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ABSTRACT
Recently, the embedding-based recommendation models (e.g., ma-
trix factorization and deep models) have been prevalent in both
academia and industry due to their effectiveness and flexibility.
However, they also have such intrinsic limitations as lacking ex-
plainability and suffering from data sparsity. In this paper, we pro-
pose an end-to-end joint learning framework to get around these
limitations without introducing any extra overhead by distilling
structured knowledge from a differentiable path-based recommen-
dation model. Through extensive experiments, we show that our
proposed framework can achieve state-of-the-art recommendation
performance and meanwhile provide interpretable recommenda-
tion reasons.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies → Learning latent representations.
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1 INTRODUCTION
Extensive research efforts have been dedicated to recommender sys-
tems in the past decades. Starting from the winning solutions to the
Netflix prize challenge, embedding-based recommendation models
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have attracted most of the attention, in which users and items are
represented by latent vectors, such as the matrix factorization (MF)
models [16], factorization machines (FM) [27], and their recent neu-
ral extensions [5, 9, 10]. Their popularity is largely attributed to
their superior performance, and also to their flexibility in incorpo-
rating both collaborative signals and content-related signals (e.g.,
[7, 36, 40, 42]). Nowadays, however, when not merely practitioners
but also users are increasingly interested in the underlying reasons
for each recommendation [3, 44], their explainability becomes a big
issue. It is hard for us to know which factor contributes the most
and why it leads to the final recommendations outside the black
box. Furthermore, those embedding-based models suffer from the
data sparsity problem and are prone to over-fitting, while cold-start
users and long-tail items are inevitable challenges in real-world
application scenarios. This issue becomes more important as the
model capacity grows in the deep learning era.

Another line of research exploits path-basedmodels [2, 31, 32, 39]
to integrate different recommendation signals, e.g., meta-paths [33]
over heterogeneous information networks (HINs) as shown in Ta-
ble 1. These models are tempting because the paths are human-
interpretable features and, meanwhile, robust to sparse data with
the help of graph structures. Nonetheless, traditional pure path-
based models lack sufficient expressive power to obtain comparable
performance to the state-of-the-art embedding-based approaches.
Therefore, most existingwork integrates embedding-basedmethods
within their recommendation pipelines. However, the introduction
of embeddings into path-based models might hurt both their ex-
plainability and generalization capability by potentially inheriting
the limitations of embedding-based models. In addition, these ap-
proaches are generally hard to deploy in a real-time production
setting due to their inefficiency.

In this paper, we propose an end-to-end joint learning framework
to complement the strengths and weaknesses of the two approaches
mentioned above. As shown in Figure 1, given an embedding-based
model within the black box, we jointly train that model with a
differentiable pure path-based model. Different from regular joint
training approaches with shared parameters, our framework only
couples these two models in the label space by a mutual regu-
larization term in the objective function. From one direction, the
embedding-based model is regularized by the graph-structured
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Table 1: Example meta-paths in HINs for recommendation.

Meta-path Recommendation model

user → item→ user→ item collaborative recommendation
user→ user→ item social recommendation

user→ item→ category→ item content-based recommendation

knowledge encoded in the path-based model to avoid poorly gen-
eralizable local minima and thus make more accurate recommen-
dations. From the other direction, we optimize the learnable paths
to mimic the given embedding-based model in order to obtain its
interpretation. Besides, no extra computational burden is introduced
for either model at test time.

From a higher perspective, the proposed approach can be re-
garded as knowledge distillation proposed by Hinton et al. [11]
with the difference that the teacher model and the student model
are learning from each other simultaneously. In other words, the
embedding-based model as a student is allowed to distill the struc-
tured knowledge from the path-basedmodel in addition to imitation
learning from concrete training labels. At the same time, the path-
based model as a teacher can also enhance its knowledge encoded
in the reasoning paths by synthesizing predictions made by the
embedding-based model.

From a more technical perspective, our proposed approach can
also be seen as a label propagation method to address missing
data problem in recommender systems [19, 21]. More specifically,
given a user, not all unobserved items are irrelevant to her, but
the one-hot labels treat them equally as negative examples. On
the contrary, the path-based model can learn to propagate sparse
labels into unobserved items, where relevant unobserved items are
likely to be given relatively higher probability scores to irrelevant
ones. Learning from the augmented labels overcomes the data spar-
sity issue, enables efficient structure learning and hence improves
recommendation accuracy.

Finally, we conduct extensive experiments across various pub-
licly available datasets in multiple domains. The experimental re-
sults show that the proposed approach achieves state-of-the-art
performance. Ablation study further demonstrates that the joint
learning procedure leads to substantial improvement over alter-
native approaches in terms of both accuracy and explainability.
Meanwhile, we demonstrate the ability of the proposed framework
to generate interpretable recommendations through case studies.

