
HAL Id: hal-02901404
https://hal.science/hal-02901404

Submitted on 17 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static analysis of featured transition systems
Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Mazzanti,

Luca Paolini

To cite this version:
Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Mazzanti, Luca Paolini. Static
analysis of featured transition systems. 23rd International Systems and Software Product Line Con-
ference, SPLC 2019, co-located with the 13th European Conference on Software Architecture, ECSA
2019, Sep 2019, PARIS, France. �10.1145/3336294.3336295�. �hal-02901404�

https://hal.science/hal-02901404
https://hal.archives-ouvertes.fr

Static Analysis of Featured Transition Systems
Maurice H. ter Beek

∗

ISTI–CNR, Pisa, Italy

maurice.terbeek@isti.cnr.it

Ferruccio Damiani
∗

University of Turin, Turin, Italy

ferruccio.damiani@unito.it

Michael Lienhardt
∗

ONERA, Palaiseau, France

michael.lienhardt@onera.fr

Franco Mazzanti
∗

ISTI–CNR, Pisa, Italy

franco.mazzanti@isti.cnr.it

Luca Paolini
∗

University of Turin, Turin, Italy

luca.paolini@unito.it

ABSTRACT

A Featured Transition System (FTS) is a formal behavioural model

for software product lines, which represents the behaviour of all the

products of an SPL in a single compact structure by associating tran-

sitions with features that condition their existence in products. In

general, an FTS may contain featured transitions that are unreach-

able in any product (so called dead transitions) or, on the contrary,

mandatorily present in all products for which their source state

is reachable (so called false optional transitions), as well as states

from which only for certain products progress is possible (so called

hidden deadlocks). In this paper, we provide algorithms to analyse

an FTS for such ambiguities and to transform an ambiguous FTS

into an unambiguous FTS. The scope of our approach is twofold.

First and foremost, an ambiguous model is typically undesired as

it gives an unclear idea of the SPL. Second, an unambiguous FTS

paves the way for efficient family-based model checking. We apply

our approach to illustrative examples from the literature.

CCS CONCEPTS

• Software and its engineering → Specification languages;

Formal methods; Software product lines.

KEYWORDS

software product lines, formal specification, behavioural model,

featured transition systems, static analysis

ACM Reference Format:

Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Maz-

zanti, and Luca Paolini. 2019. Static Analysis of Featured Transition Systems.

In 23rd International Systems and Software Product Line Conference - Volume

A (SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3336294.3336295

1 INTRODUCTION

Systems and Software Product Line Engineering (SPLE) advocates

the reuse of components (systems as well as software) throughout

∗
All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPLC ’19, September 9–13, 2019, Paris, France

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00

https://doi.org/10.1145/3336294.3336295

all phases of product development. Following this paradigm, many

businesses no longer develop single products, but rather a family or

product line of closely-related, customisable products. This requires

identifying the relevant features of the product domain to best

exploit their commonality and manage their variability. A feature

diagram or feature model defines those combinations of features

that constitute valid product configurations [2].

While automated analysis of such structural variability models

(e.g., detection of anomalies like dead or false optional features) has

a 30-year history [20, 61], that of behavioural variability models has

received considerable attention only during the last decade, follow-

ing the seminal paper by Classen et al. [32]. Given that SPLs often

concern massively (re)used and critical software (e.g., in smart-

phones and the automotive industry) it is important to demonstrate

not only their correct configuration, but also their correct behaviour.

A Featured Transition System (FTS) is a formal behavioural

model for SPLs, which represents the behaviour of all the products

of an SPL in a single compact structure by associating transitions

with features that condition their existence in products [30]. Quality

assurance by means of model checking or testing is challenging,

since ideally it must exploit the compact structure of the FTS to

reason on the entire SPL at once. This is called family-based analysis,

as opposed to enumerative product-based analysis in which every

product is examined individually [60]. During the past decade, FTSs

have shown to be amenable to family-based testing and model-

checking [10, 11, 28–32, 34, 42–47, 52].

In this paper, we are interested in automated static analysis of

FTSs. We want to catch (and offer a means to remove) possible

ambiguities in FTSs, mimicking the anomaly detection as typically

performed on feature models. In fact, an FTS may contain: dead

transitions (i.e., featured transitions that are unreachable in any

product); false optional transitions (i.e., featured transitions that are

mandatorily present in all products for which their source state is

reachable); and hidden deadlocks (i.e., states from which only for

certain products progress is possible).

