
Cost Estimation of User-Defined Methods in Object-

Relational Database Systems

Jihad Boulos*, Kinji Ono
NACSIS (National Center for Science Information Systems)

Otsuka 3-29-1,
Bunkyo-Ku
Tokyo 112

Japan
{ boulos,ono } @rd.nacsis.ac.jp

Abstract: In this paper we present a novel technique
for cost estimation of user-defined methods in
advanced database systems. This technique is based
on multi-dimensional histograms. We explain how the
system collects statistics on the method that a
database user defines and adds to the system. From
these statistics a multi-dimensional histogram is built.
Afterwards, this histogram can be used for estimating
the cost of the target method whenever this method is
referenced in a query. This cost estimation is needed
by the optimizer of the database system since this cost
estimation needs to know the cost of a method in
order to place it at its optimal position in the Query
Execution Plan (QEP). We explain here how our
technique works and we provide an example to better
verify its functionality.

Keywords: Advanced Database Systems, User-
defined Methods, Cost Estimation, Optimization.

1. Introduction
The extensions introduced in advanced Database

Management Systems (DBMSs) in the last few years
has made it possible for a user to add new types and
predicates -that may also be called user-defined
methods or functions- to the system and to reference
one or more of these predicates in a query. This is the
ease for both Object-Relational (OR) and Object-
Oriented (OO) database systems. The dynamic
process of System R in optimizing relational queries
is being increasingly adopted in optimizing new types
of queries in OR and OO systems. This optimization
process is mainly concerned with ordering joins in a

query while using the heuristic of pushing selections
down in the query tree, i.e., applying selections as
soon as possible. As pointed out earlier in Hellerstein
and Stonebraker (1993) this heuristic is not valid any
more when referencing user-defined methods as
predicates. In addition, ordering expensive predicates
on a relation or collection becomes non-trivial.

Both Hellerstein and Stonebraker (1993) and
Hellerstein (1994) on one hand and Chaudhuri and
Shim (1997) on the other hand address the problem of
optimizing queries with expensive predicates.
However, both studies assume the cost of any user-
defined method is known a-priori; they assume that
the user who adds a method provides also its cost
according to its input data. This assumption is a
limiting factor for the applicability of the proposed
optimization schemes since estimating the cost of a
user-defined method requires a highly skilled user
that can analyze his method and estimate its cost
according to the metrics used by the database system.
Such expertise is not always available to normal
users. Moreover, the method that a user wants to add
may be a third party executable (i.e., a black box) that
the user does not have access to its internal
mechanisms and cannot easily analyze and estimate
its execution cost. An automatic process for user-
defined method cost estimation is hence crucially
needed in order to alleviate this limitation of the
applicability of optimization processes for queries
with user-defined methods. This paper is a first step
to address this issue.

We had already studied an approach for automatic
cost estimation of user-defined methods in Boulos,

• Currently with The Boeing Company, M&CT - Phantom Works. Jihad.F.Boulos@boeing.com

22 S I G M O D R e c o r d , Vol . 28, No . 3, S e p t e m b e r 1999

http://crossmark.crossref.org/dialog/?doi=10.1145%2F333607.333610&domain=pdf&date_stamp=1999-09-01

Vi6mont, and Ono (1997). This approach is based on
a curve-fitting like mechanism and uses neural
networks. Under that approach a neural network is
trained according to some measurements made on the
target user-defined method. The neural network is
feed with different values/sizes of the data entries of
the method and the execution time for each measured
value and size. In a later phase the network is used to
estimate the execution cost of the method with other
entries (i.e., other values/sizes). The main limitation
of this approach is its applicability: it is not trivial to
integrate neural networks in an already very complex
system like a DBMS. Since histograms have proven
their effectiveness in selectivity estimation (Poosala
et. al. (1996)) and are widely used in commercial
systems, we study here their effectiveness in
capturing the execution costs of user-defined methods
and estimating in a second phase these costs.

