Check for
Updates

Experiences from scaling scale Science Gateway operations

Suresh Marru
smarru@iu.edu
Science Gateway Research Center
Indiana University
Bloomington, IN

Sudhakar Pamidighantam
pamidigs@iu.edu
Science Gateway Research Center
Indiana University
Bloomington, IN

ABSTRACT

Science gateways are distributed computing systems that provide
science-centric, end-user environments that simplify and expand
the use of scientific software and data on diverse scientific software
on backend resources. In this poster we describe the experiences of
using a common software platform to host "Software as a Service”
Science Gateways.

CCS CONCEPTS

« Computing methodologies — Distributed programming lan-
guages; « Applied computing — Service-oriented architec-
tures; IT architectures; « Software and its engineering — Soft-
ware design tradeoffs.

KEYWORDS

Distributed Computing, Science Gateways, Apache Airavata

ACM Reference Format:

Suresh Marru, Marlon Piece, Eroma Abeysinghe, Sudhakar Pamidighantam,
Marcus Christie, and Dimuthu Wannipurage. 2019. Experiences from scaling
scale Science Gateway operations. In Practice and Experience in Advanced
Research Computing (PEARC °19), July 28-August 1, 2019, Chicago, IL, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3332186.3333159

1 INTRODUCTION

Science Gateways provide a crucial user-centric and science-centric
point of entry to the collection of computing, storage, and soft-
ware that are used to support science and commonly referred to
as cyberinfrastructure (CI) [3]. Over the past two decades, Science
Gateways have dramatically increased cyberinfrastructure usage
and accessibility for scientists and educators around the world. Gate-
ways provide a federating bridge over cyberinfrastructure spanning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7227-5/19/07...$15.00
https://doi.org/10.1145/3332186.3333159

Marlon Piece
marpierc@iu.edu
Science Gateway Research Center
Indiana University
Bloomington, IN

Marcus Christie
machrist@iu.edu
Science Gateway Research Center
Indiana University
Bloomington, IN

Eroma Abeysinghe
eabeysin@iu.edu
Science Gateway Research Center
Indiana University
Bloomington, IN

Dimuthu Wannipurage
dwannipu@iu.edu
Science Gateways Research Center
Indiana University
Bloomington, IN

campus resources, National Resources like Extreme Science and En-
gineering Discovery Environment XSEDE [10], commercial clouds
and international computing resources.

Science Gateways develop and operate a domain-specific pre-
sentation layer as well as a generic gateway middleware layer that
supports a common set of required functionalities. Repeating this de-
velopment process for each new gateway is inefficient and wasteful
of resources. In this poster we summarize our experiences, architec-
tural and deployment choices made in within the open source and
open community based Apache Airavata framework [4] to create a
robust, sustainable Science Gateway Platform (SciGaP) [7] which
minimizes the net operating cost of Science Gateways. Figure 1
illustrates the high level concept.

2 ANATOMY OF A SCIENCE GATEWAY

Science Gateways are typically a ecosystems of multiple software
components integrated to operate as a unified service. These com-
ponents typically include a user interfaces that are useful for end
user communities; a data management systems to manage domain-
specific data and metadata; identity and access management sys-
tem to manage user identity, accounts, authorization and access
for multiple, evolving available resources; an application catalog
and resource catalog to record community applications installed,
running, and integrated with cyberinfrastructure middleware on a
wide range of resources from campus, national, and international
Grid and cloud efforts; software components to reliably running
jobs and returning results, supporting advanced execution scenar-
ios, managing data; and instrumentation to providing job status
feedback and easily understandable error reports.

As discussed in detail in [9] the goal of SciGaP project is to
create a robust, sustainable infrastructure that can provide new
gateway developers with the generic middleware functionalities
required by all Science Gateways. The decreased overhead for oper-
ations can free resources for developing new capabilities, improving
user interaction and support, and enhancing outreach efforts. As
described in [9] SciGaP promotes sustainability through scaling:
instead of having O(N) developers and operators for O(N) gateways,
through consolidation to SciGaP aspired enable O(M) developers
and operators to manage O(N) gateways, where M«N.

https://doi.org/10.1145/3332186.3333159
https://doi.org/10.1145/3332186.3333159
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3332186.3333159&domain=pdf&date_stamp=2019-07-28

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

C

Marru et al.

