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Abstract: In this paper we present a novel technique 
for cost estimation of user-defined methods in 
advanced database systems. This technique is based 
on multi-dimensional histograms. We explain how the 
system collects statistics on the method that a 
database user defines and adds to the system. From 
these statistics a multi-dimensional histogram is built. 
Afterwards, this histogram can be used for estimating 
the cost of the target method whenever this method is 
referenced in a query. This cost estimation is needed 
by the optimizer of the database system since this cost 
estimation needs to know the cost of a method in 
order to place it at its optimal position in the Query 
Execution Plan (QEP). We explain here how our 
technique works and we provide an example to better 
verify its functionality. 

Keywords: Advanced Database Systems, User- 
defined Methods, Cost Estimation, Optimization. 

1. Introduction 
The extensions introduced in advanced Database 

Management Systems (DBMSs) in the last few years 
has made it possible for a user to add new types and 
predicates -that may also be called user-defined 
methods or functions- to the system and to reference 
one or more of these predicates in a query. This is the 
ease for both Object-Relational (OR) and Object- 
Oriented (OO) database systems. The dynamic 
process of System R in optimizing relational queries 
is being increasingly adopted in optimizing new types 
of queries in OR and OO systems. This optimization 
process is mainly concerned with ordering joins in a 

query while using the heuristic of pushing selections 
down in the query tree, i.e., applying selections as 
soon as possible. As pointed out earlier in Hellerstein 
and Stonebraker (1993) this heuristic is not valid any 
more when referencing user-defined methods as 
predicates. In addition, ordering expensive predicates 
on a relation or collection becomes non-trivial. 

Both Hellerstein and Stonebraker (1993) and 
Hellerstein (1994) on one hand and Chaudhuri and 
Shim (1997) on the other hand address the problem of 
optimizing queries with expensive predicates. 
However, both studies assume the cost of any user- 
defined method is known a-priori; they assume that 
the user who adds a method provides also its cost 
according to its input data. This assumption is a 
limiting factor for the applicability of the proposed 
optimization schemes since estimating the cost of  a 
user-defined method requires a highly skilled user 
that can analyze his method and estimate its cost 
according to the metrics used by the database system. 
Such expertise is not always available to normal 
users. Moreover, the method that a user wants to add 
may be a third party executable (i.e., a black box) that 
the user does not have access to its internal 
mechanisms and cannot easily analyze and estimate 
its execution cost. An automatic process for user- 
defined method cost estimation is hence crucially 
needed in order to alleviate this limitation of the 
applicability of optimization processes for queries 
with user-defined methods. This paper is a first step 
to address this issue. 

We had already studied an approach for automatic 
cost estimation of user-defined methods in Boulos, 
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Vi6mont, and Ono (1997). This approach is based on 
a curve-fitting like mechanism and uses neural 
networks. Under that approach a neural network is 
trained according to some measurements made on the 
target user-defined method. The neural network is 
feed with different values/sizes of the data entries of 
the method and the execution time for each measured 
value and size. In a later phase the network is used to 
estimate the execution cost of the method with other 
entries (i.e., other values/sizes). The main limitation 
of this approach is its applicability: it is not trivial to 
integrate neural networks in an already very complex 
system like a DBMS. Since histograms have proven 
their effectiveness in selectivity estimation (Poosala 
et. al. (1996)) and are widely used in commercial 
systems, we study here their effectiveness in 
capturing the execution costs of user-defined methods 
and estimating in a second phase these costs. 

The paper is organized as follows: Section 2 
presents the motivation for our work. In Section 3 we 
give a formal definition to the problem we are 
addressing with some approaches we think may be 
applicable to resolve it. In Section 4 we present our 
solution that is based on multi-dimensional 
histograms with an algorithm to build them. Section 5 
presents an example where we applied our proposed 
technique. In Section 6 we discuss some related 
works and in Section 7 we present a conclusion and 
some directions for future works. 

2. Motivation 

Our work is motivated by a new generation of 
applications that we think are going to extensively use 
the new functionality in ORDBMSs. Multimedia and 
web-based applications may be the most direct targets 
that needs to use the capability in OR systems of user- 
defined and expensive predicates. Algorithms such as 
compression, text search, time-series manipulation 
and analysis, similarity search (DNA sequences, 
fingerprints, images, etc.), audio and video 
manipulations are being aggressively investigated and 
added as new functionality in database systems. 
These algorithms (i.e., methods) are sometimes added 
by the commercial database vendors (e.g., 
DataBlades modules in Informix and Cartridges in 
Oracle) but they can also be added by application 
developers. An intelligent database system must be 
able to automatically collect statistics on these 
algorithms, estimate their costs and selectivity, and 

place them at their optimal positions in QEPs 
whenever they are referenced by SQL queries. We are 
addressing here cost estimation only and not 
selectivity estimation. Future complex queries may 
contain several of these expensive methods, 
interleaved with joins and simple predicates. 

