysis. Each user was given a 
15 min tutorial about the background of the project before pro-
ceeding to the task in session 1. After each session, each user 
was given a survey to answer objective Likert-type questions. 
Each Likert-type item is graded by users from 1 to 5, on the 
usefulness of the feature and the level of agreement. After all 
the sessions, a conversation-style interview was conducted to 
acquire subjective feedback and a standard System Usability 
Scale (SUS) questionnaire was also given to each user. (P = 
participant) 

Session 1: Human Authoring and Motion Mapping 
One of the core features of GhostAR is to recognize the user’s 
body gestures and map it with the previous authoring to output 
the corresponding robot behavior. This is achieved by our 
in-situ generated collaboration model using DTW based algo-
rithm. The first session of the study is designed to evaluate 
this with novice users. 

Figure 7: User study setup. (1) Session 1: Human authoring and motion 
mapping. (2) Session 2: Robot authoring interactivity. (3) Session 3: 
System usability evaluation. 

Procedure. Users were asked to perform a continuous motion 
in the Human Authoring Mode that included six regular ges-
tures (Figure 7-(1)): stand up from a chair (G1), wave hand 
(G2), pick up a virtual item (G3), walk to another place and put 
down the virtual item (G4), bow and reach out to the handles 
of a chair (G5), push the chair a short distance and stand up 
straight (G6). The whole motion series took approximately 
30 seconds. The users then forwarded into the Observation 
Mode and put each of the above gesture into a Trigger Group 
Ti,(i = 1, · · · ,6). Also, the object-moving motion between G3 
and G4, and the chair pushing motion between G5 and G6 are 
Grouped as two Synchronize tasks Si,(i = 1,2), respectively. 
Each user repeated the above process 4 times and all data 
set were recorded for a cross validation: using 1 set of data 
as authoring and 1 set as acting, to acquire large amount of 
evaluation results. For each Trigger task Ti, we collected the 
detection time from the collaboration model, tTi . For each 
Synchronize task Si, we collect the estimated progress at time 
t by the collaboration model instead, noted as PS

est 
i 
(t). The 

end time, tT
G
i 

of each Trigger gesture Gi, as well as the start 
time tstart and end time tend of each Synchronize task Si wereSi Si 
manually labeled as ground truth. 

Evaluation of Trigger task detection accuracy. Figure 8-
(top) shows an example of the DTW distance values of a user 
(P4) in the Action Mode. All 12 users authored 846 valid Trig-
ger tasks in total (6 gestures × 12 comparisons × 12 users), 

Figure 8: Trigger task detection test. Top: DTW distance example from 
P4. Bottom: The distributions of Trigger tasks detection time error. 
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Figure 9: Synchronize task progress estimation. Left: A progress estima-
tion example from P4. Right: The distributions of estimation error. 

840 of which were successfully detected (99.3%). For the 840 
detected Trigger tasks, we calculated the error of detection 
time |tG − tTi | and display its distribution in Figure 8-(Bottom). Ti 
The average of the detection error is 414.8ms (SD. 1052.2ms) 
and 803 Trigger tasks (95.6%) were detected within 1 second 
before or after the user had completed that gesture. To better 
illustrate the Trigger detection accuracy that is associated with 
different gestures, we calculate the 80% medians, which re-
veals the time within which most (> 80%) of the triggers were 
detected: G1 : 375ms,G2 : 358ms,G3 : 857ms,G4 : 685ms,G5 : 
642ms,G6 : 517ms. We observed that the accuracy of detect-
ing the pick-up (G3) and put-down (G4) gesture was lower 
than that of the stand-up (G1) and wave-hand (G2). This is be-
cause of the motion involved in G3 and G4 has less amplitude, 
with only one hand moving in the relatively smaller distance, 
resulting in lower detection accuracy. 

