
Appendix: Defined Functions 

Origina/ Wagner-Fischer Algorithm 
V 

[0] z~a wfa b;i;j;ml;m2;m3;nl;n2;D 
El] ~ Global Inputs: alphabet, ins_del, sub, .DIO~O 
[2] . Inputs: strings a and bmade up from alphabet 
[31 . Outputs: distance between a and b 
[ 4 ]  m Usage: 
[5] , ' a ~ b a b b c b b '  wfa 'ebbbabhbcbbbabbb' 
[5] 
[7] nl~pa*alphabetta 
[8] n2~pb~alphabetlb 
[g] a~-l.a 
[I0] b,--l,b 
[11] D~((nl+l),n2+l)pO 
[12] 
[ 1 3 ]  i ~ 0  
[14] loopl:~(nl<i~i+l)/endl 
[15] D[i;O]÷D[i-l;O]+ins_del[a[i]] 
[15] ~ioopl 
[17] end1: 
[18] 
[19] j~O 
[20] loop2:*(n2<j~j+l)/e~2 
[21] D[Oij]~DEO;j-1]+ins_del[b[j]] 
[22] ~loop2 
[23] end2: 
[24] 
[253 i~0 
[25] Ioop3;~(nl<i~i+l)/end3 
[27] j~0 
[28] loop4:~(n2<j~j+l)/loop3 
[29] ml~D[i-l;j-l]+sub[a[i];b[j]] 
[30] m2~D[i-1;j]+ins_del[a[i]] 
[31] m3~D[i;j-l]+ins_del[b[j]] 
[32] D[i;j]~mlLm2Lm3 
[33] ~loop4 
[ 3 4 ]  
[ 3 5 ]  end3: 
[35] z~D[nl;n2] 

V 

Parallel Wagner-Fischer Algorithm 
V 

[o] z~a pwfa b;i;jik;Ed;m2;m3;nl;n2in3;D;from 
[1] n Global Inputs: alphabet, ins_del, sub, OZO~O 
[2] n Inputs: strings a and b made up from alphabet 
[3] ~ Outputs: distance between a and b 
[4] ~ Usage: 
[5] ~ '~babbdbbabbcbb' pwfa 'ebbbabbbcbbbabbb' 
[B] 
[7] n1~pa~alphabetla 
[8] n2*pb*alphabettb 
[9] a -l,a 
[10] b~--l,b 
[11] D~((nl+l),n2+l)pO 
[12] 
[ 1 3 ]  i~-0 
[14] ioopl:~(nl<i~i+l )/end1 
[15] D[i;O]~D[i-l;O]+ins_del[a[i]] 
[16] ~loopl 
[J.7] endl: 
[18] 
[19] j~0 
[20] loop2 : ~(n2<j~j+l )/end2 
[21] D[O;j]~D[O;j-l]+ins_de1[b[j]] 
[22] ~ioop2 
[23] end2 : 
[24] 
[25] k~0 
[ 26 ] n3~-nl+n2-1 
[27] loop3 : -~( n3<k~k+l )/er~3 
[281 i~from+11+(kLnl)-(fron~-l[l+k-n2) 
[29] j~l+k-i 
[30] ml÷D[(i-l),"(k-l)]+sub[a[i] ,"b[j]] 
[31] m2 ~-D[ ( i-1 ) ,"j]+ins_del [a[i] ] 
[32] m3~D[i,k-l]+ins_de1[b[j]] 
[33] D[i,"j]~ml[m2Lm3 
[34] ~loop3 
[ 3 5 ]  
[ 3 6 ]  end3 "- 
[37] z÷DEnl;n2] 

V 

Clock Face 
--b 3 David Steinbrook 

La Selva Beach, California 

q ~HE TWELVE NUMBERS on an analog clock face are close to 
the twelve digits in base-12: 

0 
b 1 

a 2 

9 3 

7 5 
6 

These  digits conceal correspondences that first surfaced in 
APL in 1975, and were extended i n ]  dunng1998.  While the 
context for this material was originally music, its mappings hold 
in general. 

Just  beneath the surface is a relationship between a set (a 
collection of distinct items) and its subsets. In a musical setting, 
items in a set (scale) are not  heard at the same time: only through 
subsets (triads) do we infer set-contents. A sound-rule (non- 
adjacent in the scale) is a term to refer to this re]ationship. 

In this presentation, we first describe subsets derived in two 
ways. We then show that these two groups ofsubsets  have the 
same ;sub-types. Listings o fa  fewJ verbs appear at the end. 

Sets 
Base- 12 sets have size (number of  distinct items) and, within size, 
they }lave type. We name sets by the number  of distinct items 
they contain: sets of  size 2, for example, are a starting point. 

"rlae set 0 1 has the same type as the set 1 2 (transposition, 
adding a constant to each item, does not  change the type). 
Ordering is not  a factor: the set 1 0 has the same content as 0 
1. Using these and shni]ar criteria, there are six distinct Two-  

~fpes:: 

0 1 

0 2 

0 3 

0 4 

0 5 

0 6 

2 6 
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When we classify base-12 sets by size and by types within 
size, we see the domain: 

So far, we speculate that subset Three-types in a Four-type 
are distinct. 