The paper is organized as follows: Section 2
presents the motivation for our work. In Section 3 we
give a formal definition to the problem we are
addressing with some approaches we think may be
applicable to resolve it. In Section 4 we present our
solution that is based on multi-dimensional
histograms with an algorithm to build them. Section 5
presents an example where we applied our proposed
technique. In Section 6 we discuss some related
works and in Section 7 we present a conclusion and
some directions for future works.

2. Motivation

Our work is motivated by a new generation of
applications that we think are going to extensively use
the new functionality in ORDBMSs. Multimedia and
web-based applications may be the most direct targets
that needs to use the capability in OR systems of user-
defined and expensive predicates. Algorithms such as
compression, text search, time-series manipulation
and analysis, similarity search (DNA sequences,
fingerprints, images, etc.), audio and video
manipulations are being aggressively investigated and
added as new functionality in database systems.
These algorithms (i.e., methods) are sometimes added
by the commercial database vendors (e.g.,
DataBlades modules in Informix and Cartridges in
Oracle) but they can also be added by application
developers. An intelligent database system must be
able to automatically collect statistics on these
algorithms, estimate their costs and selectivity, and

place them at their optimal positions in QEPs
whenever they are referenced by SQL queries. We are
addressing here cost estimation only and not
selectivity estimation. Future complex queries may
contain several of these expensive methods,
interleaved with joins and simple predicates.

Examples of simple queries that contain expensive
and user-defined methods are given here. Such type
of queries may benefit from our proposed technique.

select * from Map
where Contained(shape,

Circle(POINT, RADIUS))
and shape.Area() > AREA;

// can also be expressed as
// Greater(Area(shape), AREA);

select Extract(Roads,
SatelliteImage)

from Map
where contained(SatelliteImage,

Circle(POINT, RADIUS))
and SnowCoverage(SatelliteImage)

< PERCENTAGE;

select name, location
from document
where contains(text, STRING)
and SimilarityDistance(image,

SHAPE) < DISTANCE;

select distinct point.name,
point.location

from point, polygon
where polygon.landuse = LANDUSE
and overlaps(polygon.shape,

point.location);

select *
from suspects
where addeddate > DATE
and zip like '75%'
and (hasbarbe(face)

or similar(face, IMAGE));

select Company.Name
from Company
where addeddate > DATE
and zip like '98%'
and Similarity(MovingAvg(Period,

StockPrice), SHAPE)
< THREESHOLD;

S I G M O D R e c o r d , Vol. 28, No. 3, S e p t e m b e r 1999 23

3. Problem Formulation

We give here a better definition for the problem
we are addressing, so it would be easier for the reader
to understand our goals. An n-ary method is of the
form MethName(Argj Argn). The execution cost
of this method depends upon its internal processing
complexity and the type and size of each of its
arguments Argj Argn. Formally

/I
CO$t MethName =]nitCOSt MethName "1- E i = I CoSt Ars~

+ ~n=l InfluencingSiZeArs~ × perbytecpu

+ ~n=l (lnfluencingValArg ' × perincvalcpu)

lnitCOStMethName is the cost to initiate the

execution of the method independent of any
/I

argument. ~i=1CoStArg, is necessary because Argi

may be by itself another user-defined method. An
example of this situation is when a query references
something like Similarity(MovingAvg(Period,
Stockthice), SHAPE). The third factor in the
equation is meant to compute the differential cost
whenever the size of an argument influences the cost
of the method. Similarly, the fourth factor is meant to
compute the differential cost whenever the value of
an argument influences the cost of the method. Other
factors may also play a role in increasing or
decreasing the cost of some methods; such factors
may be the access cost to some stored data in order
for the method to proceed. We do not discuss these
factors here.

A user-defined method may be a stored procedure
within the DBMS written in a general-purpose
language (such as C) or in a fourth generation
language such as SQL or OQL; it may be also an
external executable called dynamically from the
DBMS whenever it is being referenced in a query.
We explain in the next subsection different types of
methods that have different behavior in their costs in
relevance to their input arguments.

