
Database Research at The University of Oklahoma

Le Gruenwald, Leonard Brown, Ravi Dirckze, Sylvain Guinepain
Carlos Sanchez, Brian Summers, Sirirut Vanichayobon

The University of Oklahoma
School of Computer Science

Norman, OK 73019
gruenwal@cs.ou.edu

1. INTRODUCTION
 Database management is one of the main areas of
research of the School of Computer Science at The
University of Oklahoma (OU). The objective of the
database research team at OU (OUDB) is to help solve
the many issues and challenges facing the database
research community, especially with respect to emerging
technology. Currently, many projects are being
conducted in the following areas: real-time databases,
object-oriented databases, mobile databases, multimedia
databases, data mining and data warehouses. These
projects have been funded by federal and state agencies
as well as private industries such as National Science
Foundation, the U.S. Department of Education,
Oklahoma State Department of Environmental Quality,
and Objectivity, Inc. The purpose of this paper is to
document some of our past and current projects. More
information can be found at
http://www.cs.ou.edu/~database.

2. REAL-TIME DATABASES
 In a Real-Time DataBase Management System
(RTDBMS), transactions must not only maintain the
consistency constraints of the database but also satisfy
their timing constraints. In addition, a RTDBMS often
involves processing both temporal and persistent data.
A RTDBMS is appropriate for applications such as air
traffic control, stock trading, telecommunications,
flexible manufacturing and aircraft flight programs. Its
main goal is to meet the timing constraints of data
transactions regardless of system or transaction
failures. Our project aims at the development of
techniques to manage recovery and nested
transactions.

 2.1. Recovery in Real-Time Databases
 To prepare a RTDBMS for coping with failures, we have
developed techniques to handle three recovery

activities: logging, checkpointing, and reloading. The
objectives of these techniques are to reduce recovery
time, minimize the percentage of transactions missing
their deadlines, and minimize the percentage of temporal
data becoming invalid.
 Our logging technique called Transaction Type
Logging (TTL) takes transaction types and data types
into consideration and employs both immediate and
deferred update at the same time. Transactions are
divided into six types depending on their
characteristics. The logging scheme dynamically
changes from performing no logging activities to
performing either immediate or deferred update
depending on the transaction types. We conducted an
analytical study comparing the performance of TTL with
that of the best technique called VILMB (Valid-Invalid
Logging with Multiple Buffers using deferred update).
The results showed that TTL reduces the REDO cost
and number of memory references during normal
operation in most cases at the cost of a slight increase
of log space. When the amount of temporal data in the
database exceeds 50%, the performance of TTL is
consistently better than VILMB’s [GC97].

 Our checkpoint scheme considers data partitioning,
update frequency, temporal data valid interval, and data
priority. The main memory database is divided into
persistent and temporal data partitions with different
update frequencies and valid intervals. Our algorithm
checkpoints partitions of high update frequency, short
temporal data valid intervals, and high data priority more
often than other partitions. The simulation results
showed that our technique outperforms the
conventional fuzzy checkpoint algorithm. In the cases
of high transaction load and system failure rate, our
technique also outperforms the scheme that considers
update frequency and temporal data valid interval, but
not data priority [HG96a].

 We developed two reload algorithms, partition
reload and data priority reload, for Real-Time Main
Memory DataBases (RTMMDBs) that aim at minimizing
the number of timing constraints violated in addition to
reducing system recovery time. Common features of the
proposed reload algorithms include: 1) the system is
brought on-line before the entire database is reloaded
into main memory in order to reduce down time, 2)
transaction execution priorities are considered so that
high priority transactions have more opportunities to
meet their deadlines, and 3) data accessed frequently are
reloaded before other data. The two reload algorithms
differ from each other based on their choice of recovery
unit and reload priority. In order to evaluate the
performance of the proposed schemes, we conducted
extensive simulations. The results show that: (1) The
data priority reload algorithm, which considers
transaction priority, data access frequency, reload
prioritization, and preemption during reloading, provides
a significant performance improvement over the
conventional reload algorithm. (2) The system load,
database size, and system failure rate determine whether
the efficiency of different reload algorithms is crucial to
the overall performance. (3) The key design factors of
RTMMDB reload algorithms are system unavailability,
transaction execution priority, reload threshold, and
recovery unit [HG96b].