Name Distinct Types 
II I I I I 

Two 6 

Three 12 

Four 29 

Five 38 

Six 50 

Seven 38 

Eight 29 

Nine 12 

Ten 6 

Combinations 
The first algorithm we present generates subsets with a combina- 
tions technique. For example, to find size-3 subsets in a size-4 
set, we generate indices for the subsets: 

] i--. 
012 
013 
023 
123 

3 crab 4 

and apply them to a size-4 set: 

] tll =. Tet 
0146 

] x=. i{tll 
014 
016 
046 
146 

II 

0 
1 

4 

6 

Given Three-type subsets within a Four-type~ we scrutinize the 
Three-types (using index-origin 1): 

subtype x 

3578 

Flex Patterns 
The second algorithm we present generates subsets withflex 
patterns on a symmetrical set (overt bilateral symmetry). When 
placed on a circle, some sets have an ax/s of symmetry. Consider 
Six l0, withitems0 1 2 3 6 9: 

0 
1 

9 3 

6 

Pairs of symmetrical items with the same sum (3 rood 12) are 
(9 6), (0 3), and (1 2); these are called dyads. Four axis-crossings 
exist for three dyads: 0 0 (shown), 0 1, 1 0, and 1 1: 

>flex Six i0 

901 NB. Cross: 00 

632 

902 NB. Cross: 01 

631 

932 NB. Cross: 10 

601 

931 NB. Cross: 11 

602 

Each pattern gives rise to a Three-type and its mirror image. 

9 

01 01 01 01 

6 6 6 6 

When we scrutinize these Three-types, we iliad: 

subtype >flex Six 10 

3 3 7 7 5 5 8 8  

Nowwe arc suspicious: combination subsets from Four-type 
11 and flex subsets from Six-type 10 correspond to each other by 
type. 
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Corresponding Threes 
T h e  Four  we used here is not symmetrical, while the Six has 
overt symmetry. When  we examine all sets, we find that there are 
sixteen non-overt  Four-types that correspond to the sixteen overt 
Six-types through subset Three-types:  

Fou r - t ype  T h r e e - t y p e  Six- type  

2 1 2 3 6 1 

3 1 3 4 7 12 

4 1 4 5 8 20  

5 1 5 5 9 25  

7 2 6 4 7 43 
I 

8 2 7 5 10 47  

9 2 5 8 11 39  

11 3 5 7 8 10 

12 3 5 10 11 i 52  

13 3 4 11 12 41 

15 4 5 8 9 11 

19 2 3 8 10 28  

20 2 4 9 11 35 

22 6 7 9 11 49  

23 6 8 8 12 50  

25 7 10 8 11 42 

If  we had chosen a bilaterally symmetrical Four-type,  of  
which there are 10, the correspondence  is with symmetrical 
Fives, of  which there are also 10. T w o  of  each Three- type  occur  
in each: 

Four-type Three-type Six-type 

1 1 1 2 2 1 

6 2 2 3 3 2 9  

10 3 3 4 4 $8 

14 4 4 5 5 15 

16 4 4 11 11 16 

18 2 2 7 7 17 

6 6 8 8 21 

2 4  7 7 9 9 J 7  

27  3 3 11 11 28  

2 8  7 7 11 11 3 6  

Conclusion 
Base-12 correspondences open a door  to relationships not  sus- 
pected, on the surface, and lead to a new repertoire of  options. 

Listings 
SeveraJ verbs written inJ  appear here. Complete ]_is dng of  a cata- 
log of  base-12 sets is beyond the scope of  this presentation, but  
is available on request. • 

crab= : 4 : 0 
NB. size x. combinations of i.y. 
NB. R.K.W. Hui 
z=.l 0$k=.i. #c=. i, - (y.-x.) $0 
for. i.x. do. 
z=. ;k, . &.> (-c=. +/\ . c) { . &.><l+z 

end. 
) 

flex=:3 : 0 
(i.#dyads y.) flex y. 

fl"2&.>x. {dyads y. 
) 

fl=:3 :0 
NB. y. are dyads (2 x n) 
r=.agg"l#:i.2^<:{:$y. 
r flx y. 
) 

flx=:4 : 0 
>] :&.>(<"l 
) 

x.) i ."0 l&.><] :y. 

agg=: [ :+/\ (+/' ,) &, 

A composer since 1956 and APL-literate since 1975, Daz, id Steiyzbreok 
obbzim,d his MFA in Composltion from Princeton University in 1965. 
He tau.ght Music Theory and Composition at Princeton and at Swarth- 

more College until 1977, then worked for I. P1ShaTpAssociates, 
Reuters, .Met;Labs, Seagate Software, and Motorola. He discovered the 
first Clock Face correspondence while a visitor at the IBM APL Design 
Group in Philade~hia (1975-76). He urrites music and builds music 
and otter interfaces in J from La Selva Beach, on Monterey Bay, in 
CalifoTvzia~ You can reach him at davids~pacbelLnct or at 831-684- 

1754. 
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