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ABSTRACT
Deep pre-training and fine-tuning models (such as BERT and Ope-
nAI GPT) have demonstrated excellent results in question answering
areas. However, due to the sheer amount of model parameters, the
inference speed of these models is very slow. How to apply these
complex models to real business scenarios becomes a challenging
but practical problem. Previous model compression methods usu-
ally suffer from information loss during the model compression
procedure, leading to inferior models compared with the original
one. To tackle this challenge, we propose a Two-stage Multi-teacher
Knowledge Distillation (TMKD for short) method for web Ques-
tion Answering system. We first develop a general Q&A distillation
task for student model pre-training, and further fine-tune this pre-
trained student model with multi-teacher knowledge distillation on
downstream tasks (like Web Q&A task, MNLI, SNLI, RTE tasks
from GLUE), which effectively reduces the overfitting bias in in-
dividual teacher models, and transfers more general knowledge to
the student model. The experiment results show that our method
can significantly outperform the baseline methods and even achieve
comparable results with the original teacher models, along with
substantial speedup of model inference.

KEYWORDS
model compression, two-stage, multi-teacher, knowledge distillation,
distillation pre-training

1 INTRODUCTION
Question Answering relevance, which aims to rank the text pas-
sages to natural language questions issued by users, is a critical
task in Question Answering (Q&A) system [1]. In recent years,
almost all commercial web search engines provide Question An-
swering service, in addition to the traditional web documents links.
Table 1 shows an example for Question Answering from a commer-
cial search engine. Compared with the “ten-blue-links”, Q&A is a
more natural interface, and thousands of millions of users enjoy the
efficiency of directly accessing the information for their questions.

In recent years, deep pre-training approaches [5, 25] have brought
big break-through in NLP tasks. They also show very promising
results for the particular task of Q&A relevance. However, due to the
huge parameter size of these models (For example, GPT/BERTbase

*This paper has been accepted by WSDM 2020.
†These authors contributed equally.

Table 1: An example of Q&A relevance task.

Question: What can I do when I have headache?

Passage: Drinking warm water mixed with juice squeezed
from one-half of a lemon will reduce the intensity
of a headache. This particular remedy is benefi-
cial for headaches caused by gas in the stomach.
Another option is to apply lemon crusts, pounded
into a paste, on your forehead to immediately
relieve pain...

Label: Relevant

has 110M parameters, and BERTlarge has 340M.), both model train-
ing and inference become very time-consuming. Although several
works have studied the optimization of model training [30], there
is little work discussing the model inference challenge of deep pre-
training models like BERT/GPT models. In fact, for a web scale
Q&A system, the efficiency of model inference may be even more
critical than that of model training, due to the concerns of both of-
fline throughput and online latency (we will elaborate more in the
following paragraphs).

Table 2 shows the inference speed of BERT models [5] with
a 1080Ti GPU. The throughout of Q&A pairs are 624 and 192
per second on average for BERTbase and BERTlarge, respectively.
In other words, the average latency are 1.6 and 5.2 milliseconds
respectively.

Table 2: The inference speed of BERT on 1080Ti GPU.

Model Parameter Samples
Per second Latency

BERTbase 110M 624 1.6ms
BERTlarge 340M 192 5.2ms

In a commercial web Q&A system, there are often two comple-
mentary pipelines for the Q&A service. One pipeline is for popular
queries that frequently appear in the search traffic. The answers are
pre-computed offline in a batch mode and then served online by sim-
ple look-up. The magnitude of the number of Q&A pairs processed
is around 10 billions. The other pipeline is for tail queries that are
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rarely or never seen before. For such tail queries, the answers are
ranked on the fly and the latency budget for online model inference
is typically within 10 milliseconds. Therefore, for both offline or
online pipelines, it is critical to improve model inference efficiency.

To improve model inference efficiency, we consider model com-
pression approach. In other words, we aim to train a smaller model
with fewer parameters to simulate the original large model. A popular
method, called knowledge distillation [11] has been widely used for
model compression. The basic idea is a teacher-student framework,
in which the knowledge from a complex network (teacher model)
is transferred to a simple network (student model) by learning the
output distribution of the teacher model as a soft target. To be more
specific, when training the student model, we not only provide the
human-labeled golden ground truth, but also feed the output score
from the teacher model as a secondary soft label. Compared with
the discrete human labels (for classification task), the continuous
scores from the teacher models give more smooth and fine-grained
supervision to the student model, and thus result in better model
performance. We refer to this basic knowledge distillation approach
as 1-o-1 model, in the sense that one teacher transfers knowledge to
one student.

