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Figure 1: One of the participants
communicates with his friends via a
telepresence robot.
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Abstract
Telerobots may give people with motor disabilities access
to education, events and places. Eye-gaze interaction with
these robots is an option when hands are not functional.
Gaze control of telerobots has not yet been evaluated by
people from this target group. We conducted a field study
with five users in a care-home to investigate their prefer-
ences and challenges when driving telerobots via our gaze-
controlled robotic telepresence system. We used a Wizard
of Oz method to explore gaze and speech interaction, and
experience prototyping to consider robot designs and types
of displays (e.i. monitors versus head-mounted displays).

Author Keywords
Human-robot interaction, gaze interaction, telepresence,
accessibility, motor disabilities, assistive technology, in-
clusion, robot-mediated communication, navigation, head-
mounted displays, experience prototyping, Wizard of Oz.

CCS Concepts
•Human-centered computing → Accessibility; Accessi-
bility systems and tools;

Introduction
Telerobots have several potential usages for people with
motor disabilities (MD) [26]. Recent development of telep-
resence robots [11] may provide people with MD a sense of
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presence within a remote environment. Several manufac-
turers offer wifi-based telerobots, e.g. Double Robotics and
Padbot (see Fig. 2).

Figure 2: The two robots applied
in the field study: a) A Padbot
robot (left) that we attached with a
360 degree camera (but without a
monitor showing the users face); b)
A Double robot (right) with a live
face video.

Robotic telepresence systems [32] have become increas-
ingly popular for collaboration between geographically
distributed teams[12], at academic conferences[23], for
children-teacher communication[29], for relationships of
long-distance couples [36], for seniors with mobility impair-
ments[27], and for outdoor activities [8]. However, people
with MD have been ignored when studying telerobot inter-
action [34]. Previous studies on assistive technology em-
phasized the importance of independence for people with
MD, who often preferred to retain as much control author-
ity as possible[18]. So while fully autonomous telpresence
robots have been suggested in previous work, for instance
automatically following a person in a remote environment
[4], it is an open question as to level of autonomy people
with MD would prefer.

Alternative interaction with telerobots
Keyboard and mouse or joysticks are most commonly used
for telerobot systems. Alternative vehicle- and wheelchair-
control methods have been suggested for people with MD,
for instance based on brain-computer-interaction (BCI) [30,
31, 13, 2, 21], speech [33, 34], gaze interaction [5, 39, 20],
and fMRI recording of covert visuospatial attention [1].

Brain-computer interaction [30] may be used by people with
severe motor neuron diseases such as Amyotrophic Lateral
Sclerosis (ALS), even when they can not move any part
of their body - a so-called Locked-In Syndrome. Some of
the BCI-methods, however, require substantial training and
set-up, since caps and gel-based electrodes can be difficult
to apply. Also, information transfer with BCI systems are
quite low; for example [9] reported a throughput of 0.05-
1.44 bits/s.

Speech interfaces are popular for mobile phones and smart
speakers. They have been suggested for telerobot navi-
gation also. Unfortunately, some people with MD have im-
paired speech. Low-level direction guiding by speech can
be cumbersome as a user may have to repeat the same
command multiple times (e.g. left, left, left), or rely on pre-
cise timing [33].

Gaze interaction has been used by people with MD for
more than twenty years, mainly for communication and
pointer-input [16]. Throughput values for gaze have been
reported to be 2.55 bits/s [17]. Gaze-controlled navigation
of robots was first studied by Tall et al. in 2009 [28]. Since
then, gaze tracking technology has become inexpensive
and accurate. However, it remains a challenge to design
interfaces that only respond to intentions, and not just eye
movements. Head input has shown to be more precise and
less erroneous than gaze [17, 6] but it may also be tiring to
use for longer time.

