
Decision Tables Revisited:
The DDLA Decision Table Software System

--by Don Latour
Sea Cliff, New Tork

E
VEN T H O U G H DECISION TABLES HAVE BEEN AROUND since
the late'1950's, they have been largely ignored in recent
years. Nonetheless, they still can serve as a useful tool in

building a computer application. This paper discusses decision
table format and its practicality in the context of the DDLA
Decision Table Software System, a PC-based APL+DOS imple-
mentation of a decision table editor, validater, file manager and
mainframe (BAL) program generator.

Introduction
This is a decision table:

GENDER EQ FEMALE

AGE LE 65

PROCESS1
PROCESS2

.Y .Y N N

l' N Y N

Figure I

It is a format for specifying programming logic. It is also:

I. a tool ofthouglat,
2. a format that laymen can understand, and
3. is a basis for:

a. verifying specification completeness,
b. generating a computer program to implement the logic,
c. performing rnn-time dynamic optimization,
d. providing run-time audit trails,
e. generating test data,
f. detecting system integrity failure,
g. organizing parallel processing of program logic and
h. encouraging forward and back tracking analysis.

The table of Figure 1 will be discussed below as will each
item in the preceding list, but first a word about the subject
S o~tware.

The DDLA Decision Table Software System consists of a
decision table editor, a validater, a data definition facility, a file
manager and a mainframe assembler program generator. It is a

PC-based system written in APL+DOS and, therefore, runs on
any platform supporting DOS.

The software is industry independent but was developed to
~sist in the specification and implementation of complex
systems used in the Direct Marketing industry. These systems
target multiple geographic, demographic and product-usage
groupings from huge files of consumer households (100 million
records). Tens of millions of pieces of mail can be generated from
a single pass of a file. Note that these files were compiled from
data voluntary submitted by the consumer and with the under-
standing that the data would be used for advertising purposes. In
any case, a consumer can have their name removed by contacting
the Direct Marketing Association.

Decision tables are an ideal specification tool in this environ-
ment because both marketing and technical personnel can com-
municate in a technically precise manner with the knowledge that
the approved specifications will be implemented faithfully and
efficiently.

APL is an excellent language for this application because it
communicates well with other environments used by mains tream
marketers, provides fas t application development and is adept at
handling strings and tables.

Decision table basics
In Figure 1, GENDER and AGE are the names ofvariables and
FEMALE and 6 5 are values of these variables.

GENDER EQ FEMALE andAGE LE 55 are conditional
boolean statements yielding boolean results. The blank line
separating them is interpreted as an AND.

PROCESS1 and PROCESS2 are actions available for selec-
tion.

The columns to the fight of the double vertical bars are rules.
They define the action to he selected based upon combinations
of the booleans. Thus, rule 1 (i.e. the first column) is read as: If
GENDER EQ FEMALE is true (Y) and AGE LE 65 is true
(Y), then select PROCESS1 (the X at the bottom of the column
selects PROCESS1).

Rules 2, 3 and 4 specify that all other combinations of
conditions select PROCESS2.

Note that rules 3 and 4 are the same except for the AGE
condition, and that condition specifies Y in one case and N in the
other. These two colunms may be combined, replacing the
differing truth values with a dash, meaning "don't care". Thus,
the table is simplified to:

.,.IoNs 1999 -- VOLUMS 29, NUMBER 4 2 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F333601.333606&domain=pdf&date_stamp=1999-06-01

GENDER

AGE

EQ FEMALE

LE 55

PROCESS1
PROCESS2

Y Y N

Z N -

X
X X

Figure 2

Some variables such as GENDER have values that axe

mutually exclusive and when more than one value is significant
the syntax is different:

GENDER EQ FEMALE

AGE LE 999
AGE EE 65
AGE LE 49
AGE ~E 17

PROCESS7
PROCESS8
PROCESS9
PROCESSA
PROCESSB

YYYZ

$$-*
$YN*
YN**

X
X

X
X

N

m

m

X

GENDER EQ MALE
GENDER EQ FEMALE

AGE LE 55

PROCESS4
PROCESS5
PROCESS5

Y**N
*YYN

X

YN-
. . . . h ,

X
XX

Figure 3

In Figure 3 the lines containing GENDER are called a sub-
table because they reference the same variable. The * means N
by virtue of a more important condition, in this case a Y in the
same column of the sub-table. That is, ffGENDER is MAL E then
it cannot be either FEMALE or any other value. The fourth
column of the sub-table contains all N's. This indicates a value
other than MALE or FEMALE.