2 METHODOLOGY
2.1 Problem Formulation and Preliminaries
In this paper, we focus on the top-N item recommendation task
with implicit feedback, that is, only implicit user feedback such as
clicks, watch history, purchases1 are available in contrast to explicit
rating information. Formally, letU be the set of users and I the set
of items. We observe user-item interactions D =

⋃
u ∈U {(u, i)|i ∈

Iu }, where Iu ⊆ I is the set of items user u has clicked. In some
cases, we are also given LU and LI types of attributes of users and
items as metadata (e.g., social relations, genres, actors and directors)
denoted as {C(l )

u ⊆ C
(l )
U |l = {1, ...,LU },u ∈ U } and {C(l )

i ⊆ C
(l )
I |l =

1We sometimes use the word click to refer to all these types of interactions in general.
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Figure 1: An illustration of the proposed framework.

{1, ...,LI }, i ∈ I }, where C(l )
U and C(l )

I are the vocabularies of the
l-th type of attributes for users and items, respectively. Our task is
to recommend each user u a list of N relevant items from I \ Iu .

Following [18], we use binary encoding xu ∈ {0, 1} |I | to denote
items that useru has clicked. The recommendation algorithm f (xu)
produces a probability distribution zu over I to capture the rele-
vance of items to user u. At test time, for each user u, we simply
rank items in I \ Iu with their relevance scores given in zu for top-N
recommendation. Note that xu can also be regarded as an unnor-
malized empirical distribution (we also denote its normalized form
as x̃u) with the difference that xu is much sparser than zu.

Although our proposed framework is not limited to any specific
embedding-based recommendation model f (·), for ease of presen-
tation, we introduce a simple one as an example throughout this
paper. Specifically, we represent each user u ∈ U with

vu = tanh(ru +
1
|Iu |

∑
i ∈Iu

ri +
LU∑
l=1

1

|C(l )
u |

∑
c ∈C (l )

u

rc), (1)

where ru, ri, rc ∈ Rd are d-dimensional embedding vectors for
user u, item i and metadata attribute c , respectively. Similarly, we
represent each item i ∈ I with

vi = tanh(ri +
LI∑
l=1

1

|C(l )
i |

∑
c ∈C (l )

i

rc). (2)

Then, similar to GMF [10], we feed the element-wise product of
user representation vu and item representation vi into a linear layer
to get the relevance score for each user-item pair (u, i) with weight
w ∈ Rd

ru,i = wT · (vu ⊙ vi). (3)

Finally, we use softmax to obtain the user preference distribution
zu for each u,

zu = so f tmax([ru,i1 , ru,i2 , ..., ru,iN ]). (4)

To train this embedding-based model, we optimize the cross-
entropy between the normalized ground-truth label x̃u and the
output distribution zu for each user u.

minL1 =
∑
u ∈U

∑
i ∈I

−x̃ui log zui . (5)



However, this is troublesome for the following two reasons. First,
the sparse ground-truth labels {xu} treat all the unobserved (i.e.,
not clicked) items equally, while those unobserved items are by
no means all irrelevant to that user [12] (otherwise, there is no
point making recommendations). This makes it difficult, at least
inefficient, for the embedding-based model to learn the underlying
structure in data. Even worse, the model is prone to over-fitting, es-
pecially for sparse data. Suppose that the capacity of the model were
sufficiently large, we could overfit the objective function by putting
large probability mass on observed items while putting small yet
uninformative (or even arbitrary in the extreme case) probability
mass on unobserved ones. This issue is sometimes referred to as
the missing data problem [19, 21] or the one-class problem [24] in
recommender systems.

Although these limitations seem to be intrinsic to the recommen-
dation task, there are ways to mitigate them such as regularization
with weight decay and dropouts. In addition, Pan et al. also pro-
pose to use handcrafted weighting schemes and negative sampling
strategies [24]. The proposed framework in this paper provides a
more principled and effective approach utilizing graph structures
to overcome this issue.

2.2 Model Framework
2.2.1 Differentiable Path-based Model. In our framework, we intro-
duce a differentiable path-based model to help with interpretation
and structure learning for embedding-based models. Different from
most existing work, e.g., [2, 31, 39], we decouple our path-based
model from embeddings. Instead, inspired by Cohen [4], we asso-
ciate each edge with a learnable transition probability to enhance
its expressive power while still preserving interpretability.