Evaluation of Synchronize task progress estimation. We 
used the timestamp values t to characterize a user’s progress 
in the Synchronize task. The actual progress is defined as 
Pact(t) = (t − tstart)/(tend − tstart) (tstart < t < tend). Figure 9-Si Si Si Si Si Si 

Pest (Left) shows an example of the Pact(t) - (t) curve. For each Si Si 
Synchronize task Si, we uniformly selected 100 data points 

(t) - Pest from the Pact (t) curve (Pact(t) = 1%, 2%, · · · ,100%)Si Si Si 
and calculate the estimation error |Pact(t) − Pest (t)|. All 12 Si Si 
users contributed 14400 data points (2 Synchronize tasks × 
100 data points × 6 comparison × 12 users) in total. The 
distributions of the estimation errors are shown in Figure 9-
(Right). The average of the progress estimation error is 7.31% 
(SD. 7.61%). The 80% medians are 12.24% (object moving) 
and 11.73% (chair pushing), which implies that in most of 
the time (> 80%), the robot will not surpass or fall behind 
a user for more than 1 second considering the fact that the 
Synchronized tasks last between 4 to 7 seconds long. Based 
on our observation during the user study, we suspect that the 
error may come from the minor inconsistency (e.g. irregular 
pause) of the user’s behavior during some of the motions. 

Session 2: Robot Authoring Interactivity 
Another highlighted feature of GhostAR is to author spatially 
and temporally synchronized robot motion with the human 
reference. In this session, we tested the robot interactivity and 
system interface towards authoring a Synchronize HRC task. 

Procedure. A user first defined the human motion ghost by 
traveling through two routes: a straight-line and a circular 
path within the 5mx5m arena. Then we asked the user to 
author two virtual robots to travel alone with the human ghost 
while trying to coincide with the footprint (for the GripperBot) 
and the head position (for the Drone) of the human ghost, as 

Figure 10: Robot authoring interactivity. Top: The distributions of the 
error. Bottom: Average error of novice users and an experienced user. 

illustrated in Figure 7-(2). The authoring data was recorded for 
accuracy analysis, and each user repeated the process twice. 

Result and Discussion. In general, users were able to under-
stand the robot authoring interaction quickly, and all users suc-
cessfully authored the described task. Many users frequently 
use the “pause/resume” feature to adjust themselves for better 
observing and maneuvering perspective during the authoring. 
The histogram in Figure 10-(Top) shows the distributions of 
the robot authoring errors. The average of authoring errors are 
13.9cm (SD. 9.2cm) for the GripperBot moving along straight 
line, 16.0cm (SD. 8.2cm) for the drone moving along straight 
line, 16.1cm (SD. 8.7cm) for the GripperBot moving along a 
circle and 17.5cm (SD. 9.3cm) for the drone moving along a 
circle. Since the users used the robot’s body as reference, and 
the GripperBot and the Drone both have a radius of 25cm, we 
consider that the human ghost and the robot are aligned if the 
captured distance is shorter than 25cm. Based on these criteria, 
we calculated an alignment rate which is defined by the per-
centage of errors which are smaller than 25cm. The values of 
alignment rate are 89.57% (the GripperBot following a line), 
86.87% (the Drone following a line), 84.29% (the GripperBot 
followed a circle) and 81.46% (the Drone following a circle). 
This result indicates that most of the time (> 80%), the users 
were able to author the robot to be precisely aligned with the 
human ghost for this Synchronize task. 

By observing the study and analyzing the results, we find that 
keeping the error below 10cm was generally a hard task for 
regular users, especially for the Drone which has one added 
DOF than the GripperBot. We believe this is mainly because 
the users were not familiar with the kinetic mechanism of the 
robots. Restricted by the physical principals, the robots had 
large inertia and could not strictly follow the users’ authoring 
behaviors as assumed. So that many users tended to overshoot 
while controlling the robots. Additionally, the Drone is always 
swinging due to its aerodynamics properties (simulated by 
ROS-Gazebo), which makes it even harder for maneuvering. 
Besides, the circular route evidently produced more error than 
the straight-line, which we assume is caused by the lack of 
next-position reference and users could not anticipate the time 
when the Ghost made a turn. We also compare the novice 
users with an experienced user who had practiced the author-
ing process five times. And display their average error in 
Figure 10-(Bottom). The result shows that the experienced 
user achieved much better accuracy result than the novice 
users. This indicates that the proposed robot interaction can be 
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easily mastered with a few rounds of practice, and therefore 
better Synchronize performance can be achieved. 