Although the 1-o-1 model can effectively reduce the number of
parameters as well as the time for model inference, due to the infor-
mation loss during the knowledge distillation, the performance of
student model usually cannot reach the parity with its teacher model.
This motivates us to develop the second approach, called m-o-m
ensemble model. To be more specific, we first train multiple teacher
models, for example, BERT (base and large) [5] and GPT [25] with
different hyper-parameters. Then train a separate student model for
each individual teacher model. Finally, the student models trained
from different teachers are ensembled to generate the ultimate result.
Our experimental results showed that the m-o-m ensemble model
performs better than the 1-o-1 model. The rationale is as follows.
Each teacher model is trained towards a specific learning objective.
Therefore, various models have different generalization ability, and
they also overfit the training data in different ways. When ensem-
ble these models, the over-fitting bias across different models can
be reduced by the voting effect. That say, the ensemble models
automatically “calibrate” the results.

When we compare the m-o-m ensemble model with the 1-o-1
model, although the former has better performance, it also consumes
much larger memory to host multiple student models. This motivates
us to look for a new approach, which has better performance than
the 1-o-1 model and consumes less memory than the m-o-m model.
One observation for the m-o-m ensemble approach is that it conducts
the model ensemble too late. In fact, once the training process for
a student models has finished, the overfitting bias from the corre-
sponding teacher model has already been transferred to the student
model. The voting effect across student models can be considered
as a “late calibration” process. On the other hand, if we feed the
scores from multiple teachers to a single student model during the
training stage, that model is receiving guidance from various teach-
ers simultaneously. Therefore, the overfitting bias can be addressed
by “early calibration”. Based on this observation, we develop the
novel m-o-1 approach, where we train a single student model by
feeding the scores from multiple teachers at the same time as the
supervision signals. The experimental results showed that the m-o-1

model performs better than the m-o-m model, while the memory
consumption is the same with the 1-o-1 model.

The novel m-o-1 approach results in decent compressed models.
However, the performance of the compressed models still has small
gap with the original large model. One obvious reason is that the
original large model has a large-scale pre-training stage, where
it learns the language model through an unsupervised approach.
We therefore explore how to simulate a pre-training stage for the
compressed models, such that it can benefit from large-scale training
data and learn the feature representation sufficiently.

Our empirical study shows that the pre-training stage significantly
improves the model performance. When we adopt a very large pre-
training data, followed by the m-o-1 fine-tuning strategy, the com-
pressed model can achieve comparable or even better performance
than the teacher model. Another interesting finding is that although
the pre-trained model is derived from Q&A pairs, it can serve as a
generic baseline for multiple tasks. As we show in the experiment
part, when we fine-tune the Q&A pre-trained model with various
text matching tasks, such as those in GLUE [26], it outperforms the
compressed model without pre-training on each task. To the best
of our knowledge, this is the first work discussing the distillation
pre-training and multiple teacher distillation for Web Q&A.

In this paper, we propose a Two-stage Multi-teacher Knowledge
Distillation (TMKD for short) method for model compression, and
make the following major contributions.

• In the first stage (i.e., the pre-training stage) of TMKD, we
create a general Q&A distillation pre-training task to leverage
large-scale unlabeled question-passage pairs derived from a
commercial search engine. The compressed model benefits
from such large-scale data and learns feature representation
sufficiently. This pre-trained Q&A distillation model can be
also applied to the model compression of various text match-
ing tasks.

• In the second stage (i.e., the fine-tuning stage) of TMKD,
we design a multi-teacher knowledge distillation paradigm
to jointly learn from multiple teacher models on downstream
tasks. The “early calibration” effect relieves the over-fitting
bias in individual teacher models, and consequently, the com-
pressed model can achieve comparable or even better perfor-
mance with the teacher model.

• We conduct intensive experiments on several datasets (both
open benchmark and commercial large-scale datasets) to ver-
ify the effectiveness of our proposed method. TMKD outper-
forms various state-of-the-art baselines and has been applied
to real commercial scenarios.

The rest of the paper is organized as follows. After a summary of
related work in Section 2, we describe our proposed model in details
in Section 3, followed by comprehensive evaluations in Section 4
and Section 5. Finally, Section 6 concludes this paper and discuss
future directions.

2 RELATED WORK
In this section we briefly review two research areas related to our
work: model compression and multi-task learning.
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Figure 1: The Overall Architecture of Our Two-stage Multi-teacher Distillation Model.