More specifically, we first construct a heterogeneous informa-
tion network (HIN) by regarding users, items and available meta-
data attributes as different types of nodes and regarding their in-
teractions as edges. Then we define some useful meta-paths [33]
(paths over node types) P = {P1, ..., PK } to find relevant items for

users. For example, “P1 : user
clicked−−−−−−→ item

clicked−1−−−−−−−→ user
clicked−−−−−−→

item” is a meta-path for the collaborative recommendation and

“P2 : user
clicked−−−−−−→ item

contains−1−−−−−−−−→ cateдory
contains−−−−−−−→ item” is a

meta-path for the content-based recommendation. Every single
step within a meta-path can be represented by a transition matrix

between two types of nodes. That is, for each edge “A
R−→ B”, we

denoteMR
A,B as the transition matrix between nodes with type A

and type B (the superscript R is omitted when it does not cause
ambiguity) and for each i ∈ A and j ∈ B

MR
A,B [i, j] =

{
pi j (i, j) ∈ R

0 otherwise,
(6)

where {pi j |(i, j) ∈ R} are learnable parameters attached to each
edge. Similar to [4], we do not impose constraints on parameters
to ensure the transition matrix is indeed a probability matrix (a.k.a.
stochastic matrix). Instead, we only require them to be nonnegative
weights by parameterizing pi j := σ (ρi j ), where σ can be Relu or
Softplus. At the end, we normalize the final diffused scores into a
distribution as we will show in Eq. (7). For the inverse relation R−1,

we can use either a separate matrixMR−1
A,B or simply its transpose.

We choose the latter in our work.
Therefore, the transition matrix ΠP of a random walker reaching

item nodes from user nodes through a meta-path P ∈ P can be
computed as the product of the transition matrices along the path,
e.g., ΠP1 = MU I ·MT

U I ·MU I and ΠP2 = MU I ·MT
CI ·MCI for the

previous examples. We also introduce a probability distribution
p = {pP1 , ...,pPK } over all meta-paths to account for different con-
tributions of different meta-paths. Finally, the relevance of items
to a given user u is modeled as the probability of a random walker
walking from that user through all possible meta-paths to targeted
items, formally as,

z′u =
K∑
k=1

pPk ·
(
ΠPk [u, :]

/
Zu,k

)
=

K∑
k=1

pPk ·
(
euΠPk

/
Zu,k

)
, (7)

where Zu,k ∈ R is the normalization factor to ensure ΠPk [u, :] is a
normalized distribution over items and eu is the one-hot row vector
of user u, i.e., eu [u] = 1 and eu [u ′] = 0 for u ′ , u.

As we can see, the output distributions {z′u} can be unrolled into
a series of matrix operations and thus are differentiable with respect
to all the free parameters in this model. It allows us to train the meta-
path guided random walk model with gradient-based optimizers
by minimizing the cross-entropy between the ground-truth labels
x̃u and the model output z′u,

minL2 =
∑
u ∈U

∑
i ∈I

−x̃ui log z′ui . (8)

This model can be seen as a learnable label propagation method
that transforms sparse binary labels {xu} into dense distributions
{z′u}. The items, that are not clicked but connected by some meta-
paths over the HIN, now can also be considered somewhat more rel-
evant than random ones. For example, if someone has only watched
one movie, the binary label is simply the one-hot encoding of that
movie, while, in the more informative dense distribution, appropri-
ate scores can be propagated into the movies with the same genres
(through “user → дenre → user”) and the ones that are frequently
co-watched by other users (through “user → (movie → user )n”) as
well. (In fact, the latter example is the main motivation for collabo-
rative metric learning[12] where relevance transitivity is attempted
to be maintained.) Using them as augmented pseudo-labels can help
downstream models with efficient structure learning.

2.2.2 End-to-end Joint Learning Framework. To address the limita-
tions of the embedding-based recommendation models, we intro-
duce an end-to-end joint learning framework with the differentiable
path-based model as shown in Fig. 1. In addition to minimizing
the cross-entropy losses of the embedding-based model and the
path-based model separately as in Eq. (5) and (8), we also wish to
minimize the distance between these two models measured by the
KL-divergence between their output distributions,

min
z,z′

L3 =
∑
u ∈U

KL(z′u | |zu) =
∑
u ∈U

∑
i ∈I

−z′ui log zui + z
′
ui log z

′
ui

(9)
Note that we optimize the loss function in Eq. (9) with respect

to both the embedding-based model z and the path-based model
z′. By optimizing w.r.t. the former, we are actually minimizing the



first term in the RHS of Eq. (9) which coincides with the cross-
entropy loss with the output distributions {z′u} as pseudo-labels. In
other words, our approach allows the embedding-based model to
learn from two sources, i.e., the observed user-item interactions as
in Eq. (5) and the augmented pseudo-labels by meta-path guided
random walks. At the same time, by optimizing w.r.t. the latter,
we are trying to find a projection in the parameter space of our
differentiable path-based model so that these two models make the
most consistent predictions. In this direction, we can not only obtain
an interpretation of the embedding-based model within the black
box, but also allow the differentiable path-based model to provide
more accurate pseudo-labels in a bootstrapping manner. Overall,
this joint learning process regularizes the embedding-based model
to search for more generalizable and explainable local minima (see
more discussion in Sect. 3.4).