3.1 Method Costs Classification

It should be noted that several types of variability
in cost exist depending upon the values and sizes of
the input arguments to a method. This is mainly
related to the sensitivity of the method's cost to its
input arguments. Some arguments may have a great

influence on the method's cost while others may not
have any effect. The variability in method's cost is
also related to the complexity of the method's internal
processing. We divided the types of methods
depending upon their cost variability in relevance to
their input arguments into three classes.

Constant Costs: each method falling into this class
has a constant execution cost that is independent of
the values and sizes of its input arguments. The costs
of such methods are hence dependent only upon their
internal processing complexity. Some simple
examples of such methods are Add(Argl, Argz),
ComputeAge(DateOfBirth), MultipleMatrix(10x 10,
10xl0).

Monotone Variable Costs: methods falling into this
class have variable costs dependent upon the values
and sizes of at least one of their input arguments.
Typically, the cost of a method here goes up with the
values and sizes of its input -but this is not
necessarily the case always. Examples from this class
are: Search(Text, STRING), MovingAvg(Period,
StockPrice).

Non-monotone Variable Costs: methods from this
class have a higher level of complexity in their
internal processing in relevance to their input
arguments and hence have ups and downs in their
costs depending upon complex relations between
their input arguments. Examples of this class are:
Overlaps(Land, Road) (for this method, an execution
may immediately reveal that an input land and an
input road do not overlap when comparing their
bounding rectangles from an R-tree index. However,
if the bounding rectangles overlap, the execution must
proceed to compare pixels of the two spatial objects,
which is a much expensive operation. In addition, the
cost of this method is highly sensitive to the size of
the input arguments). Another example from this
class would be GreaterSnowCoverage(Satlmage,
PERCENTAGE).

Estimating the costs of methods from the first
class is a simple task. It is sufficient to execute a
method from this class once, record its execution
cost, and use this execution cost whenever needed.
The second class of methods has a higher complexity
to estimate its cost. However, we think the estimation
approach we are proposing in the next section is quite
suitable for this class and will have an acceptable
estimation error rate most of the time. The third class

24 S I G M O D R e c o r d , Vol . 28, No . 3, S e p t e m b e r 1999

is even harder to estimate the costs of its methods;
our proposed technique may apply to this class but
for some methods, it may have a high estimation error
rate. Further investigations must be carried on this
class.

3.2 Possible Cost Estimation Approaches
We believe that there is a high similarity in

estimating the costs of user-defined methods and the
(eternal) selectivity estimation problem in database
systems. Therefore we think that the same approaches
that have been investigated and applied to selectivity
estimation may apply to method cost estimation.
These different approaches may be divided into four
categories: I) parametric functions, 2) histograms, 3)
sampling and 4) curve fitting. As we mentioned
earlier in this paper, we have already investigated the
appropriateness of neural networks for method cost
estimation. This was a curve fitting approach. A
histogram approach for method cost estimation may
be easier to be integrated in database systems, since
histograms are the only approach that is effectively
used in commercial systems.

There is however a major difference between
selectivity estimation and method cost estimation.
The former has only one argument for its input and
hence is only two-dimensional (one dimension for the
values of the target attribute -i.e., the argument- and
the second dimension for the selectivity). The later
has multiple dimensions; these are the input
arguments to the method in addition to the cost
dimension. Hence, each n-ary method must have n+l
dimensions in its histogram to capture its input
arguments and provide a cost estimation. We explain
in the next section how to build a multi-dimensional
histogram from statistics collected while executing a
user-defined method.

4. Histogram Approach

To build a multi-dimensional histogram for
estimating the cost of a user-defined method, the
system must first execute the method several times
with different values of its input arguments, collect
these values and the different costs, and then build the
histogram. To do so, a measurement campaign must
be carried. The user in this regard may help the
system in providing what he thinks might be the
upper and lower values for each of the input
arguments. The system then carries the measurement

campaign, varying the values of each argument
between its upper and lower values. A pseudo-
algorithm to carry the measurement phase is given in
Figure 1.

