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Check for

= Jriginal Wagner-Fischer Algorithm

v

[0] zea wfa b;i;j;ml;m2;m3;nl;n2;D

[1) » Global Inputs alphabet ins_del, sub, I0<0

[2] &~ Inputs: strings a and b made up from alphabet

[3] ~ Outputs: distance between a and b

[4] ~ Usage:

[5] an ' babbdbbabbchbb' wfa 'ebbbabbbchbbabhb'
[6]

[7) nlepa«alphabetia
[8] n2<pbealphabetib
[9] a- 1,a

[10] b« 1,b

[11] D«((nl+1),n2+1)p0
[12]

[13] i<0

[14] loopl:+(ml<i<i+1)/endl

[45] D[i;01«Dli-1;0]+ins_dellalill
[16] -loopl

[17] endl:

[19] j<O
[20] loop2:-+(n2<j«j+1)/end2
[24] D[0;j1«DI[0;F-1)+ins_dellbl[7]]

[22] -loop2

[23] end2:

[2y4]

[25]) 1i<0

[26] loop:EI -(ml<i«i+i)/end3l
[27]

[28] loqpu *(n2<]+€+1)/loo

[29] ml«D[i-1;j-11+sublalil;bl[F]]
[30] m2<DL[i-1;7]l+ins_ del[a[l]]
[31] m3«DLi;j-11+ins_dellbl[F]1]
[32] DLi;3j]l<mllm2Llm3

[33] -loopt

endl:
[36]v z+D[nl;n2]

Parallel Wagner-Fischer Algorithm

v
[o] zea pwfa b;i;j;k;ml;m2;m3;n1;n2;n3;D;from

[1] n Global Inputs: alphabet, ins_del, sub, [I0<0

[2] n Inputs: strings a and b made up from alphabet

[3] ~ Outputs: distance between a and b

[4] =~ Usage:

[5] a° bbabbdbbabbchb' pwfa 'ebbbabbbcbbbahbb'
[6]

[7] nl«pa«alphabetia
[8] n2«pb+~alphabet1b

[9] ae 1,a

f10] b< 1,b

[11] De((ni1+1), n2+1)p0
[12]

[13] i<0

[14] loopl:-(ml<i<i+l)/endl

[15] D[i;0]<D[i-1;0]+ins_dellalil]
[16] -loopl

[17] endi:

[19] J<O

[20] loop2:-+(n2<j«j+l1)/end2

[21] DILO;31«DL0;j-11+ins_dellbl[F]]
[22] -loop2

[23] end2:

[25] k<O

[26] n3<«nl+n2-1

[27]1 leopd:-+(n3<k<k+1)/end3

[28] die<fromr11+(klml)-(from«1l1+k-n2)
[29] je«ltk-i .

[301] m1+D[(1 1), (k-1)1+sublalil, "bLj11]
[31] m2<DI(i-1), jl+ins_ dellalil]

[32] m3<DLi, 11+ins _dellbl7]1]

[33] DLi,” J]«m&LmZLm

[34] -»loop3

end3:
[37] 2z<D[nl;n2]
v

Clock Face

—by David Steinbrook
La Selva Beach, California

WHE TWELVE NUMBERS on an analog clock face are close to
I the twelve digits in base-12:

These digits conceal correspondences that first surfaced in
APL in 1975, and were extended in J during1998. While the
context for this material was originally music, its mappings hold
in general.

Just beneath the surface is a relationship between a set (a
collection of distinct items) and its subsets. In a musical setting,
items in a set (scale) are not heard at the same time: only through
subsets (triads) do we infer set-contents. A sound-rule (non-
adjacent in the scale) is a term to refer to this relationship.

In this presentation, we first describe subsets derived in two
ways. We then show that these two groups of subsets have the
same sub-types. Listings of a few ] verbs appear at the end.