Our proposed approach can be seen as knowledge distillation [11].
The differentiable path-based model plays the role of the teacher
in our framework. It synthesizes the training labels to enhance
its domain knowledge encoded in meta-paths to provide more in-
formative training signals for the student model. Meanwhile, the
embedding-based model as the student “distills” the structured
knowledge within the teacher model into its embedding parame-
ters. One difference from the original distillation work is that we
let the teacher model and the student model learn from each other
rather than only in one direction because they both have their own
merits as mentioned in Sect. 1.

2.2.3 Model Training. To sum up the previous sections, the loss
function used in the training stage is

L = αL1 + βL2 + L3, (10)

where α and β are imitation parameters controlling the balance
between imitation learning (from concrete training labels) and
knowledge distillation. Motivated by Hu et al. [15], we exploit dy-
namic imitation parameters that change as training goes on. In the
beginning, we use relatively large imitation parameters α and β
since the teacher model is still enhancing its own knowledge (with
L2) and the training labels are still informative to a randomly ini-
tialized embedding-based model to “grasp some basics” (with L1).
As the training process continues, we decrease the imitation param-
eters to allow the student model to distill structured knowledge into
its parameters by interacting with the augmented pseudo-labels
generated by the teacher model (with L3).

In practice, there are two ways to schedule the imitation pa-
rameters. A simple approach is to set the imitation parameters to
relatively large values η0 in the first T0 iterations and suddenly
decrease them to smaller values η1 afterward. A rule of thumb
would be to select T0 to be the time when the validation loss of the
embedding-based model starts to bounce back (meaning the train-
ing labels are no longer informative and begin to cause over-fitting
as discussed in Sect. 2.1). Another way is to gradually decrease
them with a decaying function, e.g., η(t) = max(η0 · λt ,η1) where
λ ∈ (0, 1) is a tunable decay factor. We find that the first approach
already works surprisingly well enough, while the latter can some-
times bring about marginal improvements.

The proposed joint training framework shares a similar idea to
DML (Deep Mutual Learning) [46] recently proposed in computer

vision. As discussed in [46], the mutual learning framework can
help to find more robust local minimal by entropy regularization.
Different from DML which jointly trains two neural architectures
(eg., Resnet and MobileNet), our approach combines two types of
models, i.e., embedding/neural models and path/graph models, with
rather different inductive biases [45] to allow them to benefit more
from each other.

2.2.4 Complexity and Scalability. Themajor time complexity comes
from the path-based model. At first glance, it makes the proposed
approach inefficient to compute z′u in Eq. (7) with extensive matrix
multiplications. However, we note that transition matrices are usu-
ally extremely sparse. Thus, we can unroll euΠPk and compute it
with a series of sparse matrix-vector multiplications. Since each
sparse matrix-vector multiplication takes linear time complexity
w.r.t. the non-zero elements within the sparse matrix, our algorithm
scales linearly w.r.t. the number of relations as well.

2.3 Explainable Recommendation
We are able to interpret recommendations on the following two
levels. Firstly, given an item i recommended to user u, we can tell
which factor contributes the most by computing the contribution
of each meta-path P as

wP (u, i) =
pP · ΠP [u, i]∑

P ′∈P pP ′ · ΠP ′[u, i] . (11)

For example, wP1 (u, i) and wP2 (u, i) measures the contribution of
collaborative signals and category information, as in the example
in Sect. 2.2.1, respectively. This level of interpretation is especially
useful when the recommender system exploits various types of
metadata. After we know the most important factors, we can then
apply the beam search algorithm to find concrete paths with high
probabilities to explain at a more detailed level (see Table 7).

3 EXPERIMENTS
3.1 Overview
In this section, we empirically study the effectiveness of the pro-
posed framework. Specifically, we are interested in the following
research questions:

RQ1. How does our approach compare to the state-of-the-art base-
line models?

RQ2. Is the proposed approach able to provide interpretable rec-
ommendation results?

RQ3. How does joint learning help with recommendation in terms
of explainability and accuracy?