Numeric variables may be used to specify ranges and this
leads to another syntax and the last symbol that is used in the
rules.

Figure 4 demonstrates a range sub-table for AGE. The new
symbol $ means Y by virtue of a more important condition. That
is, if AGE i s LE t o 17 it must b e L E L~9, 65 and 999.
Rule 4 specifies an AGE greater than 999- This is most likely an
"impossible" condition but must be spedfied to assure specifica-
tion completeness (more on this later). It is a requirement that
even impossible conditions must be specified.

You will note that the only relational operators aUowed are
EQ and LE. This is all that is required, and by not aUowing NE,
LT, G~ and GE the preparation and understanding of a table are
much easier (e.g., no double negatives).

Returning to Figure 1, note that the order (sequence) of the
conditions or the rules does not change the semantics of the
table.

Figure 4

Why decision tables?
Let's go through the list from the Introduction.

A tool of thought
At times in my career I have found myself presented with a
programming logic problem so complex that it was literally mind
boggiing. I would start to analyze the requirements and then
become so confused that I would have to start over. Finally, I
would, think I had it right, program it, start the almost impossible
task of tesfng and then the requirements would change!

Decision tables offer an organized approach. First determine
if all/he information required for the resolution of the logic is
available. If it is not then the problem cannot be resolved.
Second, write down all the actions that are relevant. Third, write
down all the data elements that are relevant. Fourth, one by one
fill in the rules. It's really that simple!

A I b n ~ a t that laymen can understand
It is a demonstrated fact that sales and management personnel
with no programnfing experience but, that otherwise unders rand
the mlder]ying requirements, can easily understand decision
tables. Thus, responsible user management can directly partici-
pate in development and then sign-off on the resulting specifica-
6ons.

A ba~ris for veri~,ing speci~cation completeness
Spec£~cation completeness means that every mathematical
combination of conditions is specified without redundancy. The
number of combinations is easily computed from the conditions
(x/l+T~ where L is a vector containing the number of rows in
each sub-table). If the rule count does not equal this number then
the table is incomplete (remember a dash counts as two rules).

If the two figures agree then it is necessary to verify (ignoring
actions) that the rules contain no redundancies. Bearing in mind
that a dash will always produce an equal condition, each rule is

3 0 APL ~ , , ~

compared to every other rude. If there are no equal rules then the
specification is complete.

Program generation is prohibited urdess a table is complete.

A basis for generatlhg a computerprogram to
implement the logic
An understanding of this process is direcdy related to the
specifics of the implementation. The generated programs are
S/370 callable assembler sub-routines which presume two
primary sources of input data and will return in memory the
action(s) designated by the decision table logic.

The PC software has a data definition facility to define a
mainframe tape record layout and, separately, fields passed by
the CALL statement. These are translated into assembler format
and are addressable at run-time on the mainframe. Special
condition llne prefixes (e.g., MAC., CALL. , COPY. or DT.)
permit system macros (e.g.,, a random-number generator), call-
ing externalprograms or nesting decision tables.

Comparand data (to the right of the relational operator) is
taken directly from the decision table either as a single value, a
list of values or from a PC-resident file. Alist example is: STATE

EQ NY, N J , CT where the comma is interpreted as an OR. PC-
resident files are a convenient way to store long fists of values
(e.g., ZIP codes).