2.1 Model Compression
As the parameter size of neural network model is getting larger and
larger [5, 12, 23], how to make it feasible to deploy and apply the
models in industrial environment becomes an important problem.
A natural process is to compress the model [8, 11, 16]. Low-rank
approximation was a factorization method [4, 13, 31], which used
multiple low rank matrices to approximate the original matrix to
reduce model redundancy [9, 10, 16]. Hinton et al. proposed a knowl-
edge distillation method (KD for short) [11]. In their work, the output
of the complex network was used as a soft target for the training of
simple network. By this way, the knowledge of complex models can
be transferred to simple models. Distilling complex models into sim-
ple models has been shown to improve many NLP tasks to achieve
impressive performance [14, 15, 18, 20]. Polino et al. [24] proposed
a quantized distillation method. In their work, they incorporated
distillation loss, and expressed with respect to the teacher network,
into the training process of a smaller student network whose weights
were quantized to a limited set of levels. Papernot et al. [21] proposed
a training data protected method based on knowledge distillation . In
their work, an ensemble of teachers was trained on disjoint subsets
of the sensitive data, and then a student model was trained on public
data labeled using the ensemble of teachers.

2.2 Multi-task Learning
Multi-task learning has been widely studied in deep learning, which
leverages the information among different tasks to improve the gener-
alization performance [3, 6, 28]. Fares et al. [7] empirically evaluated
the utility of transfer and multi-task learning on semantic interpreta-
tion of noun-noun compounds. It showed that transfer learning via
parameter sharing can help a neural classification model generalize
over a highly skewed distribution of relations. Pentina and Lam-
pert [22] studied a variant of multi-task learning in which annotated
data was available on some of the tasks. Lee et al. [17] studied the

performance of different ensemble methods under the framework of
multi-task learning.

You et al. [29] presented a method to train a thin deep network by
incorporating in the intermediate layers and imposing a constraint
about the dissimilarity among examples. Wu et al. [27] propose
a multi-teacher knowledge distillation framework for compressed
video action recognition to compress this model. These efforts have
tried multiple teacher distillation methods in the field of computer
vision, but little research has been done on the NLP deep pre-training
based model. Concurrently with our work, several works also com-
bine the multi-task learning with knowledge distillation [2, 18, 19].
However, they applied the knowledge distillation and multi-task
learning to enhance the original model performance, instead of tar-
geting model compression.

Our approach is also a knowledge distillation based method for
model compression. Different from previous approaches, we develop
a novel Q&A distillation pre-training task leveraging large-scale
unsupervised Q&A data. Moreover, we design a multi-task paradigm
in the fine-tuning stage to jointly distill the knowledge from different
teacher models into a single student model.

3 OUR APPROACH
In this section, we firstly describe the overall design of our model,
and then describe the proposed approach TMKD in details. Finally,
we discuss the procedure of model training and prediction.

3.1 Overview
Figure 1 shows the architecture of TMKD. It consists of two stages:
distillation pre-training and task specific distillation fine-tuning. In
terms of teacher model for distillation, we take labeled data by crowd
sourcing judges as one specific teacher (T0) which has the ground-
truth knowledge (e.g. 0 or 1). We also have several other teachers
(T1-TN ) trained on different pre-trained models (e.g., BERT [5] and



GPT [25]) or with different hyper-parameters, which provide the
soft knowledge as pseudo supervision (score in [0, 1]).

3.1.1 Stage 1 - Distillation Pre-training. Deep pre-trained mod-
els like BERT/GPT benefit from the pre-training stage on large-scale
unsupervised data for better representation learning. Inspired by this,
we explore how to simulate a pre-training stage for the compressed
models. One method is to leverage large-scale unsupervised data of
specific task for knowledge distillation. However it is usually hard
to obtain large-scale task-specific unsupervised data for NLP tasks,
such as NLI tasks from GLUE datasets. To address this challenge, a
Q&A knowledge distillation task is proposed to pre-train the com-
pressed student model on a large-scale Q&A unlabeled data which
are derived from a commercial search engine. To be more specific:

• Step 1: For each question, top 10 relevant documents are
returned by the commercial search engine to form <Question,
Url> pairs, and passages are further extracted from these
documents to form <Question, Passage> pairs.

• Step 2: Then we leverage several Q&A teacher models (such
as BERTlarge fine-tuned models) to score the above <Ques-
tion, Passage> pairs.

• Step 3: We use the <Question, Passage> corpus as well as their
corresponding teacher models’ output scores as the pseudo
ground truth to pre-train the student model1.

With Step 1 and Step 2, we could collect a large-scale auto labelled
corpus (i.e. soft labels) for pre-training, which is several magnitudes
larger than that of the human labeled training set. For Step 3, we
propose the novel multi-teacher knowledge distillation (i.e. m-o-
1 approach) for pre-training. The distillation pre-trained student
model2 with Q&A task not only greatly boosts final Q&A fine-tuned
model but also other NLU tasks (like NLI tasks from GLUE), which
are shown in experiment section later.