3.2 Experimental Setup
3.2.1 Datasets. Our proposed approach is evaluated on the follow-
ing public available datasets in various domains.

• MovieLens-1M (ML-1M) [10]. This dataset contains about
one million movie ratings by about six thousand active users
with over 20 ratings. It is a widely used benchmark for col-
laborative filtering algorithms. We convert it into implicit
data by regarding rating actions as implicit feedback.



Table 2: Dataset Description.

Datasets Relations (A-B) #A # B #A-B Density

ML-1M User-Movie 6,040 3,706 1,000,209 4.468%

Pinterest User-Image 55,187 9,916 1,500,809 0.274%

Yelp

User-Business 16,239 14,284 198,397 0.086%
User-User 16,239 16,239 158,590 0.060%

Business-City 14,284 47 14,267 2.125%
Business-Category 14,284 511 40,009 0.548%

Douban

User-Movies 13,367 12,677 1,068,278 0.630%
User-User 13,367 13,367 4,085 0.002%
User-Group 13,367 2,753 570,047 1.549%
User-Location 13,367 349 11,242 0.241%
Movie-Director 12,677 2,449 11,276 0.036%
Movie-Actor 12,677 6,311 33,572 0.042%
Movie-Genre 12,677 38 27,668 5.744%

• Pinterest [10]. This dataset contains user-image interac-
tions (pins) in Pinterest. We use the version released from
[10] where they only retain users with more than 20 pins.

• Yelp [32]. This dataset is originally released in the Yelp Chal-
lenge, which contains users’ check-ins at different businesses,
social networks and also cities and categories of the busi-
nesses. We filter out users with fewer than five check-ins as
well as cold-start businesses for a fair comparison with the
collaborative filtering baselines.

• Douban [32]. Douban is a well-known social networking
service in China. This dataset consists of users’ movie ratings
(ranging from 1 to 5), social relations and other metadata.
Compared with ML-1M, the rating actions are highly biased
towards popular movies, and thus we only regard ratings of
five as positive feedbacks. We also filter out inactive users
and cold-start items similarly as in Yelp.

The details of these datasets can be found in Table 2. We split
each user’s clicks into train (60%), validation (20%) and test (20%).
Note that we only leverage user behaviors in the training set to
construct graphs for path-based models to prevent data leakage.

3.2.2 Baseline Methods. We compare our proposed approach with
the collaborative recommendation methods (ItemPop based on
item popularity, BPR [29], WMF [14, 24] and VAE [18]) and the
hybrid models that exploit both content and collaborative signals
for recommendation (LibFM [28], heterogeneous graph embedding-
based model HERec [31] and the base model in our framework
Proposedbase as introduced in Sect. 2.1).

3.2.3 Evaluation Metrics. To evaluate the recommendation perfor-
mance, we use user-item interactions in the training sets to predict
items held out in the validation/test sets. For validation, held out
items in the test set for each user are excluded from the candidate
set and vice versa. Three ranking metrics are used to evaluate the
top-N recommendation results: Hit@K, Recall@K and NDCG@K.
Slightly different from the one commonly used in literature, Re-
call@K is computed as in [18], i.e., for each user u,

Recall@K =

∑K
k=1 I(ωu (k) ∈ Iu )
min(K , |Iu |)

,

where ωu (k) is the k-th item recommended to user u and the de-
nominator is the minimum of K and the number of relevant items
|Iu | (actually making itself a maximum of precision and recall). We
use NDCG@K evaluated on the validation set to tune hyperparam-
eters for the baselines and the proposed model, and then report the
results achieved by the best configurations.

Meanwhile, it is hard to assess machine learning models’ explain-
ablility. With that being said, we can at least compare the faith-
fulness of model explanations given in the same form. Similar to
the model fidelity metric defined in [25], we use the KL-divergence
between the embedding-based model and the path-based model to
measure the relevance of the explanations generated by the latter.

3.3 Recommendation Performance
To empirically investigate RQ1, we first evaluate the collaborative
recommendation performance of our proposed model and baselines
in ML-1M and Pinterest datasets. As shown in Table 3, the proposed
model significantly outperforms all the baselines in ML-1M and
achieves the best results along with VAE in Pinterest. Compared
with Proposedbase, it improves NDCG@10 by 3.3% and 11.4% in
ML-1M and Pinterest, respectively. This suggests that the proposed
joint learning framework indeed helps embedding-based recom-
mendation models to improve recommendation accuracy, which
also partially answers RQ3.