The generated program compares the input data to the
comparand(s) and builds a boolean transaction vector with one
bit assigned to each condition. Ignoring blank rows, ffthere are
ten conditions, then there are ten bits in the transaction vector.
This results in each condition being evaluated once and only
once for each CALL.

The actions may take one of three forms: the name of an
external program, a character string or a signed integer. Accord-
ingly, the externalprogram address(es), the character string(s) or
the integer(s) are returned in a work area to the calling program.

The process of determining which rule satisfies the input data
is called rule masking. It consists of constructing two boolean
matrices: a mask matrix (M) and a condition matrix (C). Both are
constructed using the character configuration (13) in the upper
right hand quadrant of the table (blanks are ignored):

M~Be'YN' and C÷B='Y'

The transaction vector is ANDed with a column in the mask
matrix and the result compared to the corresponding column in
the condition matrix. A rule is satisfied when the latter compare
is equal. IfV is the transaction (column) vector and 7, is the rule
number satisfying the conditions then, in APL the process is:

X~-(-l~pB)/V o Me-Be'IN' o C~-B='~[' o Z~-(^/X^M)=C)/i-ItoB

Having resolved the rule number, simple indexing locates the
action(s).

Using the table of Figure 4 by way of an example:

B is: IZYYN M is: 11111 andC is: 11110

$$YN- 00110 00100

$$-*- ooooo ooooo
SYN*- 01100 01000

~N**- 11000 10000

If we assume an input record to represent a FEMALE of AGE
62, then the boolean transaction vector V is:

i (GENDER EQ FEMALE is true)
I (AGE LE 999 is true)
I (AGE LE 65 istrue)
0 (AGE LE 149 is false)
0 (AGE LE 17 is false)

X is: 11111 X^M is: 11111 (X^M)=C is: 11110
11111 00110 11101

11111 00000 11111
00000 00000 10111
00000 00000 01111

In the last matrix, only colunm 3 is all ones and, therefore, the
input data satisfies rule 3 of the table and the actions associated
with rule 3 are selected.

After a program is generated it must be up-loaded to the
mainframe, assembled and link edited with the calling program.
All mainframe data types except floating point are supported, as
well as, multi-valued fields (e.g., a 5 0 - b y t e / N 2 E R E S T field
containing 25 values of two bytes each).

A basis for performing run-U?ne dynamic optl?nization
Rule masking as implemented on the mainframe is a simple AND
and compare loop (NC and CLC instructions) that proceeds
column by column through the mask and condition matrices
until a compare is equal. By tracking rule numbers, the high
probability rules can be placed at the beginning of the two
matrices, thus, shortening the search path.

A basis forproviding run-tl~ne audit trails
The transaction vector is the resuh ofevaluating every condition.
The run-time address of this vector is returned to the calling
program so that it may be saved for future analysis and audit.

A bas i s f o r g e n e r a t i n g t e s t da ta

The input data funnats and the significant data values are present
in a decision table specification and, therefore, combinations of
the data can be generated on the PC. Additionally, the transac-
tion vector and the action(s) sdected can he prepared and in-
eluded with the test data to compare with the results of main-
frame processing.

Ju'Nx 1999 -- VOLU'~E ~9, Nu~nEs. 4 3 1

A bas is fo r de t ec t ing s y s t e m in tegr i t y failure
The rule masking process results in one and only one rule that
satisfies the decision table logic. If the mask and condition
matrices were to be exhaustively searched then multiple rule
resolution (or no resolution) would be indicative that somet]-fing
had gone wrong, probably a memory overwrite by an errant part
of the system.

A basis for organizing parallelprocessing ofprogram
logic
Given an appropriate set of processors, the evaluation of the
conditions can take place in parallel as can the rule masking
column evaluations. This should result in very fast resolution of
complexlogical sys terns. Note that the system integrity detection
(above) is almost free in this environment.

A basis for encouraging forward and back tracking
anMysis
Decision tables are intrinsically rule based and ran-time software
can count the rules that are fired and the actions that are selected.
This may be fertile ground for artificial intelligence applications.