Examples of simple queries that contain expensive 
and user-defined methods are given here. Such type 
of queries may benefit from our proposed technique. 

select * from Map 
where Contained(shape, 

Circle(POINT, RADIUS)) 
and shape.Area() > AREA; 

// can also be expressed as 
// Greater(Area(shape), AREA); 

select Extract(Roads, 
SatelliteImage) 

from Map 
where contained(SatelliteImage, 

Circle(POINT, RADIUS)) 
and SnowCoverage(SatelliteImage) 

< PERCENTAGE; 

select name, location 
from document 
where contains(text, STRING) 
and SimilarityDistance(image, 

SHAPE) < DISTANCE; 

select distinct point.name, 
point.location 

from point, polygon 
where polygon.landuse = LANDUSE 
and overlaps(polygon.shape, 

point.location); 

select * 
from suspects 
where addeddate > DATE 
and zip like '75%' 
and (hasbarbe(face) 

or similar(face, IMAGE)); 

select Company.Name 
from Company 
where addeddate > DATE 
and zip like '98%' 
and Similarity(MovingAvg(Period, 

StockPrice), SHAPE) 
< THREESHOLD; 
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3. Problem Formulation 

We give here a better definition for the problem 
we are addressing, so it would be easier for the reader 
to understand our goals. An n-ary method is of  the 
form MethName(Argj . . . . .  Argn). The execution cost 
of  this method depends upon its internal processing 
complexity and the type and size of  each of its 
arguments Argj . . . . .  Argn. Formally 

/I 
CO$t MethName = ]nitCOSt MethName "1- E i = I  CoSt Ars~ 

+ ~n=l InfluencingSiZeArs~ × perbytecpu 

+ ~n=l (lnfluencingValArg ' × perincvalcpu) 

lnitCOStMethName is the cost to initiate the 

execution of the method independent of any 
/I 

argument. ~i=1CoStArg, is necessary because Argi 

may be by itself another user-defined method. An 
example of this situation is when a query references 
something like Similarity(MovingAvg(Period, 
Stockthice), SHAPE). The third factor in the 
equation is meant to compute the differential cost 
whenever the size of an argument influences the cost 
of the method. Similarly, the fourth factor is meant to 
compute the differential cost whenever the value of 
an argument influences the cost of the method. Other 
factors may also play a role in increasing or 
decreasing the cost of some methods; such factors 
may be the access cost to some stored data in order 
for the method to proceed. We do not discuss these 
factors here. 

A user-defined method may be a stored procedure 
within the DBMS written in a general-purpose 
language (such as C) or in a fourth generation 
language such as SQL or OQL; it may be also an 
external executable called dynamically from the 
DBMS whenever it is being referenced in a query. 
We explain in the next subsection different types of 
methods that have different behavior in their costs in 
relevance to their input arguments. 

3.1 Method Costs Classification 

It should be noted that several types of variability 
in cost exist depending upon the values and sizes of 
the input arguments to a method. This is mainly 
related to the sensitivity of the method's cost to its 
input arguments. Some arguments may have a great 

influence on the method's cost while others may not 
have any effect. The variability in method's cost is 
also related to the complexity of the method's internal 
processing. We divided the types of methods 
depending upon their cost variability in relevance to 
their input arguments into three classes. 

Constant  Costs: each method falling into this class 
has a constant execution cost that is independent of  
the values and sizes of its input arguments. The costs 
of such methods are hence dependent only upon their 
internal processing complexity. Some simple 
examples of such methods are Add(Argl, Argz), 
ComputeAge(DateOfBirth), MultipleMatrix(10x 10, 
10xl0). 

Monotone Variable Costs: methods falling into this 
class have variable costs dependent upon the values 
and sizes of at least one of their input arguments. 
Typically, the cost of a method here goes up with the 
values and sizes of its input -but  this is not 
necessarily the case always. Examples from this class 
are: Search(Text, STRING), MovingAvg(Period, 
StockPrice). 

Non-monotone Variable Costs: methods from this 
class have a higher level of complexity in their 
internal processing in relevance to their input 
arguments and hence have ups and downs in their 
costs depending upon complex relations between 
their input arguments. Examples of this class are: 
Overlaps(Land, Road) (for this method, an execution 
may immediately reveal that an input land and an 
input road do not overlap when comparing their 
bounding rectangles from an R-tree index. However, 
if the bounding rectangles overlap, the execution must 
proceed to compare pixels of the two spatial objects, 
which is a much expensive operation. In addition, the 
cost of this method is highly sensitive to the size of 
the input arguments). Another example from this 
class would be GreaterSnowCoverage(Satlmage, 
PERCENTAGE). 