In addition, we test the proposed approach in hybrid recom-
mendation. Table 4 shows the results in Yelp and Douban datasets
where metadata are available. In Yelp, the proposed model achieves
the best performance and the relative improvement in NDCG@100
over Proposedbase is up to 14.0%. In Douban, the recently proposed
VAE outperforms the other methods, but our proposed model as
the second best achieves very close results by improving its base
model by 12.4% in NDCG@100 and up to 15.5% in Hit@5.

Note that the results shown here only provide a lower bound for
the performance of the proposed framework since we only use a
simple base model (described in Sect. 2.1) for concise presentation.

3.4 Evaluation of the Joint Learning Process
Although it has been shown that our approach achieves substan-
tial improvement relative to its base model, the contribution of
the proposed joint learning framework has not been thoroughly
evaluated yet to answer RQ3. In Table 5, we further compare the
recommendation performances of Proposedbase and our proposed
approach, from which we can draw the following two conclusions:
1) the proposed approach consistently improves its base model w.r.t.
different data densities and 2) the joint learning process seems to
be more effective when it comes to more sparse data.

We conduct an ablation study to demonstrate the effectiveness
of joint learning in contrast with its alternatives. We compare with
the following two variants of the proposed approach. In the first
variant, namely Unlearnable, we initialize all the parameters in the
path-based model with the same values (i.e., uniform transition
probabilities) and fix them at training time. In the second variant,
Pipelined, we first train the path-based model with L2 and then
optimize L1 and L3 the same way as in Sect. 2.2.3 but only with
respect to the embedding model.
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Table 3: Collaborative recommendation performance inML-
1M and Pinterest. The numbers in bold indicate statistically
significant improvement (p < .01) by the pairwise t-test com-
parisons over the other baselines.

(a) ML-1M

Hit@1 Recall@10 NDCG@10

ItemPop 0.2520 0.1918 0.2039
BPR 0.4675 0.3629 0.3819

WMF 0.4803 0.3630 0.3837
VAE 0.4829 0.3707 0.3909

Proposedbase 0.4803 0.3630 0.3837
Proposed 0.5005 0.3770 0.4002

(b) Pinterest

Hit@5 Recall@10 NDCG@10

ItemPop 0.0224 0.0072 0.0063
BPR 0.1592 0.0614 0.0514

WMF 0.1873 0.0705 0.0604
VAE 0.2335 0.0879 0.0774

Proposedbase 0.2168 0.0798 0.0685
Proposed 0.2354 0.0872 0.0763

As shown in Table 6, the unlearnable path-based model can even
significantly improve the performance of the embedding-based
model by 5.2% and 5.5% in Pinterest and Douban, respectively. This
proves the effectiveness of label propagation via meta-paths. Then,
the pipelined approach brings about another improvement in NDCG
with the ability of “learning to propagate.”

In Pinterest, the joint learning approach does not significantly
outperform its pipelined variants in terms of recommendation ac-
curacy with the embedding-based model. However, it helps the
path-based model to obtain better predictive performance mea-
sured in NDCG and substantially minimizes its KL-divergence with
the embedding-based model. These two measures can indirectly
quantify the explainability of these approaches, indicating the qual-
ity and the relevance of the interpretations given by the path-based
models, respectively.

In Douban, it is hard to train the path-basedmodel separately, and
it starts overfitting in even one iteration (hence, the performance of
Pipelined reported in Table 6(b) is worse than that of Unlearnable),
although the overfitted model can still marginally boost the perfor-
mance of the embedding-based model. On the contrary, the joint

Table 4: Recommendation performance with metadata in
Yelp and Douban. The numbers in bold and underlined in-
dicate the best and the second best methods that are signifi-
cantly better than the other baselines by the pairwise t-test
at the level of p < .01, respectively.

(a) Yelp

Hit@20 Recall@20 NDCG@100

ItemPop 0.2000 0.0515 0.0593
BPR 0.1887 0.0478 0.0549

WMF 0.2755 0.0752 0.0859
VAE 0.3293 0.0911 0.1058

LibFM 0.2267 0.0582 0.0678
HERec 0.2944 0.0788 0.0898

Proposedbase 0.3140 0.0863 0.0968
Proposed 0.3476 0.1008 0.1104

(b) Douban

Hit@5 Recall@20 NDCG@100

ItemPop 0.3743 0.1920 0.2142
BPR 0.3485 0.1928 0.2063

WMF 0.3786 0.2079 0.2265
VAE 0.4403 0.2442 0.2645

LibFM 0.3686 0.1978 0.2201
HERec 0.3815 0.2261 0.2392

Proposedbase 0.3784 0.2077 0.2304
Proposed 0.4372 0.2363 0.2590

learning process can dramatically mitigate this issue and hence lead
to large improvements on both sides over its pipelined variants.
Besides, the KL-divergence is also reduced dramatically, meaning
that our framework can find a proper path-based model to interpret
the embedding-based model within the black-box.