3.1.2 Stage 2 - Task Specific Distillation Fine-tuning. Through
the large-scale distillation pre-training stage, our student model is
able to learn decent feature representation capabilities for general
NLU tasks (like Web Q&A task, MNLI, SNLI, RTE tasks from
GLUE). At the fine-tuning stage, the student model is firstly ini-
tialized with the pre-trained parameters in the above Stage 1, and
then all of the parameters are fine-tuned using labeled data from
the downstream specific tasks. At this stage, we propose a novel
multi-teacher knowledge distillation method (i.e. m-o-1 approach).

To be more specific, for each downstream task, we use both
the golden label (i.e. ground-truth knowledge of T0) on the task
specific corpus and the soft labels of T1-TN (i.e. pseudo ground-
truth knowledge) on the same corpus to jointly fine-tune to get an
enhanced student model. This is just like the learning process of
human beings that we simultaneously gain knowledge from our
teachers as well as the textbooks that our teachers have studied.

3.2 TMKD Architecture
TMKD is implemented from BERT [5]. Our model consists of three
layers: Encoder layer utilizes the lexicon to embed both the question
and passage into a low embedding space; Transformer layer maps

1The BERT student model is initialized by the bottom three layers of the BERT model.
Therefore, it has captured a rough language model from large corpus.
2The distillation pre-trained model of stage 1 will be released soon.

the lexicon embedding to contextual embedding; Multi-header layer
jointly learns from multiple teachers simultaneously during training,
as well as generates final prediction output during inference.

3.2.1 Encoder Layer. In Q&A system, each question and pas-
sage are described by a set of words. We take the word pieces
as the input just like BERT. X = {x (1),x (2), ...,x ( |X |)} is to de-
note all the instances, and each instance has a ⟨Q, P⟩ pair. Let
Q = {w1,w2,w3, ...,wm } be a question with m word pieces, P =
{w1,w2,w3, ...,wn } be a passage with n word pieces, and wi is the
bag-of-word representation of i-th word piece.C = {c1, c2, . . . , c |C |}
represents the label set to indicate ⟨Q, P⟩’s relation. Each token repre-
sentation is constructed by the sum of the corresponding token, seg-
ment and position embeddings. Let V = { ®vt ∈ RDv |t = 1, . . . ,M}
denote all the summed vectors in a Dv dimension continuous space.

We concatenate the ⟨Q, P⟩ pair, and add ⟨CLS⟩ as the first token,
then add ⟨SEP⟩ between Q and P. After that, we obtain the concatena-
tion input xc = {w1,w2,w3, . . . ,wm+n+2} of a given instance x (i).
With the encoder layer, we map xc into continuous representations
He = {v1,v2, . . . ,vm+n+2}.

3.2.2 Transformer Layer. We also use the bidirectional trans-
former encoder to map the lexicon embedding He into a sequence of
continuous contextual embedding Hs = {h1,h2,h3, . . . ,hm+n+2}.

3.2.3 Multi-header Layer. In our proposed approach, firstly sev-
eral teacher models are built with different hyper-parameters. Then,
in order to let the student model to jointly learn from these teacher
models, a multi-header layer is designed consisting of two parts, i.e.
golden label header and soft label headers:

Golden Label Header. Given instance x (i), this header aims to
learn the ground truth label. Following the BERT, we select x (i)’s
first token’s transformer hidden state h1 as the global representation
of input. The probability that x (i) is labeled as class c is defined as
follows:

P(c | ⟨Q, P⟩) = so f tmax(WT
д · h1) (1)

whereWT
д is a learnable parameter matrix, c ∈ C indicates the rela-

tion between ⟨Q, P⟩. The objective function of golden label header
task is then defined as the cross-entropy:

lд = −
∑
c ∈C

c · loд(P(c | ⟨Q, P⟩)) (2)

Soft Label Headers. Take the i-th soft label as an example, iin[1, |N |],
N is the number of soft labels. For a given instance x (i), we also
select the first token’s hidden state h1 as the global representation
of input. The probability that x (i) is labeled as class c is defined as
follows:

Psi (c | ⟨Q, P⟩) = so f tmax(WT
si · h1) (3)

whereWT
si is a learnable parameter matrix. We support Rsi (c | ⟨Q, P⟩)

=WT
si · h1 as the logits of i-th soft header before normalization.

For a instance ⟨Q, P⟩, teacher model can predict probability distri-
butions to indicate that Q and P are relevant or not. Soft label headers
aim to learn the teachers’ knowledge through soft labels. The objec-
tive function of soft label headers is defined as mean squared error
as follows:
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Table 3: Statistics of experiment datasets (For DeepQA dataset, we have a test dataset, which is non-overlapping with the training set.
For GLUE, please note that the results on development sets are reported, since GLUE does not distribute labels for the test sets).