Summary'

ZIP EQ 02100-02299 ~ N 1 t * Z 1 r 1 r 1 r Y l ' * * * * * *

ZIP E~ LST.CBICAGO ~ I~ * Y * * * * * * Y Y ~ .Z l ~ ~I'

M
i ~ ' . C I R I L D R E N E@ 1 ~ - - - YY i~ I~ l i N ~" Y Y ~ N N N

l

/~JMDOGS ~gl | - * * $ I N $ Y t , ' $ Y l v $ I ' N

A'UMDOGS LE 0 ~ - * * !r N* I' N * Y N ~ Y N *

-i ERROR i " X X

0 BYPASS RECORD ~ X . . X . . X . . X . . X . .

1 ~_TDS, 1 DOG ~ X X "

2 KIDS, 2 ~0 9 DOGS ~ X X . . .

3 l~O K I D S , 1 D O G ~ X X .

NO EIDS, 2 TO 9 DOGS ~ X X

Figure 5

Figure 5 a an example of a decision table that selects one of
six actions for households in Bos ton or Chicago based upon the
presence of children and one or more dogs. The " . " and blank
columns in the rule area are for ease of reading the table.

The actions are integers and are described by comments to
the right of each value. Presumably, actions 1, 2, 3 and 4
represent advertising materials.

The Boston ZIP codes are specified as 0 2 ! 0 0 ~ 0 2 2 0 9 ,
where the tilde signifies an inclusive range of numbers. The spec-
ificafionforChicagoZIP codes, T, S T . CHICAGO refers to aPC-
resident file of Chicago ZIP codes.

The specification DT. CItILD~EN refers to a nested decision
table that returns a one ira household includes children. Typi-
cally, children's data are contained in several fields (age, gender,
etc.) requiring multiple comparisons to determine the presence

of children. Using a nested table significantly simplifies the table
of Fig~are 5.

Notice how the rule specifications tend to follow patterns.
This :is a common occurrence that simplifies table construction
by using block copies. For example, after Boston is defined,
simply block copy Boston and change the first two rows (a Y to
an * and an * to a Y) and you have the specification for Chicago.

It is significant that the above table can be turned into an
assembler program by a few key strokes and, therefore, the
development time, energy and cost may be spent on the specifi-
cation and not the programming of the specification. Also, If the
input file is in ZIP code sequence, as is normally the case with
direct marketers, then the impact of dynamic optimization is
spece~cular.

Condusion
Decision tables were in vogue 35 years ago but they fell into dis-
use and today they seem to he virtually ignored by mainstream
data processing. This is unfortunate because, as I have tried to
point out, they are a very practical tool for modern systems engi-
neering. As a matter of fact, the more complex the logic, the more
dedslon tables shine as a simple and cost effective methodology.

References
1. U.W. Pooch, Translation of Decision Tables, ACM Com-

puting Surveys, Volume 6, Number 2,June 1974.

2. E.. H. Bietz, et al, A Modem Appraisal of Decision Tables,
CODASYL Task Group, 1982 Report.

Don Latour's data processing career started in 1957 and has
inclu~d fie~i engineering, systems engineering, programming,
project management, MIS management, soj~ware development and
consu.!Hng. He can be reached via: Don Latour, PreJidznt, D D L
Associates, Inc., 172 DuBo/,, Avenue, Sea Cliff, JVY11579;
Td .p,~one: 516-676-8850; E-mail: "latour@ibm. net': AlJo refer to
the D D L Associates website a t "http://www. ddlaina corn':

~Te w a n t y o u r thoughts!
Inside the wrapper of this issue is a Feedback Form, asking
fo:r your comments about APL Quote Quad and S IGAPL.
What did you I//~ about this issue? What did you dislil~?
W~at else should we be working on? We'd really like to
hear from you. Can you please take a miuute and fill out
this form? I f you no longer have the form,just mail your
comments to the Executive Editor of APL Quote Quad (or
via e-mail, to "Pofivka@ACM.org") Than~2ou!