Besides a traditional set-up with monitors, head-mounted
displays (HMD) are now being tested for telerobots with a
360 degree camera mounted on the telerobot [5, 39] with
gaze- or head- movements changing the field of view [10,
5]. Gaze tracking sensors are built into some recent HMD´s.
The increased availability of eye-tracking equipment makes
it feasible to utilize this technology for explicit control tasks
with robotics [35]. Hence, we have enabled gaze control of
telepresence robots with an HMD in previous studies [39,
38]. The key findings were that after training, able-bodied
participants could effectively navigate telerobots by gaze.
VR-simulations also showed to be a safe and efficient train-
ing tool for gaze navigation [37]. However, like other stud-
ies, e.g. [20], we did not involve people with MD. So it is
important now to engage people with MD in the design of
gaze-controlled telepresence robots and explore future use-
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cases with them. We initiated this process with five partici-
pants in a field test presented in this paper.

Figure 3: A participant wearing an
HMD with a built-in eye tracker.

Figure 4: A participant using the
Double robot in front of a screen
and the Tobii eye trackers. In this
case the experimenter was
standing behind the user and
emulating his gaze movements by
use of a joystick, applying a Wizard
of Oz technique.

Field study
Our study applied experience prototyping [3] and the Wiz-
ard of Oz technique [24]. The goal was to observe the use
and effectiveness of various interfaces and control meth-
ods with our target users, rather than to compare a range
of complete robotic systems. We therefore used the Wizard
of Oz technique for some of our scenarios because of its
advantages in early explorations, where complex system
intelligence can be delivered by a human assistant instead
of being fully implemented. Also, without an open API to the
Double robots it would be a demanding task to establish a
direct gaze control.

According to principles suggested by [25] when conduct-
ing accessibility research, our study-plan and consent form
were sent to the caregivers before the study. Observations
and conversations during the study were noted by the ex-
perimenter, supported by records of the participants’ spon-
taneous verbalisation, system log files, screen recordings,
and room video recordings for post-hoc analysis.

Participants
Five people (age 21 -55 years; 3 men and 2 women) with
different levels of motor impairments participated. They live
in a care-home together with 90 people who use wheelchairs
for daily mobility. Some of the residents use gaze interac-
tion for communication and some use speech commands
for smart-home control. All of our five participants have
impaired manual activity, for instance limited gripping, fin-
gering or holding ability, due to cerebellum disorders or
cerebral palsy. None of them have cognitive impairments
or literacy difficulties, but one of them has impaired speech

functions. Three of them have experienced VR using an
HMD and one has experienced a telerobot.

Procedure
Participants conducted the study one by one. After greet-
ings and a brief introduction, we collected demographic in-
formation, including experience with gaze control, VR, tele-
robots and wheelchair control. For the one individual who
is non-verbal, this information was provided by a care giver.
In particular, participants were informed that if they felt un-
comfortable at any time they should stop immediately. Then
we showed a demo video of one of our earlier telepresence
robot projects [5] with a person controlling a telerobot by his
gaze while laying in bed. Two different telerobots (see fig.
2) were standing next to the table we were sitting at.

Initially, we conducted an interview focusing on their expec-
tations and visions of possible usage of telerobots for their
daily life activities. Then followed the two experience proto-
typing sessions as described below. We presented a range
of options to them, including types of displays (HMD versus
screen), independence levels (independent versus assisted
by others), and control methods (gaze, speech or hand).

Gaze navigation
In the first experience prototyping session, we used our
gaze-controlled robotic telepresence system (see Fig. 5).
An HMD (FOVE) was connected with a computer running
Unity (see Fig. 3). We first gave the participants the possi-
bility to train navigating of a virtual robot in VR by conduct-
ing six trials, similar to the procedure used in [37]. When
using the VR simulator for training of gaze control, the sim-
ulated "live" video stream was generated from the VR en-
gine. The point-of-view and view height were similar to the
real telerobot and so were the virtual robot´s maneuver-
ability. Both the virtual and the real robot (see next section)
were navigated in a room of 4 x 5 m.
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Then they got to try a real telerobot. A Padbot with a 360
degree RICOH THETA S camera was controlled via a wire-
less network through a Raspberry Pi (see Fig. 2). We in-
troduced two ways of driving the telerobots, namely one
mode termed "invisible control" [38] and the other termed
"way-point control" (see Fig. 6). The way-point control was
similar to the control mode found in the Double 3 model,
where users click on the floor to point at the next location
for the robot to drive. In our case, way-points were marked
by dwelling with gaze at the floor for a set dwell time.