Cyberinfrastructure +

Domain Sciences

[

Science-Centric
User Interfaces

Domain Software

i
(SSE/SSI Projects) (LI

POWERED BY

App Catalog

SciGaP
Hosted Gateways

&

Automated T 2
Metadata E

Extractons ﬂéi 2 h e

00
U
"
Community
Engagement

Community at large

Plug-in your allocations

Figure 1: Overview of SciGateways Platform as a Service(SciGaP).

3 ARCHITECTURE CHOICES

As a first step to converging on a single set of hosted infrastructure
services, we evaluated multiple architectural choices and choose
multi-tenanted architectural pattern [5]. We experimented with
multi-tenanted patterns of having identical data models for each
hosted tenant. This options offers substantial scalability but limits
configuration options for each gateway. On a contrary, multi-tenant
with custom data models for each hosted gateway tenant supports
custom capabilities but quickly multiplies to the operational cost.
After further evaluation, we choose a hybrid approach of flexible
and extendable data models. Individual gateways are logically seg-
mented at the database level, complete with their own database
models. This approach retain all the advantages of a highly scal-
able and secure multi-tenant model while still offering a highly
configurable application powering diverse gateways.

3.1 Apache Thrift based flexible data models

Apache Airavata Application Programming Interface (API) [8] is de-
veloped using Apache Thrift’s modular serialization framework [1].
Gateways define abstract data types in an Interface Definition Lan-
guage (IDL). This IDL is then compiled into source code for any
supported language. The generated code provides complete serial-
ization and deserialization logic for all of the user’s defined types.
Apache Thrift ensures that types written by any language can be
read by any other language. IDL creates a contract that gateway
clients and Airavata Services can rely upon and that code genera-
tors can use to create working serialization operations, ensuring
the contract is adhered to. Apache Thrift IDL supports a range of
interface evolution features which, when used properly, allow fields
to be added and removed, types to be changed, and more. Support

for interface evolution greatly simplifies the task of ongoing soft-
ware maintenance and extension. All Apache Airavata components
illustrated in figure 2 describe interfaces using Thrift IDL’s.

3.2 Airavata API

Airavata’s public facing application programming interfaces (API’s)
are also based on Apache Thrift, which gives Airavata a strongly
typed, programming language independent way of defining its
interfaces. Based on APIIDL, Airavata generates client packages
in Java, PHP, Python and C++. Client gateways access Airavata
through the API Server through a secure channel (SSL sockets or
HTTPS). The API Server maps the client request into one or more
calls to internal components described next.

3.3 Microservice Architecture

Airavata architecture packages the components based on functional
areas and scalability and reliability needs referred to as microser-
vices [6]. Microservice architectural pattern combined with Con-
tinuous Integration and Delivery (CI/CD) [2] enables the SciGaP
system to support incremental improvements without impacting
the rest of the platform. Use of Apache Thrift interfaces as described
above facilitates feature evolution allow multiple interface versions
to coexist seamlessly in a single operating environment. This makes
incremental updates viable, enabling CI/CD pipelines and empow-
ering individual gateways to deliver science value at their own
cadence.

Experiences from scaling scale Science Gateway operations

I - IS

o

I
Identity & :

Realtime Monitoring. -»

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Messaging
System

|
|
Authenticate Access) Workflow [
Management Authorizel‘ : Engine :
| | Execute |
| | Workflow I
Science Gateway | | Nodles) o |
Portals and I I i Composite Applications |
Desktop User ¥ v v |
Interfaces i |
1 Java. Airavata »| Orchestrator |
Python_. API Server v
“ PHP Simple Applications
- A Execution Computational
— Adaptors Resources

(XSEDE, etc.)

/
Credential
. . Managament
n L | AppCatalog & T<

Users

Experiments J

Figure 2: High Level architectural overview of Apache Airavata.

4 SCIENCE GATEWAYS INTEGRATION

Table 1 summarizes gateways using various computing resources
(including Extreme Science and Engineering Discovery Environ-
ment XSEDE [10] brokered through a single set of hosted SciGaP
Services.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation award
number 1339774.

REFERENCES

[1] Randy Abernethy. 2018. Programmer’s Guide to Apache Thrift. Manning Publica-
tions.

Martin Fowler and Matthew Foemmel. 2006. Continuous integration. Thought-
Works) http://www. thoughtworks. com/Continuous Integration. pdf 122 (2006),
14.