Estimating the costs of methods from the first 
class is a simple task. It is sufficient to execute a 
method from this class once, record its execution 
cost, and use this execution cost whenever needed. 
The second class of methods has a higher complexity 
to estimate its cost. However, we think the estimation 
approach we are proposing in the next section is quite 
suitable for this class and will have an acceptable 
estimation error rate most of the time. The third class 
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is even harder to estimate the costs of its methods; 
our proposed technique may apply to this class but 
for some methods, it may have a high estimation error 
rate. Further investigations must be carried on this 
class. 

3.2 Possible Cost Estimation Approaches 
We believe that there is a high similarity in 

estimating the costs of user-defined methods and the 
(eternal) selectivity estimation problem in database 
systems. Therefore we think that the same approaches 
that have been investigated and applied to selectivity 
estimation may apply to method cost estimation. 
These different approaches may be divided into four 
categories: I) parametric functions, 2) histograms, 3) 
sampling and 4) curve fitting. As we mentioned 
earlier in this paper, we have already investigated the 
appropriateness of neural networks for method cost 
estimation. This was a curve fitting approach. A 
histogram approach for method cost estimation may 
be easier to be integrated in database systems, since 
histograms are the only approach that is effectively 
used in commercial systems. 

There is however a major difference between 
selectivity estimation and method cost estimation. 
The former has only one argument for its input and 
hence is only two-dimensional (one dimension for the 
values of the target attribute -i.e., the argument- and 
the second dimension for the selectivity). The later 
has multiple dimensions; these are the input 
arguments to the method in addition to the cost 
dimension. Hence, each n-ary method must have n+l 
dimensions in its histogram to capture its input 
arguments and provide a cost estimation. We explain 
in the next section how to build a multi-dimensional 
histogram from statistics collected while executing a 
user-defined method. 

4. Histogram Approach  

To build a multi-dimensional histogram for 
estimating the cost of a user-defined method, the 
system must first execute the method several times 
with different values of its input arguments, collect 
these values and the different costs, and then build the 
histogram. To do so, a measurement campaign must 
be carried. The user in this regard may help the 
system in providing what he thinks might be the 
upper and lower values for each of the input 
arguments. The system then carries the measurement 

campaign, varying the values of each argument 
between its upper and lower values. A pseudo- 
algorithm to carry the measurement phase is given in 
Figure 1. 

Procedure CollectStats(MethName, 
n, 

Pointer to Argj ..... Argn) { 
If(n==- 1 )do{  
Perform a measurement campaign varying the value 

of Argt 
return; 
} 
for Argl in Argj ..... Arg, do { 
Select different values for Argl to be measured 
Forcach value of Argl do 
CollectStats(MethName, 

n - l ,  
Pointer to Arge ..... Argn); 

} 

Figure 1 : Algorithm for the measurement phase and 
statistics collection. 

When the first phase of statistics collection is 
finished, the system will have a multi-dimensional 
array of all the collected measurements. This array 
may be very large if the target method has several 
arguments in its input and for each argument the 
measurement campaign tested several values. The 
number of cells in this array is 
Nb TestedValues Arg ~ x Nb TestedValues Arg 2 ×...× 

Nb TestedValues Arg n 

Hence, it becomes non-practical to store this large 
array in the database system. Two size reduction 
techniques may be applied to alleviate this burden. 

The first technique to reduce the size of the large 
array is to replace it by a multi-dimensional histogram 
where several measured values for an argument are 
replaced by only one value. This value is equivalent 
to one bucket in histograms for selectivity estimation. 
Hence, a multi-dimensional histogram is built to 
reduce the size of the array to a much smaller size. 

The second technique is meant to further reduce 
the number of buckets on some dimensions. This is 
because the number of buckets grows exponentially 
with the number of arguments in a defined method. 
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min I _<Arg I < m a x  I rain 2 -<Arg I ~:max z ... 

rain I _~Arg 2 <m~x~ ... max  3 _~Arg 2 ~max,~ 

o 

rain I _~Arg~ <max  I max  3 _~Arg 3 < m a x  3 

AvgCost AvgCost 

min b -<Arg I <nu~x b 

& 

Figure 3: The multi-dimensional histogram is stored like a tree and is traversed top-down to get the estimated cost 
for the target method for a specific set of values of the method arguments. 

That is, the number of  buckets is B". In order to 
alleviate this burden the number of buckets for each 
argument may be adapted to the influence this 
argument has on the cost of  the method. In this way, a 
high influencing argument will have a higher number 
of buckets than a low influencing argument. We only 
give in Figure 2 a pseudo-algorithm to construct the 
multi-dimensional histogram. Reduction in the 
number of buckets for some dimensions is left for 
further discussions in future works. 