 2.2. Processing Nested Transactions in RTDBMSs
 Extensive work has been done in the area of real-time
transaction scheduling on single-level transaction
models, but only limited work has been done on nested
models. For many advanced applications, transactions
are long, complicated, and access data items at various
network sites. In conventional real-time single-level
transaction models, a transaction is considered as a flat
single unit of tasks that consists of a sequence of
primitive actions with a given deadline. Priorities in
such systems are usually assigned according to the
given deadlines of individual transactions. Schedulers
may use these priorities to determine how to allocate
resources. Because of the atomicity requirement of
transactions, if there is a failure during one’s execution,
it is rolled back and restarted. Therefore, even if all
transactions are initially schedulable, these rollbacks
and restarts may cause them to miss their deadlines.
Thus, a transaction model beyond the flat model is
desired to maximize system performance.

 In this project, we have provided solutions for the
scheduling problem that exists in distributed real-time
database systems using a nested transaction model
[CG96]. In this model, a transaction may consist of
several subtransactions, each of which acts as a unit of

work. We have proposed two priority assignment
schemes to derive CPU usage and data conflict
resolution priorities that are based on either top-level
transactions’ deadlines or individual subtransactions’
work amounts. Nested two-phase locking is used for
concurrency control. As this locking protocol is
integrated with the priority-driven preemptive
scheduling approach, a problem known as priority
inversion may arise. In order to prevent this problem,
two resolution protocols, priority abort and priority
inheritance, are most widely used for flat transactions.
In this project, we have developed two conflict
resolution schemes based on these two protocols for a
real-time nested transaction environment. We have
conducted simulations to measure the overall system
performance when integrating the priority assignment
schemes and conflict resolution protocols. The
simulation results indicate the following: 1) For nested
transactions, if there is high data contention, the priority
assignment scheme which assigns all members of a
transaction with the same deadline works best to derive
priorities for both CPU usage and data conflict
resolution; otherwise, individual subtransactions’
deadlines based on their execution times should be used
for CPU usage priority assignment. The abort-based
conflict resolution protocol performs better when the
system load is low, while the block-based protocol
performs better when the load is high. 2) For flat
transactions, the priority scheme that assigns the same
deadline to all members of a transaction has the best
performance, and the abort-based conflict resolution
protocol consistently outperforms the block-based one.

3. OBJECT-ORIENTED DATABASES
 Object-Oriented DataBase Management Systems
(OODBMSs) have been used for many advanced
applications requiring modeling power that can
represent complex data and complex relations among
data. Those application areas include computer-aided
design, computer-aided manufacturing, and artificial
intelligence. Our research has focused on the following
aspects: concurrency control, data clustering, trigger
scalability, and temporal indexing.

 3.1. Concurrency Control in OODBMSs
 Concurrency Control (CC) is a mechanism used to
synchronize accesses to the database to maintain its
consistency. Due to the complexity in OODBMSs, CC is
more complicated than in conventional databases, and
therefore may severely degrade system performance if
not designed carefully.

 In this project, we have developed a locking-based
scheme to increase concurrency among methods [JG98].
Our model is based on multi-granularity locking. It
utilizes a rich set of lock modes with different locking
granularities and the concept of commutativity among
methods. Two methods are said to commute if their
execution orders do not affect their results and to
conflict otherwise. Therefore, if two methods commute,
the transactions invoking the methods can run in
parallel. For instance access methods, our scheme has
several important characteristics. First, it does not put
the burden of determining commutativity for methods
on application programmers. Second, it provides more
concurrency by taking fine locking granularity. Third, it
reduces deadlocks due to lock escalation. Finally, it
makes use of run-time information in method
commutativity construction to improve concurrency.
For class definition access methods, it allows them to
run concurrently by taking fine locking granularity.
Also, it allows more parallelism between class definition
access methods and instance access methods. Our
comparison study has shown the superiority of our
technique over many existing ones.