Intuitively, we illustrate the difference between the joint learning
approach and its pipelined alternative in Fig. 3. The problem at hand
is by no means convex so there could exist many near-optimal local
minima. The joint learning approach encourages the embedding-
based model and the path-based model to find the closest local
minima to each other simultaneously, while the pipelined approach
can only regularize the embedding model.

Now we can draw a conclusion to RQ3 that the proposed joint
learning framework can orchestrate the embedding-based model
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Figure 3: An intuitive comparison of the proposed joint
learning approach with the pipelined alternative.

Table 5: Recommendation performance in NDCG@10 and
NDCG@100 w.r.t. different split ratios of the training sets
in ML-1M and Yelp, respectively. Improv. denotes the per-
formance improvement over Proposedbase.

(a) ML-1M

Ratio Density Proposedbase Proposed Improv.

40% 1.787% 0.3532 0.3713 +5.1%
60% 2.680% 0.3837 0.4002 +4.3%
80% 3.574% 0.4000 0.4162 +4.1%

(b) Yelp

Ratio Density Proposedbase Proposed Improv.

40% 0.034% 0.0827 0.0945 +14.2%
60% 0.051% 0.0968 0.1104 +14.1%
80% 0.069% 0.1093 0.1203 +10.1%
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Figure 4: Relative contributions of watched movies to the
top-5 recommendations to User 0 in ML-1M.

and the path-based model for more accurate recommendation per-
formance and better interpretability.

3.5 Case Study
To answer RQ2, we conduct case studies to demonstrate the in-
terpretability of our approach. In Fig. 4, we show the relative im-
portance of the movies that User 0 has watched with regard to the
top-5 recommendations to her in ML-1M. From this explanation,
we can draw the following observations. Some movies (e.g., movie
44 and 48) are consistently more informative than the others (es-
pecially movie 11 and 12). For different recommended items, they
also contribute differently. For example, movie 22 and 44 are the

Table 6: Ablation study. Path and Embedding represent
recommendation performances in NDCG (NDCG@10 for
Pinterest and NDCG@100 for Douban) of the path-based
model and the embedding-based model in the joint learn-
ing framework, respectively. Improv. denotes the perfor-
mance improvement of the embedding-based model over
Proposedbase. All the improvements are statistically signifi-
cant at the level of p < .01.

(a) Pinterest

Path Embedding Improv. KL-div.

Proposedbase - 0.0685 +0.0% -
Unlearnable 0.0596 0.0720 +5.1% 0.1569

Pipelined 0.0702 0.0765 +11.7% 0.3513
Proposed 0.0740 0.0768 +12.1% 0.1447

(b) Douban

Path Embedding Improv. KL-div.

Proposedbase - 0.2304 +0.0% -
Unlearnable 0.1980 0.2432 +5.6% 0.7426

Pipelined 0.1822 0.2458 +6.7% 0.8101
Proposed 0.2538 0.2590 +12.4% 0.1892
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Figure 5: Average relative contributions of meta-paths in
Top-20 recommendation in (a) Yelp and (b) Douban.

most important factors regarding the first recommended movie
(movie 132), while movie 3 and 31 become the most dominating
ones regarding the fourth recommendation (movie 541).

In the hybrid recommendation scenario, the interpretability is of
more significance because there are more factors interleaved with
each other in recommendation engines. The proposed approach
can provide explanations at different levels. For instance, as Figure
5 shows, we can calculate relative contributions of various meta-
paths to interpret the importance of different types of information
at the model level. Specifically, we can see the collaborative signals
are the most dominating factor in both Yelp and Douban for P1 and
P2 account for major contributions. The categories of business in
Yelp (indicated by P5) and user groups in Douban (indicated by P4)
also play relatively important roles.

Besides, as shown in in Table 7, various factors have different
contributions for different recommended movies; movie 737 is pre-
sented to user 22 mainly because of its director (indicated by P6)
and movie 10365 mainly because of collaborative signals as well
as user groups (indicated by P1 and P4, respectively). Furthermore,



Table 7: Case study: Recommendation reasons in Douban.

User 22 watched movies: [m3866, m3870, m6587, m9609, m10895]
Top2 Recommendation

Movie id Recommendation reasons Prob.

m737

R1. P6:User → Movie → Director → Movie 0.62
u22 →m6587 → p558 →m737 0.62

R2. P1:User → Movie → User → Movie 0.19
...

m10365

R1. P1:User → Movie → User → Movie 0.58
u22 → m6587 → [u8895,u6566, ...] →m10365 0.23
u22 → m9609 → [u11380,u5391, ...] →m10365 0.11
... ...