Procedure CollectStats(MethName,
n,

Pointer to Argj Argn) {
If(n==- 1)do{
Perform a measurement campaign varying the value

of Argt
return;
}
for Argl in Argj Arg, do {
Select different values for Argl to be measured
Forcach value of Argl do
CollectStats(MethName,

n - l ,
Pointer to Arge Argn);

}

Figure 1 : Algorithm for the measurement phase and
statistics collection.

When the first phase of statistics collection is
finished, the system will have a multi-dimensional
array of all the collected measurements. This array
may be very large if the target method has several
arguments in its input and for each argument the
measurement campaign tested several values. The
number of cells in this array is
Nb TestedValues Arg ~ x Nb TestedValues Arg 2 ×...×

Nb TestedValues Arg n

Hence, it becomes non-practical to store this large
array in the database system. Two size reduction
techniques may be applied to alleviate this burden.

The first technique to reduce the size of the large
array is to replace it by a multi-dimensional histogram
where several measured values for an argument are
replaced by only one value. This value is equivalent
to one bucket in histograms for selectivity estimation.
Hence, a multi-dimensional histogram is built to
reduce the size of the array to a much smaller size.

The second technique is meant to further reduce
the number of buckets on some dimensions. This is
because the number of buckets grows exponentially
with the number of arguments in a defined method.

S I G M O D R e c o r d , Vol. 28, No. 3, S e p t e m b e r 1999 25

min I _<Arg I < m a x I rain 2 -<Arg I ~:max z ...

rain I _~Arg 2 <m~x~ ... max 3 _~Arg 2 ~max,~

o

rain I _~Arg~ <max I max 3 _~Arg 3 < m a x 3

AvgCost AvgCost

min b -<Arg I <nu~x b

&

Figure 3: The multi-dimensional histogram is stored like a tree and is traversed top-down to get the estimated cost
for the target method for a specific set of values of the method arguments.

That is, the number of buckets is B". In order to
alleviate this burden the number of buckets for each
argument may be adapted to the influence this
argument has on the cost of the method. In this way, a
high influencing argument will have a higher number
of buckets than a low influencing argument. We only
give in Figure 2 a pseudo-algorithm to construct the
multi-dimensional histogram. Reduction in the
number of buckets for some dimensions is left for
further discussions in future works.

Procedure ConstHisto(n,
Pointer to A r r a y O f M e a s u r e m e n t) {

Sum = Sum of all values in ArrayOfMeasurement ;

ForFirst dimension in A r r a y O f M e a s u r e m e n t do {
Divide the dimension into B buckets such that each

rocket has approximately Sum/B summing value;
If (n == 1) return;
Foreach bucket from the previous division do
ConstHisto(n - 1, bucket);

]

Figure 2: Algorithm for constructing the multi-
dimensional histogram.

The constructed multi-dimensional histogram for
a method will practically be stored as a tree in a
database system. This tree is traversed like an index
whenever needed to get the estimated cost for a
method with a specific set of values for the method's
input arguments. Figure 3 gives a better visualization
for this concept.

5. Experimental Results

In order to experimentally validate our proposed
technique we built a program in C to construct both
equi-width and equi-height multi-dimensional
histograms. We run a manual measurement campaign
on a text search engine in which we varied the sizes
of both the text in which the search is performed and
the pattern we are searching for. The search had the
form Search(Text, String) where Text pointed to a
file and String pointed to a string in memory. We
varied the size of the Text file from 5 to 50 MB by a
step of 5 MB and the size of the string from 4 words
to 28 words by a step of 4 words.

The measurement campaign generated a two-
dimensional array with 70 cells that contained each
the measured execution cost for two specific values of
Text and String. To store this array, the system needs
to store 140 numbers (the different values need 70
numbers to be stored and there are 70 other numbers
for the cost).

We applied the program we coded to construct the
multi-dimensional histograms on the measured data.
The program generated an equi-height and another
equi-width histograms. The reduction in needed
number of points from the measurement array to the
histogram went from 140 numbers needed to be
stored to 34 numbers - i . e . , a reduction of factor 4.
Figure 4 visualizes the three graphs that were
constructed from all the measurement numbers and

26 S I G M O D R e c o r d , Vol . 28, No . 3, S e p t e m b e r 1999

Real Execution Time

Equi-Width Histogram

Figure 4: A comparison between graphs for the real, equi-width, and equi-height histograms for the text search
method that has been experimented.