 3.2. Data Clustering in Object-Oriented Databases
 Data clustering is a technique that can be used to
improve the performance of an OODBMS. When data
cannot fit in the main memory, they are stored on the
hard disks. Without data clustering, accessing two
related objects usually requires two disk I/Os because
they are not stored in the same page. This degrades the
performance of an OODBMS because accessing a hard
disk is slow. In contrast, the main memory can perform
very fast random access. Thus, related objects should
be stored close to each other in order to maximize the
amount of relevant information returned when a page is
loaded from the disk.

 We have conducted a comprehensive comparison
of existing clustering techniques and developed a new
one that offers several innovative features [DG96,
GG97]. First, the required storage size of our technique
is linear with the number of objects. Second, we
developed a replication strategy adaptable for each
class of objects. Objects are duplicated only when they
are read accessed to increase object locality. Third, our
technique is flexible and can be tuned to avoid big
overhead when the OODBMS is overloaded. Fourth,
the clustering process can be tuned by using a reduced
set of statistics which is easier to set compared with
those required in existing techniques. The simulations
have shown that our technique outperforms many static
and dynamic clustering techniques.

 3.3. Trigger Scalability in Active OODBMSs
 In the 1990s, active features in database systems have
become common place. Most commercial systems now
support some kind of trigger processing. A scalable
trigger system is an active database that can support
multiple triggers on a single data element. Although
trigger support has become more popular, scalability in
these systems is non-existent.

 From an application point of view, scalability allows
for the implementation of workflow modeling in an
active database system. Scalable trigger support allows
for workflow diagrams to be compiled and implemented
by the active database system. Several commercial
products already do this, but are at the application level.
These workflow diagrams would run substantially faster
inside an active database [BBC98].

 There are several issues facing scalability being
investigated at OU. Some issues include trigger priority
and selection during execution such as whether they
can be checked in parallel. Another is determining the
capacity of active (running) triggers in the system.
Some triggers are used more frequently than others are,
so trigger-caching strategies must be implemented.
Semantic analysis of triggers prior to execution can be
done to minimize the number of them in a system.
Composite event handling must also be examined for
possible performance benefits. Also, predictability of
trigger execution can be a great tool for optimization.
Strategies for synchronous as well as asynchronous
trigger support must be investigated. In addition,
recovery schemes for scalable trigger systems will need
to be rethought. To solve these issues, a conceptual
model for scalability trigger support will first be
constructed. The plan is to use Informix as the host
database system and construct a scalable trigger
support module with its datablade API package.

 3.4. Indexing in Temporal OODBMSs
 A temporal database supports the storage and querying
of information that varies over time. Each data value is
associated with a time interval corresponding to the
transaction time, valid time, or both in the case of
bitemporal databases. Data are usually not removed.
Instead, updates are made by adding new records. Such
a database is expected to be much larger than its
conventional counterpart; so its indexing is much more
critical. Conventional indexing techniques such as B+-
trees and hash-based indexes are not particularly useful
for indexing interval data.

 Our goal is to develop an object-oriented indexing
technique that accommodates temporal characteristics

so as to capture sophisticated semantics and provide a
close model of future real-world applications.
Specifically, we are striving to develop an indexing and
storage technique for object-oriented temporal data that
would be efficient for temporal queries while remaining
optimal for non-temporal ones.

 One issue that arises is how to evaluate an indexing
and storage scheme, such as determining the different
criteria that make it efficient and if those criteria are the
same for temporal and non-temporal indexes. In the
case of a static database where all the data have already
been collected and the database is of fixed size, the
efficiency problem can be addressed by analyzing the
data and their associated queries statistically so as to
store them optimally. However, for most applications,
temporal databases are dynamic, and it is practically
impossible to reorganize the storage and indexing each
time new data values become available.