Session 3: System Usability Evaluation 
Here we evaluated the overall usability of our system by asking 
users to author an HRC task, then act out the collaboration. 

Procedure. The users were asked to complete a joint assem-
bly task with the GripperBot, during which the user and the 
robot each picked up one part and met in the middle to put 
assemble. The HRC task consists of a Synchronize action and 
two Trigger actions. As illustrated in Figure 7-(3), the collabo-
ration scenario is described as follow: the users picked up his 
green part, Triggering the robot to pick up the red part; then 
they traveled towards the middle workstation at a Synchronize 
pace; when met, the users put down their parts first, Triggering 
the robot to place its red object and complete the assembly. 

Result and Discussion. All participants were able to success-
fully act out the collaboration task with our system issuing the 
correct robot behavior according to the authoring. The average 
task authoring time for task completion is 2 min 16 s. 

The system feature related Likert-type results collected from 
the 3-session study are shown in Figure 11. After the tutorial, 
participants were generally confident to author the HRC task 
and agreed on the smoothness of our system workflow (Q9: 
avg = 4.25, sd = 0.62). “It’s fast and easy to plan a task, 
just role-plays your action and use the ghost reference to 
play the robot part. (P2)” The timely authoring process and 
rapid iteration were appreciated by the users. “I like how fast 
it is from planning the task to acting it out, encourages me 
to try more. (P4)” We believe the feedbacks indicate that 
our system enables real-time and in-situ authoring, meeting 
our DG5. Users are also impressed with the motion mapping 
accuracy and robustness of our system during the Action Mode. 
“I thought my acting was not that consistent with multiple 
pauses, but surprisingly your system recognized it and issues 
the correct robot behaviors. (P3)” This comment indicates 
that we have achieved robot collaborative adaption in terms of 
coping with human partner’s uncertainty (DG1). 

The embodied authoring and interaction method (referred to 
as ‘role-playing’) is receptive to our participants, for both 
human ghost authoring (Q1: avg = 4.17, sd = 0.94) and robot 
avatar control (Q7: avg = 4.08, sd = 0.79). “Moving a virtual 
robot in AR space was much easier than I thought. (P4)” 
These comments have reflected positively to our DG2. The 
visualization accuracy of the ghost in terms of time-space 
reference is high according to (Q3: avg = 4.5, sd = 0.67). 
Further, the realistic robot simulation used for robot avatar 
interaction and visualization is also generally appreciated (Q6: 
avg = 3.83, sd = 0.94). “That drone was kind of difficult to 
control. But I think the interaction method you provide is super 
realistic. The robot didn’t move to where you were pointing 
to, it moved slowly to the target like a real robot. And for 
the drone, it was swinging and tilting when moving. (P7)” 
We believe these comments confirm the necessity of adopting 
a professional robotics engine (ROS-Gazebo) with realistic 
simulation to enhance the experience, meeting our DG4. 

Figure 11: Likert-type result after the three-session study. 

Survey responses were positive about the AR ghost to display 
the authored task in a spatially situated manner (Q4: avg = 
4.5, sd = 0.52) with intuitive visual representation (Q5: avg = 
4, sd = 0.85). The ghost images are welcomed as a time-space 
context for authoring collaborative robot task (Q8: avg = 4.33, 
sd = 0.78), as well as a visual guidance during the Action 
Mode for successful collaboration execution (Q11: avg = 4.08, 
sd = 1.24) “It’s very interesting like Sci-Fi, when I’m able to 
see what I have done with ghosts. (P3)” The most popular 
feature of our system is the animation preview for the newly 
authored ghost (Q2: avg = 4.25, sd = 0.62) and the entire HRC 
task before action (Q10: avg = 4.58, sd = 0.51). “The ghost 
animation is definitely my favorite part of the system, I can see 
so many potential applications for this technique. (P12)” We 
believe the feedback matches our goal of providing contextual 
aware authoring experience (DG3). The standard SUS survey 
result for the entire study is 80 with a standard deviation of 
6.75, indicating high usability of the system. 