Katherine A Lawrence, Michael Zentner, Nancy Wilkins-Diehr, Julie A Wernert,
Marlon Pierce, Suresh Marru, and Scott Michael. 2015. Science gateways today
and tomorrow: positive perspectives of nearly 5000 members of the research
community. Concurrency and Computation: Practice and Experience 27, 16 (2015),
4252-4268.

Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin,
Marlon Pierce, Chris Mattmann, Raminder Singh, Thilina Gunarathne, Eran
Chinthaka, Ross Gardler, et al. 2011. Apache airavata: a framework for dis-
tributed applications and computational workflows. In Proceedings of the 2011
ACM workshop on Gateway computing environments. ACM, 21-28.

Suresh Marru, Marlon Pierce, Sudhakar Pamidighantam, and Chathuri
Wimalasena. 2015. Apache airavata as a laboratory: architecture and case study
for component-based gateway middleware. In Proceedings of the 1st Workshop on
The Science of Cyberinfrastructure: Research, Experience, Applications and Models.
ACM, 19-26.

Sam Newman. 2015. Building microservices: designing fine-grained systems.
O’Reilly Media, Inc.".

Marlon Pierce, Suresh Marru, Eroma Abeysinghe, Sudhakar Pamidighantam,
Marcus Christie, and Dimuthu Wannipurage. 2018. Supporting Science Gateways

2

(3

=

[4

flaa

1
=

6]

=

Using Apache Airavata and SciGaP Services. In Proceedings of the Practice and

Experience on Advanced Research Computing. ACM, 99.

Marlon Pierce, Suresh Marru, Borries Demeler, Raminderjeet Singh, and Gary

Gorbet. 2014. The apache airavata application programming interface: overview

and evaluation with the UltraScan science gateway. In Proceedings of the 9th

Gateway Computing Environments Workshop. IEEE Press, 25-29.

Marlon Pierce, Suresh Marru, Mark A Miller, Amit Majumdar, and Borries

Demeler. 2013. Science Gateway Operational Sustainability: Adopting a Platform-

as-a Service Approach. Technical Report.

[10] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson,
et al. 2014. XSEDE: accelerating scientific discovery. Computing in Science &
Engineering 16, 5 (2014), 62-74.

[8

—

[9

—

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Marru et al.

Table 1: Science Gateways operated through multi-tenanted SciGaP Infrastructure

Gateway Name Gateway URL Field of Science XSEDE Machines in Use
SEAGrid https://seagrid.org/ Chemistry & Engineering Comet, Stampede2, Bridges, Jetstream,
Wrangler
Ultrascan http://ultrascan.aucsolutions.com/ | Biophysics Comet, Stampede2, Jetstream
PGA https://testdrive.airavata.org/ Computer & Information Science & En- | Comet, Stampede2, Jetstream
gineering
dREG https://dreg.dnasequence.org/ Genetics & Nucleic Acids Comet, Bridges, Jetstream(Gateway
hosting)
PHASTA https://phasta.scigap.org/ Mechanical Engineering Comet, Stampede2
SimVascular https://gateway.simvascular.org/ Cardiovascular Simulation Comet
Searching SRA https://www.searchsra.org/ Bio-informatics and Biology Jetstream, Wrangler
InterACTWEL http://interactwel.scigap.org/ Natural Resources Management Deci- | Jetstream
sions Support
Next GEN Thermo DB https://geochemsim.org/ Geochemistry & Environmental Science | Jetstream (Gateway hosting and job

submission)

Atomic and Molecular

https://ampgateway.org/

Atomic, Molecular, and Optical Physics

Comet, Stampede2, Bridges

Physics

Distant Reader https://distantreader.scigap.org/ Library Science Jetstream
Single Cell RNA Sequenc- | https://singlecellgateway.wharton. | Genetic Science Bridges
ing upenn.edu/

Prostate Cancer Predic- | https://gemr.scigap.org/ Health Science Comet

tion

https://singlecellgateway.wharton.upenn.edu/
https://singlecellgateway.wharton.upenn.edu/

	Abstract
	1 Introduction
	2 Anatomy of a Science Gateway
	3 Architecture choices
	3.1 Apache Thrift based flexible data models
	3.2 Airavata API
	3.3 Microservice Architecture

	4 Science Gateways Integration
	Acknowledgments
	References