Gaze control UI

VR HMD
with eye trackers

Telerobots

360° video camera

Figure 5: System architecture of
our gaze-controlled telepresence
robots with an HMD.

Participants were asked to use their gaze to navigate the
telerobot, wearing a FOVE HMD with build-in eye track-
ing. They were instructed to drive around a large table
standing in the middle of the room and say hello to a per-
son they would meet while driving around it. They did this
twice - once using the "invisible control" which was a direct
drive-where-you-look steering principle, and once using the
way-point method (see Fig. 6). Afterwards, they answered
questions about how confident they felt using gaze control
and about their preference for one of the two gaze control
methods.

Wizard of Oz navigation by speech and gaze
In the second experience prototyping session, we pre-
sented a Double robot (see Fig. 2) running the Double web
application in a Chrome browser on a laptop (HP elitebook
with a 15" monitor) connected to the robot via wireless net-
work.

Two levels of assistance were experienced by the partici-
pants. First they could ask a helper to navigate the robot
from the corner of the room to their position. Then we gave
the participants an open instruction of...“Your next task is to
move the robot outside the door. You can just tell the robot
what you would like it to do....” This was done to provide a
possibility to imagine the level of intelligence they would ex-

pect for this type of interaction. In response, they gave dif-
ferent kinds of commands, for instance, simply “move out-
side”; or “find the door”, and then “go outside”; or just sim-
ple direction commands like “left, left, stop”. Their speech
commands were actually executed by the experimenter
standing behind them with a joystick. Participants were not
informed that their speech commands were manually per-
formed by the experimenter.

Then they were asked to use gaze control. An eye tracker
(Tobii Eye trackers 4C) was used for tracking the user´s
gaze point and shown on top of the live video stream from
the Double robot (see Fig. 4). Again, steering of the Double
was performed in a Wizard of Oz set-up by an experimenter
standing behind the participant manually following the users
gaze point with a joystick (Xbox 360 controller ). The Double
robot was driven from the experiment room through a corri-
dor to the canteen, passing the reception of the care-home
- a total distance of around 40 m.

We finally asked participants to try driving the telerobot
around by simple speech commands - for those 4 partici-
pants who could do so. Four types of commands were pos-
sible: Left, right, stop and go. The experimenter executed
their commands with his joystick behind their back. Three
participants also tried to use hand control in the end.

After the sessions, we talked about their experiences and
asked questions like: What would you like to use a telerobot
for? How would you like to control the robot? How would
you like to communicate with people you meet when driving
a telerobot?

Observations
User expectations
All of our participants assumed the robots would be easy to
use before they had tried them, and their initial expectations
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were that the telerobots would be fun like a computer game,
exciting to drive just with the eyes, a new way of being me.
One participant was a bit nervous to use the robots, and
asked a helper to hold her hand during the test.

At this early stage, it was difficult for most of them to imag-
ine a use case that they could relate to. Nevertheless, two
of them envisioned that they could use telerobots to go
shopping by talking with a care giver or a shop assistant
via the robot, or just look at the price labels themselves.
Once the participants had experienced the telerobots they
got a much more clear vision of potential usage, mostly
focusing on social interaction and possible inclusion in so-
ciety. For instance, one participant envisioned that he could
get a job in a warehouse driving robot trucks remotely or
cleaning floors with a floor cleaning machine. Another par-
ticipant expressed a wish for the telerobot to have an arm
that could do things... Similar applications have been ad-
dressed in previous research papers also, for instance, the
use of telepresence robots for shopping [36] and for remote
work [7].

Invisible control

Waypoint control

Figure 6: The two types of gaze
control UI: invisible control (top),
where the user drives in the
direction of sight (indicated by a
purple circle), and way-point
control (bottom), where the user
marks the next way-point by a
dwell click on the floor (red circle).