 Another issue in dynamic temporal databases is to

store the data so as to minimize the disk I/O for both
temporal and non-temporal queries. This could be done
by grouping successive updates of a given object or
category of objects together within the same disk
sector. Also, we could place the most frequently
accessed information in main memory. The issue, then,
is to find out what information is accessed most
frequently. In our model, such information consisted of
the index and the most recent data values.

 In the case of bitemporal databases, the temporal

ordering according to the valid time may not be the
same as the ordering according to the transaction time.
In that case, an issue is determining if it is still possible
to index both time axes optimally.

 All of the issues present in OODBMSs are also

issues in temporal OODBMSs. For instance, the model
representing the objects in the database may affect the
indexing scheme, as may the class hierarchy and use of
nested predicates and methods in queries. References
between objects may be another important factor.

4. MOBILE DATABASES
 A MultiDataBase System (MDBS) is a federation of pre-
existing database systems. In [BBC98], the authors
state that “in the future, billions of web clients will be
accessing millions of databases, and that the World
Wide Web will be one large federated system”. Rapid
advances in wireless communication technology dictate
that these static database systems extend their services
to mobile users. Our research concentrates on
transaction management and security in such systems.

 4.1. Transaction Management in Mobile Databases
 Existing transaction management techniques in the
Mobile MultiDataBase (MMDB) environment do not
address two key issues. First, the techniques do not
address the Isolation property of global transactions. It
is difficult to enforce the Isolation property in MMDBs
due to the large number of dispersed databases in the
federation. Second, they fail to address disconnection
that represents catastrophic failures.

 In this project, we have proposed a Pre-Serialization
(PS) technique for MMDBs [DG98, DG99]. This
technique allows site-transactions to commit
independently so that resources may be released in a
timely manner. Two new states, Disconnected and
Suspended, are introduced to fully address
disconnection and migration. A toggle operation is
used to minimize the ill effects of the prolonged
execution due to disconnection of mobile transactions.
A Partial Global Serialization Graph (PGSG) commit
algorithm that enforces a wide range of correctness
criterion with respect to the Atomicity and Isolation
properties has been proposed and its correctness has
been proven. This algorithm is ideally suited for the
MMDB environment as it is de-centralized, and does
not require the cooperation of all sites. We have also
developed an analytical model to compare PS with other
mobile transaction management techniques. We have
concluded that for very little additional overhead, the PS
technique offers substantial benefits over existing
techniques such as fully supporting disconnection and
verifying Isolation. Currently, we are developing a
simulation model for further analysis.

 4.2. Security in Mobile Databases
 Database federations have achieved a high degree of
sophistication when implementing solutions for data
protection and sharing. However, these solutions have
fallen short when mobile databases are involved or make
part of the federation. Therefore, we are exploring what
security issues arise, especially in the area of access
controls, when mobile databases are included as part of
normal functioning of a database federation [SG99]. We
have focused our attention to the development of a
security model for mobile database federations.
Currently, we are exploring how a mobile federation
would behave under different configurations or
scenarios. For instance, we have determined the
advantages and pitfalls that arise when a mobile
database joins the federation either tightly or loosely.
In the former case, the mobile database gives up part of
its autonomy and most of its security operations are
controlled by a central (distributed) entity. In the latter

case, the mobile database retains its autonomy and the
federation must synchronize all security activities with it
for a correct execution. We have also identified how the
federation is affected when mobile users’ access
permissions are altered. Moreover, we have analyzed
how access right propagation plays a role in keeping the
consistency of access permissions between the
federation and the mobile database components that
have joined it.

 For future work, we still have to explore how role-
based access is affected when there are mobile users
participating in the federation. There is no clear
understanding of how the great variety of databases
involved in the system affect the system performance
and the security policies implemented in the federation.
In addition, not much work has been done in the
development of strategies that support multi-level
security for mobile databases. Finally, it remains to be
explored how emerging technologies such as trust-
based systems and the World Wide Web are changing
the overall picture of security and its implementation for
mobile database federations.

