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Program analysis is mainly concerned with the design of program ana­
lyzers to automatically determine semantic properties of programs written
in some programming language. Such analyzers take programs as input and
output some useful information about their runtime behavior. This informa­
tion is useful for optimizing compilers [15] , partial evaluators [11] , abstract
debuggers [1] , models-checkers [2] , formal verifiers [13] , etc. The difficulty
of the task comes from the fact that programs are infinite states so that all
interesting questions about program executions are undecidable. Hence the
automatically produced information, although sound, must be incomplete.

With the appearance of new computing paradigms, the scope of pro­
gram analysis has been constantly broadening these last two decades. The
term “program static analysis” is therefore too restricted since the analysis
problem appears as soon as one considers computer systems with states
which evolve continuously or discretely over time, from term rewriting to
communication protocols, critical embedded real-time systems and image
compression.

Three approaches have been considered:

• Formal methods based on general or dedicated theorem proving tech­
niques. This approach is quite general although, because of undecid­
ability, it ultimately relies on human interaction which can be pro­
hibitive if not impossible for very large systems [13];

• The design of specific algorithms for decidable subproblems, such as,
e.g., finite state systems. This approach has been very successful al­
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though generalizations are quite difficult. Moreover time and memory
complexity is sometimes preclusive for these decidable problems [2];

• Approximation methods for simplifying the verification problem, e.g.
by restricting the class of considered properties, which produce man­
ifest results (‘"yes”, “no”) but can be imprecise (“I don’t know”) al­
though never incorrect or unsound.

Abstract interpretation is a formalization of program analysis based on
the last idea. Program analysis algorithms approximate the incomputable
collection of all possible behaviors of the program as specified by a stan­
dard semantics [6 , 3]. The central idea is that of discrete approximation,
from above when more behaviors are considered than really possible (as
in invariant generation for approximate safety analysis) or dually from be­
low when considering less behaviors than existing ones (as in approximate
liveness analysis). The approximation may be static (e.g. Galois connec­
tion based approximation) that is made before the analysis is started or
preferably dynamic (e.g. widening/narrowing based approximation) when
approximations are made during the analysis itself (hence can be better
adapted to its cost) [7]. Admittedly, the practical question is to find the
proper cost/precision balance.

Generic/parameterized abstract interpreters and hierarchies of abstrac­
tions have been designed which help solving this balancing problem. Chang­
ing the cost/precision ratio of the analysis does not involve a complete
redesign of the analyzer but only a change of modules encapsulating the
abstract domain and corresponding operations.

From a theoretical standpoint, the numerous results available in com­
putational complexity are hardly applicable because they concern cost only
but neither precision (which might be approached from a probabilistic point
of view) nor (economical) benefit. In absence of more theoretical work on
this subject, the answer is therefore mostly experimental. For example, fol­
lowing the failure of the maiden flight 501 of the Ariane 5 launcher [12] , a
recent success story was the static analysis of Ariane’s embedded programs
to prove the absence of runtime errors [9].

In contrast to simple special-purpose abstract domains (such as bit-vectors
in dataflow analysis or boolean functions in strictness analysis), the effective
design of wide-scope general-purpose abstract domains involves complex use
of both sophisticated data structures and efficient algorithms. An example
of such successful numerical abstract domain (in order to approximated a
set of vectors of numbers) is the linear relation abstract domain (a set of
vectors of numbers is upper approximated by its convex hull) which was
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originally designed for inferring linear relationships invariantly satisfied by
the numerical variables of a program and applied to array bound checking
[8]. Linear relation analysis was later used to prove (un)reachability prop­
erties of linear hybrid systems [10] (a model involving variables evolving
continuously over time) thus showing the wide scope of this abstraction.
Despite recent algorithmic progress, this problem still raises problems such
as handling polyhedra with floating point arithmetic. This is much more effi­
cient than the use of rational numbers but introduces imprecision, a problem
shared with computational geometry algorithmics.

If numerical abstractions are rather well-understood, this is not the case
for the approximation of sets of discrete structures (sets of words, trees,
graphs, hypergraphs, etc.). Contributions from automata and formal lan­
guage theory are needed to design e.g. abstract domains that would be
applicable to closure analysis of functional languages, pointer analysis of
imperative programs, communication analysis of parallel and distributed
programs, etc. (see e.g. [14]) whereas these problems are presently consid­
ered from quite different and specific points of view.

Program analysis relies on the precise specification of the semantics of
programming languages. An informal intuitive understanding being inade­
quate beyond toy languages. Many semantics at different levels of abstrac­
tion/refinement are needed for program analysis so that a unified framework
for presenting all these semantics seems indispensable (see [4] for a very first
step). The situation is particularly unclear for parallel and distributed pro­
grams since the theory of concurrency is far from offering a unified semantic
model of concurrency which is directly manageable for program analysis.
Moreover considering (computable) approximations of semantics brings in
new perspectives for applied semanticians (like numerical analysis for ap­
plied mathematicians).

Although the formal derivation of a program analyzer from its specifica­
tion as an approximation of a semantics is entirely feasible by formal com­
putation (see e.g. a type inference algorithm [5]), this is a formidable task
for realistic programming languages which is a real challenge for program
specification et formal derivation. Assistance from symbolic and algebraic
computation systems would be welcomed, but this involves a shift of interest
from the present numerical domains inherited from mathematics to discrete
domains.

We hope to have shown that approximate program/system analysis is an
active research area offering a wide range of practical and theoretical open
problems. Their resolution strongly depends on progress or slight shifts of in­
terest in many other research areas. Substantial progress in program analy­
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sis is closely related to global progress in other areas of theoretical computer
science. Its main contribution could be a theory of discrete approximation
which, we think, is presently missing for non-numerical structures.
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