SIGMOD Record, Vol. 28, No. 3, September 1999 27

the two generated histograms. The graphs give a
much better idea of the purpose of our approach. Any
method with a higher number of arguments cannot be
visualized because it would need more than 3
dimensions.

The error rates for both the equi-height and the
equi-width are reported in Table 1. These error rates
may seem high but the reader can see from Figure 4
that these error rates are still acceptable for the
benefit they yield in reducing the number of points
that must be stored. In this text search example the
equi-width histogram seems to have a slight
advantage over the equi-height histograms; however,
this may be due to the approximately perfect
increases in the method's execution costs in relevance
to the input sizes. These increases have a logarithmic
shape for the Text sizes and an exponential shape
with the String size. Further experiment are necessary
to elect the most suitable multi-dimensional
histograms for most types of methods.

Avg. Absolute
Error

14.7

Avg. Relative
Error

Equi-Height 78.4%
Histogram

Equi-Width 13.9 54.9%
Histogram

Table 1: Comparison of average error rates for both
multi-dimensional histograms.

6. Related Work

To the best of our knowledge, there has been little
work on estimating the cost of expensive predicates.
Most research works in this area concentrated on
sequencing several expensive predicates and/or
interleaving them with joins. As we have said,
Hellerstein and Stonebraker (1993) and Hellerstein
(1994) address these two issues and provide some
heuristics to sequencing and interleaving expensive
predicates in QEPs. Chaudhuri and Shim (1997) also
address the problem of ordering and interleaving
expensive methods with joins. Both studies assume
the cost of any expensive predicate known a--priori.

Recently, Shivakumar, Chekuri, and Garcia-
Molina (1998) considered selecting and applying
approximate predicates to be applied on data before
the real expensive predicates. In this manner less
expensive approximate predicates filter out non-

qualified input before applying the expensive
predicates. Here also, the cost of any approximate or
full expensive predicate is assumed to be known in
advance.

7. Conclusion

We presented in this paper a novel technique for
estimating the costs of user-defined methods. This
technique is based on multi-dimensional histograms.
The cost estimation of user-defined methods is
needed by the optimizer of an OR or OO database
system in order to correctly place the methods at their
optimal positions in a QEPs. Several issues remain to
be resolved before a beneficial integration of this
technique into a DBMS. These are mainly the
selectivity estimation of expensive predicates and the
cost of methods with values of arguments given
outside the measurements and histogram boundaries.
This paper presented a step toward a better
understanding and optimization of user-defined
methods in advanced database systems.

R e f e r e n c e s

Boulos, J., Viemont, Y., and Ono, K. 1997. A Neural
Networks Approach for Query Cost
Evaluation. Transaction of Information
Processing Society of Japan. Vol. 38, No. 12,
(1997) 2566-2575.

Chaudhuri, S., and Shim, K. 1997. Optimization of
Queries with User-defined Predicates.
Proceedings of the 22 ~d VLDB Conference,
Mumbai, India.

Hellerstein, J., and Stonebraker, M. 1993. Predicate
Migration: Optimizing Queries with
Expensive Predicates. Proceedings of the
1993 ACM-SIGMOD Int. Conference on
Management of Data, Washington, DC.

Hellerstein, J. 1994. Practical Predicate Placement.
Proceedings of the 1994 ACM-SIGMOD Int.
Conference on Management of Data,
Minneapolis, Minnesota.

Poosala, V., Ioannidis, Y., Haas, P., and Shekita, E.
1996. Improved Histograms for Selectivity
Estimation of Range Predicates. Proceedings
of the 1996 ACM-SIGMOD Int. Conference
on Management of Data. Montreal, Canada.

Shivakumar, N., Chekuri, C., and Garcia-Molina,
H.1998. Filtering Expensive Predicates.
Stanford Report.

28 S I G M O D R e c o r d , Vol. 28, No. 3, S e p t e m b e r 1999