5. MULTIMEDIA DATABASES
 In many areas of applications such as medicine, law
enforcement, video game development, and web design,
users may create new (derived) multimedia objects by
editing existing (base) ones. In order to save space, a
derived object can be stored as the set of editing
operations used to create it along with a reference to its
base [GS96]. So, the binary format of the derived object
does not have to be physically stored in the database.
When a user wants to retrieve such an object, the
system accesses the referenced base object, then
applies the associated editing operations on it. This
storage format is called a specification.

 The goal of this project is to demonstrate that
specifications can be used to improve Content-Based
Retrieval (CBR). Knowledge about the editing
operations stored in specifications allows us to perform
two aspects of CBR more efficiently, feature extraction
and similarity search. This project is a collaborative
effort between OU and Baylor University.

 Conventional multimedia database management
systems generally extract the set of features used for
querying from each object as it is inserted into the
database. This can be extremely time-consuming,
especially if the features are extracted manually. If the
derived objects are stored as specifications, however,
we can use the information in that storage format to

determine the objects’ features. Therefore, only the
base images have to be analyzed manually. To
automatically extract features from any specification, we
must determine the effects of all possible editing
operations on the set of features used for querying.
Because of this, the set of editing operations, S, used in
our specifications must be complete, which means that
it can represent all possible transformations from one
object to another. In addition, S should be minimal,
which means that no subset of it is complete. We have
developed methods to test a set of image editing
operations for these properties [BGS97, BG98].

 The second aspect of this project concerns
improving similarity search using specifications.
Finding the k-nearest neighbors of some query object
involves making several distances computations.
Calculating these distances can be very expensive.
Using specifications, we can reduce the number of times
that such expensive distance functions must be
computed for the entire database. An upper bound on
the actual distance from a query object, Q, to a derived
object, D, is the distance from D to its base plus the
distance from its base to Q. D’s distance to its base can
be determined directly from the editing operations
stored in its specification. Specifically, each operation
is assigned a certain weight, so, the distance between D
and its base is the sum of the weights of the operations
contained in D’s specification. Our goal is to use such
information to develop an algorithm for satisfying
nearest neighbor queries that minimizes the number of
times expensive distance functions are calculated.

6. DATA MINING AND DATA WAREHOUSE
In this project, we proposed a feature classification
scheme that can be used to study data mining software.
This scheme is based on the software's general
characteristics, database connectivity, and data mining
characteristics. We then applied our scheme to
investigate 43 software products, which are either
research prototypes or commercially available. We also
derived features that we consider important for data
mining software in order to accommodate its users
effectively, as well as issues that are either not
addressed or insufficiently solved [GG99]. We further
explored the use of data mining in data warehouse
applications.

The vast majority of requests for information from a
data warehouse involve dynamic ad hoc queries
[APB98]. The ability to extract data to answer such
queries quickly is a critical issue in the data warehouse
environment. Proper indexing is crucial to avoid I/O

intensive scans against the large data warehouse tables.
To support the dynamic nature of the ad hoc queries,
the index has to be scalable. The cost of building
indexes using all the important attributes is prohibitive.
Hence, the challenge is to find the subset of indexes
that would improve the ad hoc queries’ performance
automatically. This is our project’s goal.

The major problem in selecting indexes is workload
determination since it is unknown until users start using
the data warehouse. However it may be possible to
estimate it [Win98]. Knowing what the data
warehouse’s workload looks like plays a major role in
determining the attributes considered by the index
selection algorithm.

To derive an algorithm for the auto-selection of an
index, our project is currently conducting the following
tasks: 1) identifying different transaction classes, 2)
identifying the characteristics of each class, 3) building
models from predefined training queries that will classify
the user queries, and 4) selecting indexes based on the
estimated workloads of the transaction classes.

To identify the transaction classes and their
characteristics, users' requirements need to be
understood. Reasonable assumptions have to be made
to define the characteristics of a transaction class and
periodical reviews are needed to improve them [Win98].
By applying a data mining technique to the training
queries of the transaction classes [CH96], the class
models are generated. These models are then used to
generate the likely workload from the query history.
The index attributes that would best suit the need of the
user queries are selected from the estimated workload
by using an algorithm based on a data mining
technique.