Dataset Size of Samples
(Train/Test)

Average Question Length
(Words)

Average Answer Length
(Words)

DeepQA 1M/10K 5.86 43.74
CommQA-Unlabeled 4M(base) 40M(large) 0.1B(extreme) 6.31 42.70
CommQA-Labeled 12M/2.49K 5.81 45.70

MNLI 392.70K/19.64K 20.52 10.90
SNLI 549.36K/9.84K 13.80 10.90
QNLI 108.43K/5.73K 9.93 28.07
RTE 2.49K/0.27K 45.30 9.77

lsi =
1
|C |

∑
c ∈C

(Rsi (c | ⟨Q, P⟩) − Rti (c | ⟨Q, P⟩))2

ls =
1
N

N∑
i=1

lsi

(4)

where Rti (c | ⟨Q, P⟩) represents the i-th soft label teacher’s logits
before normalization and N is the number of soft label headers.

3.3 Training and Prediction
In order to learn parameters of TMKD model, our proposed TMKD
model has a two-stage training strategy. At the first stage, we use
the Equation (4) to learn the generalized natural language inference
capability from the unlabeled data with soft labels. At the second
stage, we combine Equation (2) and Equation (4) to learn the task-
specific knowledge from the labeled data with golden labels and soft
labels, then obtain our final learning objective function as follows:

l = (1 − α)lд + αls (5)

where α is a loss weighted ratio, lsi is the loss of i-th soft header. In
the inference stage, we use an aggregation operation to calculate the
final result as follows:

O(c | ⟨Q, P⟩) = 1
N + 1

(P(c | ⟨Q, P⟩)+
N∑
i=1

Psi (c | ⟨Q, P⟩))
(6)

where Psi is the i-th student header’s output and N denotes the
number of soft label headers.

4 EXPERIMENT
In this section, we conduct empirical experiments to verify the ef-
fectiveness of our proposed TMKD on model compression. We first
introduce the experimental settings, then compare our model to the
baseline methods to demonstrate its effectiveness.

4.1 Dataset
We conduct experiments on several datasets as follows.

• DeepQA: An English Q&A task dataset from one commer-
cial Q&A system, with 1 million labeled cases. Each case
consists of three parts, i.e. question, passage, and binary label
(i.e. 0 or 1) by crowd sourcing judges indicating whether
the question can be answered by the passage. The following
briefly describes how the data is collected. Firstly, for each

question, top 10 relevant documents returned by the search
engine are selected to form <Question, Url> pairs; Then pas-
sages are further extracted from these documents to form
<Question, Url, Passage> triples; These <Query, Passage>
pairs are sampled and sent to crowd sourcing judges. Specifi-
cally, each <Query, Passage> pair is required to get judged by
three judges. Those cases with more than 2/3 positive labels
will get positive labels, otherwise negative.

• CommQA-Unlabeled A large-scale unlabeled Q&A data
coming from a commercial search engine. The collection
method of <Query, Passage> pairs is same as DeepQA, and
the difference is that the question type and domain of this
dataset is more diverse than DeepQA. We sampled 4 million
(named base dataset) and 40 million (named large dataset) as
the pre-training data. Besides, in our commercial scenario, we
have one extremely large Q&A unlabeled dataset (0.1 billion)
cooked by the same data collection approach.

• CommQA-Labeled A large-scale commercial Q&A train-
ing data, which is sampled from CommQA-Unlabeled, and
labeled by crowd sourcing judges.

• GLUE [26]: A collection of datasets for evaluating NLU sys-
tems, including nine language understanding tasks. Among
them, we choose textual entailment tasks (MNLI, SNLI,
QNLI, RTE), which are similar to Q&A task. For MNLI
and QNLI, given two sentences (premise and hypothesis), the
task is to predict whether the premise entails the hypothesis
(entailment), contradicts (contradiction), or neither (neutral).
While for SNLI and RTE, the relationship does not contain
neutral type.

4.2 Evaluation Metrics
We use the following metrics to evaluate model performance:

• Accuracy (ACC): Number of correct predictions divided by
the total number of samples.

• Queries Per Second (QPS): Average number of cases pro-
cessed per second. We use this metric to evaluate the model
inference speed.

4.3 Baselines
We compare our model with several strong baselines to verify the
effectiveness of our approach.

• BERT-3: a student model without any knowledge distillation
but instead trained as a small version of BERT/GPT, which
initialized by the bottom 3-layer weight of BERT.



Table 4: Model comparison between our methods and baseline methods. ACC denotes accuracy (all ACC metrics in the table are percentage numbers
with % omitted). Specially for MNLI, we average the results of matched and mismatched validation set.