The contribution of this paper is a formalisation of ambiguities

in FTSs and algorithms to analyse an FTS for such ambiguities

and to transform an ambiguous FTS into an unambiguous one,

as well as proofs of their correctness. The scope is twofold. First,

in analogy with the anomalies in feature models, an ambiguous

FTS is often undesired since it gives an unclear idea of the SPL.

Second, an unambiguous FTS paves the way for efficient family-

based model checking, because it has specific characteristics that

enable model checking of properties expressed in a rich, action-

based and variability-aware fragment of the well-known CTL logic

directly on the FTS such that validity is preserved in all products.

https://doi.org/10.1145/3336294.3336295
https://doi.org/10.1145/3336294.3336295
https://www.acm.org/publications/policies/artifact-review-badging/#reusable

SPLC ’19, September 9–13, 2019, Paris, France M.H. ter Beek et al.

We apply our approach to illustrative examples from the literature.

Related work. Static analysis of FTSs mimics the automated anal-

ysis of feature models [20, 61], by defining behavioural counterparts

of dead and false optional features. It is related to static (program)

analysis [24, 58], which includes the detection of bugs in the code

(like using a variable before its initialisation) but also the identifica-

tion of code that is redundant or unreachable. In [52], conventional

static analysis techniques are applied to SPLs represented in the

form of object-oriented programs with feature modules. The aim

is to find irrelevant features for a specific test in order to use this

information to reduce the effort in testing an SPL by limiting the

number of SPL programs to examine to those with relevant features.

In [23], several well-known static analysis techniques are lifted to

SPLs without the exponential blowup caused by generating and

analysing all products individually, by converting such analyses

to feature-sensitive analyses that operate on the entire SPL in one

single pass. In [51], static type checking is extended from single

programs to an entire SPL by extending the type system of a subset

of Java with feature annotations. This guarantees that whenever

the SPL is well-typed, then all possible program variants are well-

typed as well, without the need for generating and compiling them

first. An encompassing overview of (static) analysis strategies for

SPLs can be found in [60] and a recent empirical study on applying

variability-aware static analysis techniques to real-world config-

urable systems is presented in [59].

Outline. After some background (in Sect. 2), we define ambigui-

ties in FTSs (in Sect. 3); provide criteria that enable to identify them

by static analysis (in Sect. 4); present a static analysis algorithm to

detect ambiguities in FTSs (in Sect. 5); illustrate the application of

the algorithm on FTSs from the literature (in Sect. 6); discuss the

usefulness of removing ambiguities from FTSs (in Sect. 7) and scal-

ability issues of our approach (in Sect. 8); after which we conclude

by briefly outlining some planned future work (in Sect. 9).

2 BACKGROUND

In this section, we provide some background needed for the sequel.

We recall LTSs as the underlying behavioural structure of FTSs.

Definition 2.1 (LTS). A Labelled Transition System (LTS) is a

quadruple (S, Σ, s0,δ), where S is a finite (non-empty) set of states,

Σ is a set of actions, s0 ∈ S is an initial state, and δ ⊆ S × Σ × S is a

transition relation.

We call (s,a, s ′) ∈ δ an a-(labelled) transition (from source state s

to target state s ′) and we may also write it as s
a
−−→ s ′.

We recall classical notions for LTSs that we will use in the paper.

Definition 2.2 (reachability). Let L = (S, Σ, s0,δ) be an LTS. A

sequencep = s0t1s1t2s2 · · · is a path ofL if ti = (si−1,ai , si) ∈ δ for

all i > 0; p is said to visit states s0, s1, . . . and transitions t1, t2, . . .
and we denote its ith state by p (i) and its ith transition by p{i}.

A state s ∈ S is reachable (via p) in L if there exists a path p
that visits it, i.e., p (i) = s for some i ≥ 0; s is a deadlock if it has no

outgoing transitions, i.e., ∄ (s,a, s ′) ∈ δ , for all a ∈ Σ and s ′ ∈ S .
A transition t = (s,a, s ′) ∈ δ is reachable (via p) in L if there

exists a path p that visits it, i.e., p{i} = t , for some i > 0.

FTSs were introduced in [30, 32] to concisely model the be-

haviour of all the products of an SPL in one transition system by

annotating transitions with conditions expressing their existence in

products. Let B = {⊤,⊥} denote the Boolean constants true (⊤) and

false (⊥), and let B(F) denote the set of Boolean expressions over

a set of features F (i.e., using features as propositional variables).