There are many issues that still need to be
addressed. These include determining how long to keep
the history, how to measure the classification accuracy
of the models, how to detect runaway queries, and how
to manage resources for such queries.

REFERENCES

[APB98] OLAP Council, “APB-1 OLAP Benchmark
Release II”, November 1998,
http://www.olapcouncil.org.

 [BBC98] Bernstein, P. et al, “The Asilomar Report
on Database Research”, SIGMOD Record, 27(4), 1998,
pp.74-80.

[BG98] Brown, L. and L. Gruenwald, “Determining a
Minimal and Independent Set of Image Processing

Operations for a Multimedia Database System”,
Proceedings of the 1998 Energy Technology Conference
and Exhibition, February 1998.

[BGS97] Brown, L., L. Gruenwald, and G. Speegle,
“Testing a Set of Image Processing Operations for
Completeness”, Proc. 2nd Conf. on Multimedia
Information Sys., April 1997, pp. 127-134.

 [CG96] Chen, Y. and L. Gruenwald, “Effects of
Deadline Propagation on Nested Transactions in Real-
Time Database Systems”, Information Systems Journal,
A Special Issue on Real-Time Database Systems, 21(1),
March 1996, pp. 103-124.

 [CH96] Chen, M. and J. Han, “Data Mining: An
Overview from a Database Perspective”, IEEE Trans. on
Knowledge and Data Engineering, 8(6), Dec 1996.

 [DG96] Darmont, J. and L. Gruenwald, “A
Comparison Study of Clustering Techniques for Object-
Oriented Databases”, Information Sciences - An
International Journal, 94(1-4), 1996, pp. 55-86.

[DG98] Dirckze, R. and L. Gruenwald, "A Toggled
Transaction Management Technique for Mobile
Multidatabases", ACM Intl. Conf. on Information and
Knowledge Management, November 1999.

 [DG99] Dirckze, R. and L. Gruenwald, “A Pre-
Serialization Transaction Management Technique for
Mobile Multidatabases”, Submitted to Journal on
Special Topics in Mobile Networking and Apps, 1999.

 [GC97] Gruenwald, L. and J. Cheng, “A Logging
Technique Based on Transaction Types for Real-Time
Databases”, Real-Time Database and Information
Systems-Research Advances, editors Azer Bestavros
and Victor Fay-Wolfe, Kluwer, 1997, pp. 379-392.

 [GG97] Gay, J. and L. Gruenwald, “A Clustering
Technique for Object-Oriented Databases”, Intl Conf.
on Database and Expert Systems Applications, LNCS
1308, Springer, September 1997, pp. 81-90.

 [GG99] Goebel, M. and L. Gruenwald, "A Survey of
Data Mining and Knowledge Discovery Tools", to
appear in ACM SIGKDD Explorations, 1999.

 [GS96] Gruenwald, L. and G. Speegle, “Research
Issues in View-Based Multimedia Database Systems”,
Proc. 2nd World Conference on Integrated Design and
Process Technology, December 1996, pp. 331-336.

 [HG96a] Huang, J. and L. Gruenwald, “An Update-
Frequency-Valid-Interval Checkpoint Technique for
Real-Time Main Memory Database Systems”,
International Workshop on Real-Time Database
Systems, March 1996 , pp. 135-143.

 [HG96b] Huang, J. and L. Gruenwald, “Impacts of
Timing Constraints on Real-Time Main Memory
Database Recovery”, Workshop on Databases: Real-
Time and Active (Concepts Meet Practice), November
1996, pp. 63-38.

 [JG98] Jun, W. and L. Gruenwald, “Semantic-Based
Concurrency Control in Object-Oriented Databases”,
Journal of Object-Oriented Programming, 10(8), January
1998, pp. 33-39.

 [SG99] Sanchez, C. and L. Gruenwald, “Mobile
Federated Database Security”, Tech. Rep., Computer
Science Dept, The Univ. of Oklahoma, May 1999.

 [Win98] Winter, R., “Defining Your Data
Warehouse Workload”, VLDB Vision, Sept. 1998.