Model Performance (ACC) Inference
Speed(QPS)

Parameters
(M)DeepQA MNLI SNLI QNLI RTE

Original Model
BERT-3 75.78 70.77 77.75 78.51 57.42 207 50.44
BERTlarge 81.47 79.10 80.90 90.30 68.23 16 333.58
BERTlarge ensemble 81.66 79.57 81.39 90.91 70.75 16/3 333.58*3

Traditional Distillation
Model

Bi-LSTM (1-o-1) 71.69 59.39 69.59 69.12 56.31 207 50.44
Bi-LSTM (1avg-o-1) 71.93 59.60 70.04 69.53 57.35 207 50.44
Bi-LSTM (m-o-m) 72.04 61.71 72.89 69.89 58.12 207/3 50.44*3
BERT-3 (1-o-1) 77.35 71.07 78.62 77.65 55.23 217 45.69
BERT-3 (1avg-o-1) 77.63 70.63 78.64 78.20 58.12 217 45.69
BERT-3 (m-o-m) 77.44 71.28 78.71 77.90 57.40 217/3 45.69*3

Our Distillation Model

Bi-LSTM (TMKDbase) 74.73 61.68 71.71 69.99 62.74 207 50.45
∗TMKDbase 79.93 71.29 78.35 83.53 66.64 217 45.70
∗TMKDlarge 80.43 73.93 79.48 86.44 67.50 217 45.70

∗ These two models are BERT-3 based models.

• BERTlarge [5]: We use the BERTlarge fine-tuning model (24-
layer transformer blocks, 1024 hidden size, and 16 heads) as
another strong baseline.

• BERTlarge Ensemble: We use BERTlarge fine-tuning model
ensemble as another strong baseline (the output probability
distribution decided by the average probability distributions
of all models).

• Single Student Model (1-o-1 and 1avg-o-1) [11]: Student
model learns from one single teacher model using knowledge
distillation. For teacher model selection, we have two strate-
gies. Firstly, we pick the best model selected from Original
BERT teacher models to distill one single model (called 1-
o-1). Secondly, we pick the average score of teacher models
as another special teacher to distill one single student (called
1avg-o-1). We implement this method under two architectures:
BERT-3 model and Bi-LSTM model. In the following sec-
tions, where we do not clarify the basic model is BERT-3
model.

• Student Model Ensemble (m-o-m): For each teacher model,
1-o-1 is used to train a single student model. Based on this
method, 3 separate student models are trained based on 3
different teacher models. Finally an ensemble aggregation is
used by simply averaging the output scores to form the final
results. We also implement it under BERT-3 base model and
Bi-LSTM model.

4.4 Parameter Settings
For all BERT based models, we implement on top of the PyTorch
implementation of BERT3. All teacher models are trained using
BERTlarge with batch size of 128 for 10 epochs, and max sequence
length as 150. On each dataset, we train three different teacher
models with different learning rates in {2, 3, 5} × 10−5. For BERT-
3 student model, we optimize the student model using a learning
rate of 1 × 10−4, and all BERT-based models are initialized using
pre-trained BERT model weights.

For all Bi-LSTM based models, we set the LSTM hidden units
as 256, LSTM layer count as 2, and word embedding dimension

3github.com/huggingface/pytorch-pretrained-BERT.

as 300. Top 15 thousands of words are selected as vocabulary and
300 dimension Glove is used for embedding weight initialization.
Words not in Glove vocabulary are randomly initialized with normal
distribution. The parameters are optimized using Adam optimizer
with learning rate as 1 × 10−3.

Those teacher models used for TMKD and m-o-m training are
identical for fair comparison. The only difference between TMKDbase
and TMKDlarge is the training data in the distillation pre-training
stage. To be more specific, TMKDbase leverages CommQA-Unlabeled
base corpus for pre-training while TMKDlarge is pre-trained using
CommQA-Unlabeled large corpus.

4.5 Comparison Against Baselines
In this section, we conduct experiments to compare TMKD with
baselines in terms of three dimensions, i.e. inference speed, parame-
ter size and performance on task specific test set. From the results
shown in Table 4, it is intuitive to have the following observations:

• It is not surprising that original BERT teacher model shows
the best performance due to its sheer amount of parameters
(340M), but inference speed is super slow and memory con-
sumption is huge for production usage.

• 1-o-1 and 1avg-o-1 (BERT-3 and Bi-LSTM) obtain pretty
good results regarding inference speed and memory capacity.
However there are still some gaps compared to the original
BERT model in terms of ACC metric.

• m-o-m performs better than 1-o-1. However, the inference
speed and memory consumption increase in proportion to the
number of student models used for ensemble.

• Compared with 1-o-1, 1avg-o-1 and m-o-m, TMKD achieves
optimum in all three dimensions. In terms of memory, TMKD
only needs small amount of additional memory consumption
since the majority of parameters are shared across different
distillation tasks compared with the 1-o-1. In addition, TMKD
performs significant better than BERT-3, which further proves
the effective of our model.