We do not formalise a language for Boolean expressions in order to

allow the inclusion of all possible propositional connectives and, in

particular, we include the constants from B. The elements of B(F)
are also called feature expressions. An FTS is an LTS equipped with

a feature model and a function that labels each transition with a

feature expression. In the following definition, the feature model

is represented by the set of its (product) configurations, where

each configuration is represented by a Boolean assignment to the

features (i.e., selected = ⊤ and unselected = ⊥).

Definition 2.3 (FTS). A Featured Transition System (FTS) is a sex-

tuple (S, Σ, s0,δ , F ,Λ), where S is a finite (non-empty) set of states,

Σ is a set of actions, s0 ∈ S is the initial state, δ ⊆ S × Σ × B(F) × S
is a transition relation, F is a set of features, and Λ ⊆ { λ : F → B }
is a set of (product) configurations. Without loss of generality, we

assume that whenever (s,a,ϕ, s ′), (s,a,ϕ ′, s ′) ∈ δ , then ϕ = ϕ ′

(transition injectivity).

We call (s,a,ϕ, s ′) ∈ δ , for some feature expression ϕ ∈ B(F), a
featured transition (labelled with a and limited to configurations

satisfying ϕ) and we call (s,a,⊤, s ′) ∈ δ a must transition. We may

also write featured transitions as s
a | ϕ
−−−−−→ s ′.

The notions from Definition 2.2 (path, reachability, deadlock)

are carried over to FTSs by ignoring the feature expressions. The

transition injectivity in Definition 2.3, guaranteeing that a transition

identifies a unique feature expression (as in [21, 62]), turns out to

be useful for some of the technical results in this paper. Moreover,

we know from [30] (Theorem 8) that restricting feature expressions

to singleton features does not affect expressiveness.

A configuration λ ∈ Λ satisfies a feature expression ϕ ∈ B(F),
denoted by λ |= ϕ, whenever the interpretation of ϕ via λ is true,

i.e., if the result of substituting the value of the features occurring

as variables in ϕ according to λ is ⊤. By definition, λ |= ⊤.

Definition 2.4 (product). Let F = (S, Σ, s0,δ , F ,Λ) be an FTS. The

LTS specified by a particular configuration λ ∈ Λ, denoted by F |λ ,

is called a product of F . It is obtained from F by first removing all

featured transitions whose feature expressions are not satisfied by λ
(resulting in the LTS (S, Σ, s0,δ

′), withδ ′ = { (s,a, s ′) | (s,a,ϕ, s ′) ∈
δ and λ |= ϕ}), and then removing all unreachable states and their

outgoing transitions. The set of products of F is denoted by lts(F).

Note that, by construction: (i) each product does not contain

unreachable states or transitions; (ii) each must transition of the

FTS is maintained in the products in which it is reachable; and

(iii) each product does not contain states or actions that were not

originally present in the FTS.

Let fmF denote the feature model expression of F , i.e., a feature

expression that represents Λ (like, e.g., the formula, in conjunctive

normal form,

∨
λ∈Λ (

∧
f ∈F ({ f | λ(f) = ⊤ } ∪ { ¬f | λ(f) = ⊥ })).

We may write fm instead of fmF if no confusion can arise.

Example 2.5. In Fig. 1, we depict an FTS F , modelling the be-

haviour of a product line of coffee machines, adapted from [10].

Static Analysis of Featured Transition Systems SPLC ’19, September 9–13, 2019, Paris, France

s0 s1 s2

F fmF = $ ⊕ e

ins |⊤

std |e

ins |$

xxl |$

Figure 1: FTS of a product line of coffee machines

s0 s1 s2

F |λ
1

ins ins

xxl

s0 s1

F |λ
2

ins

std

Figure 2: LTSs of products λ1 and λ2 of the FTS of Fig. 1

This FTS has transitions labelled with features $ and e, representing

products for either the American or the European market, respec-

tively, and a must transition that must be present in every product.

Its feature model can thus be represented by the feature expression

fmF = $ ⊕ e, where ⊕ denotes the exclusive disjunction operation.

Hence the product configurations of F are Λ = {λ1, λ2}, where
λ1 ($) = ⊤, λ1 (e) = ⊥, λ2 ($) = ⊥, and λ2 (e) = ⊤.

The FTS has actions to insert coins (ins) and to pour standard (std)

or extra large (xxl) coffee. Extra large coffee is exclusively available

for the American market (for two dollars), while standard coffee is

exclusively available for the European market (for one euro). The

LTSs F |λ1 and F |λ2 , depicted in Fig. 2, model the behaviour of the

two products of F : configuration λ1 for the American market and

configuration λ2 for the European market.