Control methods
Autonomous telepresence robots [4] might seem like a
good solution for our target users. However, fully-autonomous
systems may increase workload if users lack trust in the
automated system, especially when the underlying mech-
anism of automation is not clear to them [19]. None of our
users preferred to have the telerobot driven for them, ei-
ther by other people nor by a fully-autonomous "intelligent"
system. This is in line with previous observations [14] that
our target users prefer to retain control authority. Therefore,
semi-autonomous robots seem to be a more viable solution,
using intelligent systems to assist in problematic situations
only, and sensors to warn when obstacles are detected.
However, this is a very complex issue that requires more

research addressing differences in user needs, information
transfer rates, differences in robot design, and differences
in control principles - to name some of the factors that may
impact performance and user experience.

When we asked our participants about their feelings of in-
dependence using the categories suggested by [22], (in
our terms being able to control robots on your own, being
able to maintain personal mobility in a remote place and
being confident doing so), all of the participants stated that
they had the same feeling of independence when using the
different control methods (gaze, speech and hand). Since
both the gaze and speech were sometimes controlled by
another person in the two Wizard of Oz sessions this is not
conclusive. However, when asked which input they liked
most, all of the participants except one preferred gaze. In
particular, the individual who was unable to give speech
commands seemed very excited when using gaze interac-
tion - she made a lot of gestures with a smile on her face.
One participant was not able to get a sufficiently good gaze
calibration with the HMD. The other four participants quickly
gained confidence with this input method when driving in
the VR simulator.

We had great expectations for the way-point control method.
However, most of our participants found it very difficult to
use and one of them did not finish driving around the table.
Two of them mentioned that setting way-points forced them
to look too far down and prevented them from attending to
people and looking around in the room, c.f. Fig. 7. Hence,
in future designs, we will focus on better ways to mark a
way-point on the floor by gaze.

Hardware
Comparing the Padbot (without a face monitor) and the
Double robot, some of the participants stated they preferred
that "...people could see you the same way you can see
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them" and that the Double is a robot "... where I could be
with my family and they could see me and I could see and
talk to them. Interestingly, none of them commented on
the option of having the 360 degree view provided by the
Padbot, and only rarely did they make use of it. Instead of
turning their head when wearing a HMD, they simply turned
the robot to change their field of view.

HMDs hold potential advantages for telerobot interaction,
for instance improved immersion and natural head control
of field of view. However, two participants preferred to use
the screen, rather than the HMD. One of them explained
that he did not like the HMD because it would prevent him
from being completely independent, since he would always
need assistance to strap it on and adjust its position. An-
other participant could not achieve a sufficiently good gaze
calibration with the HMD but he had no problems to get
calibrated with a screen-based eye-tracker. Another impor-
tant reason to consider a screen-based display instead of
HMD´s is that it allows users to show their face on the re-
mote screen and thus engage in facial communication. This
is not possible when the face is covered by a HMD. Some of
these problems may be due to current limitations of HMD´s
and hopefully better solutions (e.g. smart glasses) will be-
come available in the near future.

Figure 7: A participant using the
way-point control to navigate a
telerobot. He commented that this
forced him to look too far down and
prevented him from attending to
people and to see the environment.

Presence and Experience
We frequently asked the drivers where are you now ? and
the answers to this question were always their remote po-
sition (e.g. in the corridor, reception, or canteen) - not their
actual physical location (e.i. in the experiment room). This
indicates a strong sense of telepresence. Our final - and
maybe strongest - impression from this field study was the
excitement we observed among all the participants and
among their fellow residents and staff in the care-home
(see Fig. 1). A staff member even hugged the telerobot

when she saw who was driving it. The participant who
could not speak, laughed and used her hand gestures
when communicating with friend she met on her way. Over-
all, the participants’ assessment of their experiences with
telerobots were very positive, with typical statements like
"...super fun, easy to use", and even "proud of myself".

Conclusion
Based on new insights provided by our target users, we are
confident that several additional use-cases may be uncov-
ered, and accessibility of human-telerobot interaction may
be improved, if participants get an opportunity to familiar-
ize with this technology and become involved in the design
process. Their engagement fully confirmed Liu´s point [15]
that providing ways to give and not simply receive help is an
important way to support social interaction and integration.
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