R2. P4:User → Group → User → Movie 0.23
...

Table 7 suggests that our approach can provide recommendation
reasons at a more concrete level. We can see that movie 737 is rec-
ommended because user 22 has watchedmovie 6587 directed by the
same director p558; and movie 10365, mainly because it is for fans
of movie 6587 and movie 9609 the user has watched.

4 RELATEDWORK
Our work is closely related to the following areas. We omit recent
advances in deep recommender systems, which is orthogonal to
our work, due to limited space and refer the reader to Zhang et al.
[41] for a more comprehensive review.

Path-based Recommendation. The path-based recommenda-
tion has been widely studied in the literature. Yu et al. [39] propose
to use meta-paths [33] to diffuse user-item preferences and then
exploit matrix factorization techniques to calculate latent vectors
for users and items for implicit recommendation. Shi et al. [32]
extend this work to weighted paths for explicit recommendation.
Catherine and Cohen [2] propose to use a logical reasoning system
called ProPPR to integrate different meta-paths in a knowledge
graph. Shi et al. [31] propose a heterogeneous network embedding
method for recommendation (HERec) based on meta-path guided
random walks. Zhao et al. [47] propose to exploit matrix factoriza-
tion to extract latent features from different meta-paths and then
use factorization machines with Group lasso to fuse these features.
Jiang et al. propose a learnable random walk model for more accu-
rate recommendations. Wang et al. [37] propose a path-constrained
embedding approach for discriminating substitutable and comple-
mentary products. Wang et al. [35] recently propose an end-to-end
framework RippleNet that leverages knowledge graph embeddings
to propagate user preferences through paths in knowledge graphs
with attention mechanism. Hu et al. [13] also utilizes attention
mechanism to conduct the meta-path based recommendation.

Interpretable Machine Learning. Interpretability has been a
very hot topic in the machine learning community for a long time
[17]. We briefly review some existing work that inspires us the
most in this line of research. Craven et al. [6] propose to extract
interpretable representations from neural networks with decision
trees. LIME [30] proposed by Ribeiro et al. attempts to explain
predictions of any given classifier by approximating its predictions
locally with a sparse linear model that humans can understand.

Meanwhile, Wu et al. [38] propose to regularize deep models with
decision trees at training time to improve their interpretability. Hu
et al. [15] also propose to transfer structured information of logic
rules into neural networks with posterior regularization techniques
to reduce uninterpretability. Our work combines both directions of
interpretation and regularization to enable explainable and accurate
recommendation at the same time.

Explainable Recommendation. Explainable recommendation
has also attracted a lot of attention in recent years [43]. Early ap-
proaches attempt to use topic models to generate intuitive expla-
nations for recommendation results, e.g., [20, 23, 34]. Zhang et al.
[44] propose EFM which aligns the latent dimensions with explicit
product features for explainable recommendation. TriRank [8] and
SULM [1] utilize sentiment analysis techniques to extract aspects
and user opinions to produce recommendation explanations. In
addition to user reviews, Ren et al. [26] incorporate social relations
for better explanations. Catherine et al. [3] leverage knowledge
graphs to generate recommendations together with their explana-
tions with Personalized PageRank. Ma et al. [22] exploits induced
rules from knowledge graphs for more explainablility.

We can see that most of the existing work attempts to provide
post-hoc explanations for recommendation results with auxiliary
information (reviews, social relations and images). On the contrary,
our work takes a whole different perspective. We propose to inter-
pret the given recommendation model per se with a comprehensible
path-based model without introducing external information.

Recently, Peake and Wang [25] propose a post-hoc explanation
approach by training association rules on the output of a matrix
factorization black-box model in a pipelined manner. Compared
with their work, the proposed approach in this paper trains the
black-box model jointly with the model used to interpret it. As
discussed in Sect. 3.4, our treatment not only provides better in-
terpretability than the pipelined alternative but also enables better
recommendation performance of the black-box model.

5 CONCLUSION
In this paper, we propose an end-to-end joint learning framework
to combine both the advantages of embedding-based recommen-
dation models and path-based recommendation models. Given an
embedding-based model that produces black-box recommendations,
the proposed approach can not only interpret its recommendation
results but also regularize that model with structured information
encoded in learnable paths for better performance. Extensive ex-
perimental studies in various public available datasets suggest that
the proposed joint learning approach can substantially improve rec-
ommendation accuracy and achieve state-of-the-art performances.
Through case studies, we also demonstrate that our approach can ef-
fectively provide intuitive explanations for recommendations made
by black-box models at different levels.
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