To conclude, TMKD performs better in three dimensions than
several strong baseline compressed models with knowledge distil-
lation (i.e. 1-o-1, 1avg-o-1, m-o-m) on all the evaluation datasets,
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and also further decreases performance gap with the original BERT
model, which verifies the effectiveness of TMKD.

5 ABLATION STUDIES
TMKD consists of multiple teacher distillation pre-training stage
and distillation fine-tuning stage. In this section, we further conduct
several experiments to analyze the contribution of each factor in
TMKD, in order to obtain a better understanding of the proposed
approach.

5.1 Impact of Different Training Stages
5.1.1 Impact of Distillation Pre-training Stage. One advantage
of TMKD is to introduce a multi-teacher distillation task for student
model pre-training to boost model performance. We analyze the
impact of pre-training stage by evaluating two new models:

TKD: A 3-layer BERTbase model which is firstly trained using
1-o-1 distillation pre-training on CommQA-Unlabeled large-scale
dataset (i.e. 40M <Question, Passage> pairs), then fine-tuned on task
specific corpus with golden label and single soft label (i.e. by only
one teacher) of each task.

KD (1-o-1): Another 3-layer BERTbase model which is fine-tuned
on task specific corpus with golden label and single soft label of
each task but without distillation pre-training stage.

From the results in Table 5, we have the following observations:
(1) On DeepQA dataset, TKD shows significant gains by leveraging
large-scale unsupervised Q&A pairs for distillation pre-training. (2)
Although Q&A task is different with GLUE tasks, the student model
of GLUE tasks still benefit a lot from the distillation pre-training
stage leveraging Q&A task. This proves the effect of the distillation
pre-training stage leveraging Q&A large corpus.

Table 5: Comparison between KD and TKD

Model Performance (ACC)
DeepQA MNLI SNLI QNLI RTE

KD (1-o-1) 77.35 71.07 78.62 77.65 55.23
TKD 80.12 72.34 78.23 85.89 67.35

5.1.2 Impact of Multi-teacher Distillation vs Single-teacher
Distillation. Another advantage of TMKD is designing a unified
framework to jointly learn from multiple teachers. We analyze the
impact of multi-teacher versus single-teacher knowledge distillation
by the following three models:

MKD: A 3-layer BERTbase model trained by Multi-teacher distil-
lation (m-o-1) without pre-training stage.

KD (1avg-o-1): A 3-layer BERTbase model trained by Single-
teacher distillation (1avg-o-1) without pre-training stage, which is to
learn from the average score of teacher models.

Table 6: Comparison Between KD (1avg-o-1) and MKD

Model Performance (ACC)
DeepQA MNLI SNLI QNLI RTE

KD (1avg-o-1) 77.63 70.63 78.64 78.20 58.12
MKD 78.21 71.98 78.80 77.80 59.92

From Table 6, MKD outperforms KD (1avg-o-1) on the majority
of tasks, which demonstrates that multi-teacher distillation approach
(m-o-1) is able to help student model learn more generalized knowl-
edge by fusing knowledge from different teachers.

5.1.3 Dual-Impact of Two Stages. Finally, TKD, MKD and
TMKD are compared altogether. From Figure 2, TMKD signifi-
cantly outperforms TKD and MKD in all datasets, which verifies the
complementary impact of the two stages (distillation pre-training &
m-o-1 fine-tuning) for the best results.

5.1.4 Extensive Experiments: Multi-teacher Ensemble or
Multi-teacher Distillation? TMKD leverage multi-teacher distilla-
tion in both pre-training and task specific fine-tuning stages. This
multi-teacher mechanism actually introduces multi-source infor-
mation from different teachers. A common approach to introduce
multi-source information is ensemble (e.g. average score of the pre-
diction outputs from multiple models). Compared with the common
multi-teacher ensemble approach, are there extra benefits from multi-
teacher distillation? We conduct further experiments to explore this
question.

For clear comparisons, we apply some degradation operations
to TMKD. We remove the multi-teacher distillation mechanism
from TMKD, and then use ensemble teacher score (the average
score of soft labels by multiple teachers) and single teacher score
(from the best teacher) to train two new models with a two-stage
setting respectively, which are denoted as TKDbase (1avg-o-1) and
TKDbase (1-o-1). Experiments using both BERT-3 and Bi-LSTM as
the student model architecture are conducted, as shown in Table 7.

Table 7: Comparison between TKD and TMKD

Model Dataset
DeepQA MNLI SNLI QNLI RTE

Bi-LSTM (TKDbase (1-o-1)) 74.26 61.43 71.54 69.2 59.56
Bi-LSTM (TKDbase (1avg-o-1)) 74.38 61.55 71.7 69.08 61.01
Bi-LSTM (TMKDbase) 74.73 61.68 71.71 69.99 62.74
∗TKDbase (1-o-1) 79.5 71.07 77.66 82.79 63.89
∗TKDbase (1avg-o-1) 79.73 71.21 77.70 83.40 67.10
∗TMKDbase 79.93 71.29 78.35 83.53 66.64

∗ These three models are BERT-3 based models.