Procedure ConstHisto(n, 
Pointer to A r r a y O f M e a s u r e m e n t )  { 

Sum = Sum of all values in ArrayOfMeasurement ;  

ForFirst  dimension in A r r a y O f M e a s u r e m e n t  do { 
Divide the dimension into B buckets such that each 

rocket has approximately Sum/B summing value; 
If (n == 1) return; 
Foreach bucket from the previous division do 
ConstHisto(n - 1, bucket); 

] 

Figure 2: Algorithm for constructing the multi- 
dimensional histogram. 

The constructed multi-dimensional histogram for 
a method will practically be stored as a tree in a 
database system. This tree is traversed like an index 
whenever needed to get the estimated cost for a 
method with a specific set of values for the method's 
input arguments. Figure 3 gives a better visualization 
for this concept. 

5. Experimental Results 

In order to experimentally validate our proposed 
technique we built a program in C to construct both 
equi-width and equi-height multi-dimensional 
histograms. We run a manual measurement campaign 
on a text search engine in which we varied the sizes 
of both the text in which the search is performed and 
the pattern we are searching for. The search had the 
form Search(Text, String) where Text pointed to a 
file and String pointed to a string in memory. We 
varied the size of the Text file from 5 to 50 MB by a 
step of 5 MB and the size of the string from 4 words 
to 28 words by a step of 4 words. 

The measurement campaign generated a two- 
dimensional array with 70 cells that contained each 
the measured execution cost for two specific values of  
Text and String. To store this array, the system needs 
to store 140 numbers (the different values need 70 
numbers to be stored and there are 70 other numbers 
for the cost). 

We applied the program we coded to construct the 
multi-dimensional histograms on the measured data. 
The program generated an equi-height and another 
equi-width histograms. The reduction in needed 
number of points from the measurement array to the 
histogram went from 140 numbers needed to be 
stored to 34 numbers - i . e . ,  a reduction of factor 4. 
Figure 4 visualizes the three graphs that were 
constructed from all the measurement numbers and 
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Real Execution Time

Equi-Width Histogram

Figure 4: A comparison between graphs for the real, equi-width, and equi-height histograms for the text search
method that has been experimented.
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the two generated histograms. The graphs give a 
much better idea of the purpose of our approach. Any 
method with a higher number of arguments cannot be 
visualized because it would need more than 3 
dimensions. 

The error rates for both the equi-height and the 
equi-width are reported in Table 1. These error rates 
may seem high but the reader can see from Figure 4 
that these error rates are still acceptable for the 
benefit they yield in reducing the number of points 
that must be stored. In this text search example the 
equi-width histogram seems to have a slight 
advantage over the equi-height histograms; however, 
this may be due to the approximately perfect 
increases in the method's execution costs in relevance 
to the input sizes. These increases have a logarithmic 
shape for the Text sizes and an exponential shape 
with the String size. Further experiment are necessary 
to elect the most suitable multi-dimensional 
histograms for most types of methods. 

Avg. Absolute 
Error 

14.7 

Avg. Relative 
Error 

Equi-Height 78.4% 
Histogram 

Equi-Width 13.9 54.9% 
Histogram 

Table 1: Comparison of average error rates for both 
multi-dimensional histograms. 

6. Related Work 

To the best of our knowledge, there has been little 
work on estimating the cost of expensive predicates. 
Most research works in this area concentrated on 
sequencing several expensive predicates and/or 
interleaving them with joins. As we have said, 
Hellerstein and Stonebraker (1993) and Hellerstein 
(1994) address these two issues and provide some 
heuristics to sequencing and interleaving expensive 
predicates in QEPs. Chaudhuri and Shim (1997) also 
address the problem of ordering and interleaving 
expensive methods with joins. Both studies assume 
the cost of any expensive predicate known a--priori. 

Recently, Shivakumar, Chekuri, and Garcia- 
Molina (1998) considered selecting and applying 
approximate predicates to be applied on data before 
the real expensive predicates. In this manner less 
expensive approximate predicates filter out non- 

qualified input before applying the expensive 
predicates. Here also, the cost of any approximate or 
full expensive predicate is assumed to be known in 
advance. 

7. Conclusion 

We presented in this paper a novel technique for 
estimating the costs of user-defined methods. This 
technique is based on multi-dimensional histograms. 
The cost estimation of user-defined methods is 
needed by the optimizer of an OR or OO database 
system in order to correctly place the methods at their 
optimal positions in a QEPs. Several issues remain to 
be resolved before a beneficial integration of this 
technique into a DBMS. These are mainly the 
selectivity estimation of expensive predicates and the 
cost of methods with values of arguments given 
outside the measurements and histogram boundaries. 
This paper presented a step toward a better 
understanding and optimization of user-defined 
methods in advanced database systems. 
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