DISCUSSION AND FUTURE WORK 
While users all appreciated the usefulness of AR ghost in 
terms of contextual visualization and task simulation, they 
have almost unanimously raised one interestingly conflicting 
problem. 6 out of 12 users have mentioned in one way or an-
other that, the AR ghosts can occasionally become distracting 
and obtrusive. “There are too many ghosts in front of me when 
I am trying to see and act. (P10)” This feedback emerges 
that after the users get familiar with the system and they start 
feeling not needing the AR guidance all the time. This finding 
brings out an important question when designing such sys-
tems: how shall we balance between demonstrative ghost 
reference and clear authoring view, and provide both for 
the user? While this may be a research question for the future 
endeavor, we have some initial thoughts. A quick fix could be 
giving the user the ability to toggle all the AR ghost manually. 
However, if the user only wants to hide some of the ghost 
images, the added interaction could increase the cognitive load 
of the user. Another potential solution involves intelligently 
detecting the user’s intention and only display the most rele-
vant and needed ghost. For example, during the Action Mode, 
the ghost appears only when the user is about to go off-track. 

In this work, we prototyped our system with see-through HMD 
AR and achieved body externalization with IR-based tracking 
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device. The current hardware setup provides only 3-joints 
tracking (head and two hands), and we utilized only the po-
sition value, resulting in a 9-dimensional input data for our 
collaboration model. Note that this setup is largely limited 
by the currently available hardware platform, and is likely to 
change. For example, future AR-based body tracking tech-
nique is expected to have multiple-joints and provides more 
realistic humanoid ghost. Furthermore, with additional sen-
sory input embedded, such as tactile force feedback, we can 
achieve force-sensitive collaborative authoring with our sys-
tem, such as joint object carrying. 

Although the GhostAR system can detect the user’s motion 
status with fair accuracy, the DTW algorithm we are currently 
using largely relies on user’s consistency in order to achieve 
satisfying performance. As a result, the user in Action Mode 
is constrained to the previously authored motions and has 
very limited flexibility. To tackle this problem in the future, 
our initial guess could be utilizing the state-of-the-art human 
action recognition approaches, such as probabilistic methods 
and deep neural networks, to capture the critical features in 
the user’s motion. Thus granting more freedom to the user 
and enabling for intuitive authoring and acting behavior while 
maintaining collaborative accuracy. 

It is worth emphasizing that GhostAR is an HRC task authoring 
and acting platform designed as a complimenting workflow 
for the more advanced human-robot-collaborative learning 
frameworks, as discussed in the Related Work section. Our 
system can be applied to many other HRC models specializing 
in different applications, to achieve a higher level of collab-
orative intelligence while empowering users with real-time, 
spatially situated visual task authoring capability. 

CONCLUSION 
We have presented GhostAR, a human-robot-collaborative task 
authoring system featuring role-playing embodied interaction 
and contextually situated visual editing. In this paper, we 
have demonstrated how an AR interface can be synergistically 
integrated with embodied authoring to create elevated HRC 
experience. We have proposed essential guidelines for HRC 
authoring system design, highlighting 1) robust motion adap-
tion, 2) natural embodied interaction, 3) contextual authoring 
reference, 4) realistic visual simulation, and 5) fluid real-time 
iteration. Our three-session system evaluation received posi-
tive results, indicating that the proposed system has reached 
the design goals, while also unveiling the potential directions 
for future endeavors. GhostAR has created a brand new per-
spective to solve the balancing problem between sophisticated 
functionality and intuitive interaction in an adaptive collabora-
tion context, thus offering future inspirations to the HCI and 
HRI community. 
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