From the results, we have the following observations: (1) For
both BERT-3 ad Bi-LSTM based models, the TKDbase(1avg-o-1)
performs better than TKDbase(1-o-1). This demonstrates that ensem-
ble of teacher models is able to provide more robust knowledge than
single teacher model when distill the student model. (2) Compared
with TKDbase(1-o-1) and TKDbase(1avg-o-1), TMKDbase obtains the
best performance no matter using Bi-LSTM or BERT-3. It because
that the multi-source information was diluted by the average score.
TMKD introduces the differences when training, the multi-source
information can be adpative at the training stage.

5.2 Impact of Training Data Size
To further evaluate the potential of TMKD, we conduct extensive
experiments on CommQA-Unlabeled extremely large-scale corpus
data (0.1 billion unlabeled Q&A pairs) and CommQA-Labeled (12M
labeled Q&A labeled pairs). Four separate teacher models (T1-T4) are
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Figure 2: Performance comparison of TKD, MKD and TMKD on different datasets

trained with batch size of 128 and learning rate with {2, 3, 4, 5} ∗ e−5.
Max sequence length is set as 200, and number of epochs as 4. The
settings of KD, MKD, and TMKD keep the same as Section 5.1.
The results are shown in Table 8. Interestingly, on this extremely
large Q&A dataset, TMKD even exceeds the performance of its
teacher model (ACC: 79.22 vs 77.00), which further verifies the
effectiveness of our approach.

Table 8: Extremely large Q&A dataset results.

Performance (ACC)
BERTlarge KD MKD TMKD

77.00 73.22 77.32 79.22

5.3 Impact of Transformer Layer Count
In this section, we discuss the impact of transformer layer count n
for TMKD4 with n ∈ {1, 3, 5}. As observed from Table 9: (1) With
n increasing, ACC increases as well but inference speed decreases,
which aligns with our intuition. (2) With n increasing, the perfor-
mance gain between two consecutive trials decreases. That say, when
n increases from 1 to 3, the ACC gains of the 5 datasets are (3.87,
9.90, 7.46, 11.44, 11.19) which are very big jump; while n increases
from 3 to 5, gains decrease to (1.08, 1.63, 0.53, 2.89, 0.37), without
decent add-on value compared with the significantly decreased QPS.

Table 9: Compare different number of transformer layer.

Dataset Metrics Layer Number
1 3 5

DeepQA ACC 74.59 78.46 79.54
MNLI ACC 61.23 71.13 72.76
SNLI ACC 70.21 77.67 78.20
QNLI ACC 70.60 82.04 84.94
RTE ACC 54.51 65.70 66.07

QPS 511 217 141

Based on the above results, we set n as 3 since it has the highest
performance/QPS ratio for web Question Answering System. In real
production scenarios, we need to balance between performance and
latency.
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Figure 3: The impact of different loss weighted ratio.

5.4 Impact of Loss Weighted Ratio
We also conducts several experiments to analyze the impact of the
loss weighted ratio α defined in Section 3.3, where α ∈ {0.1, 0.3, 0.5,
0.7, 0.9, 1.0}. Specially, when set the ratio as 1.0, we only use the
soft label headers to calculate the final output result. The results of
TMKD against different α values are shown in Figure 3. We can
observe: (1) The larger value the ratio is, the better performance
is obtained (except when α is 1.0). (2) Without the golden label
supervision (i.e. α is 1.0), the performance decreases. The intuition
is just like the knowledge learning process of human beings. We learn
knowledge not only from teachers but also through reading books
which can provide us a comprehensive way to master knowledge
with less bias.

6 CONCLUSION AND FUTURE WORK
In this paper, we propose a novel Two-stage Multi-teacher Knowl-
edge Distillation (TMKD) approach for model compression. Firstly
a Q&A multi-teacher distillation task is proposed for student model
pre-training, then a multi-teacher paradigm is designed to jointly
learn from multiple teacher models (m-o-1) for more generalized
knowledge distillation on downstream specific tasks. Experiment
results show that our proposed method outperforms the baseline
state-of-art methods by great margin and even achieves compara-
ble results with the original teacher models, along with significant
speedup of model inference. The compressed Q&A model with

4In order to save experimental costs, we choose TMKDbase for experimentation.
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TMKD has already been applied to real commercial scenarios which
brings significant gains.

In the future, we will extend our methods to more NLU tasks,
such as sequence labelling, machine reading comprehension, etc. On
the other hand, we will explore how to select teacher models more
effectively for better student model distillation.
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