Sets

Base-12 sets have size (number of distinct items) and, within size,
they have type. We name sets by the number of distinct items
they contain: sets of size 2, for example, are a starting point.
Theset 0 1 has the same typeastheset1 2 (transposition,
adding a constant to each item, does not change the type).
Ordering is not a factor: the set 1 0 has the same content as 0
1. Using these and similar criteria, there are six distinct Two-

types:
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When we classify base-12 sets by size and by types within

size, we see the domain:

Name Distinct Types
Two 6
Three 12
Four 29
Five 38

Six 50
Seven 38
Eight 29
Nine 12
Ten 6

Combinations

The first algorithm we present generates subsets with a combina-
tions technique. For example, to find size-3 subsets in a size-4
set, we generate indices for the subsets:

] i=. 3 cmb 4
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and apply them to a size-4 set:

] £11 =. Tet 11
0146
] x=. i{tll
01 4
016
0 4 6
1 46
0 1
4
6

Given Three-type subsets within a Four-type, we scrutinize the
Three-types (using index-origin 1):

subtype x
3578
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So far, we speculate that subset Three-types in a Four-type
are distinct.

Flex Patterns

The second algorithm we present generates subsets with flex
patterns on a symmetrical set (overt bilateral symmetry). When
placed on a circle, some sets have an axis of symmetry. Consider
Six 10, withitems 0 1 2 3 6 O:

0

6
Pairs of symmetrical items with the same sum (3 mod 12) are
(9 6),(03),and (1 2); these are called dyads. Four axis-crossings
exist for three dyads: 0 0 (shown),0 1,1 O,and1 1:

>flex Six 10

901 NB. Cross: 0 O
6 3 2
9 0 2 NB. Cross: 0 1
6 31
9 3 2 NB. Cross: 1 0
6 01
9 31 NB. Cross: 1 1
6 0 2

Each pattern gives rise to a Three-type and its mirror image.

01 01 03 01
/4>2 2 2 2
9 /&39 é>39 ﬁ 39 |;3
6 6 6 6

When we scrutinize these Three-types, we find:

subtype >flex Six 10
33775588

Now we are suspicious: combination subsets from Four-type

11 and flex subsets from Six-type 10 correspond to each other by
type.
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Corresponding Threes

The Four we used here is not symmetrical, while the Six has
overt symmetry. When we examine all sets, we find that there are
sixteen non-overt Four-types that correspond to the sixteen overt
Six-types through subset Three-types: '

Six-type

Four-type Three-type
2 1 2 3 6 1
3 1 3 4 7 12
4 1 4 5 8 20
5 1 5 5 9 25
7 2 6 4 7 43
8 2 7 5 10 47
9 3 5 8 11 39
11 s 5 7 8 10
12 3 5 10 11 32
13 3 4 11 12 41
15 4 5 8 9 11
19 2 3 8 10 28
20 2 4 9 11 35
22 6 7 9 11 49
23 6 8 & 12 50
25 7 10 8 11 42

If we had chosen a bilaterally symmetrical Four-type, of
which there are 10, the correspondence is with symmetrical
Fives, of which there are also 10. Two of each Three-type occur
in each:

Four-type Three-type Six-type
1 1 2 2 1
6 2 2 3 3 29
10 3 3 4 4 38
14 4 4 5 b 13
16 4 4 11 11 - 16
18 2 2 7 7 17
21 6 6 8 35
24 7 7 9 9 37
27 3 3 11 11 28
28 7 7 11 11 36
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Conclusion

Base-12 correspondences open a door to relationships not sus-
pected on the surface, and lead to a new repertoire of options.

Listings

Several verbs written in ] appear here. Complete listing of a cata-
log of base-12 sets is beyond the scope of this presentation, but
is available on request. ]

cmb=: 4 : O

NB. size x. combinations of i.y.

NB. R.K.W. Hui

z=_1 0Sk=.i.#c=.1,~(y--x.)$50
for. i.x. do.
z=.;k,.&.>(-c=.+/\.c){.&.><1+z

end.

)

flex=:3 : 0

(i.#dyads y.) flex y.

fl1"2&.>x.{dyads y.
)

f1=:3 :0
NB. y. are dyads (2 x n)
r=.agg"l#:i.27<:{:Sy.

r flx y.

)

flx=:4 : O

>l:&.>(<"1 x.)]."0 l&.><]|:y.

agg=:[:+/\(+/"'") &,
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