3 AMBIGUITIES IN FTSs

Some of the better known analysis operations that are typically

performed as part of the automated analysis of feature models con-

cern the detection of anomalies (cf., e.g., [20, 61]). These anomalies

reflect ambiguous or even contradictory information. Examples

include so-called dead and false optional features. A feature is dead

if it is not contained in any of the products of the SPL, typically

due to an incorrect use of cross-tree constraints, whereas a feature

is false optional if it is contained in all the products of the SPL even

though it is not a designated mandatory feature.

In this section, we capture equivalent notions in a behavioural

setting, by adapting them to (featured) transitions of an FTS: we

define ambiguous FTSs (Sect. 3.1) and show how to transform an

ambiguous FTS into an unambiguous one (Sect. 3.2).

3.1 Behavioural Ambiguities

Definition 3.1 (dead transition). We define a transition (of an FTS)

to be dead if it is not reachable in any of the FTS’ products.

Definition 3.2 (false optional transition). A featured transition (of

an FTS) is false optional if: (i) it is not annotated with the feature

expression ⊤ and (ii) it is present in all the FTS’ products in which

its source state is reachable.

An important safety property of reactive systems concerns dead-

lock freedom, i.e., the system should not reach a state in which

no further action is possible, thus guaranteeing progress or live-

ness [1, 56]. In case of configurable reactive systems, like SPLs, this

notion can be extended to guaranteeing liveness for each system

variant (product). Recall from Sect. 2 that a state of an FTS is said

to be a deadlock if it has no outgoing transitions and from Defini-

tion 2.4 that all states of a product (LTS) of an FTS are reachable.

Definition 3.3 (hidden-deadlock state). We define a state (of an

FTS) to be a hidden deadlock if: (i) it is not a deadlock in the FTS

and (ii) it is a deadlock in one or more of the FTS’ products (LTSs).

Definition 3.4 (ambiguous FTS). An FTS is said to be ambiguous

if any of its states is a hidden deadlock or if any of its transitions is

dead or false optional.

Example 3.5. In Fig. 3(left), we depict an FTS F with features f1
and f2 and feature model fm = f1 ⊕ f2.

The LTSs F |λ1 and F |λ2 , depicted in Fig. 4(left and middle),

model the behaviour of its two valid product configurations: λ1 =
{ f1} and λ2 = { f2}. We immediately see that featured transition

s2
a | f2
−−−−−→ s2 is dead, featured transition s1

a | f1
−−−−−→ s2 is false optional,

and state s2 is a hidden deadlock. Hence F is an ambiguous FTS.

3.2 Removing Ambiguities

Any ambiguous FTS can be straightforwardly turned into an un-

ambiguous FTS by the following transformation:

(1) remove its dead transitions;

(2) turn its false optional transitions into must transitions; and

(3) make its hidden deadlocks explicit by adding to Q a distin-

guished deadlock state s† < Q and, for each hidden deadlock

state s , adding a new transition (which we call a deadlock

transition) with s as source, s† as target, and labelled by a

distinguished action † < Σ and by a feature expression that

negates the disjunction of the feature expressions of all its

source state’s outgoing transitions.

Note that step (3) needs to be performed only for those hidden

deadlock states that have not yet become explicit deadlock states

upon the removal of dead featured transitions in step (1).

Example 3.6. In Fig. 5(left), we depict an unambiguous FTS F∗

that was obtained by transforming the ambiguous FTS F of Fig. 3.

We removed dead featured transition s2
a | f2
−−−−−→ s2 and false optional

featured transition s1
a | f1
−−−−−→ s2 was turned into must transition

s1
a | ⊤
−−−−−→ s2. Note that there was no need to add an explicit deadlock

transition from the hidden deadlock state s2 to a newly added

explicit deadlock state, since s2 became an explicit deadlock state

upon removing the dead featured transition s2
a | f2
−−−−−→ s2.

Now consider the ambiguous FTS F ′ depicted in Fig. 3(right)

with features f1 and f2 and feature model fm = f1 ⊕ f2. The LTSs
F ′ |λ1 and F

′ |λ2 , depicted in Fig. 4(left and right), model the be-

haviour of its two valid product configurations: λ1 = { f1} and

λ2 = { f2}. Similar to Example 3.5, featured transition s2
a | f2
−−−−−→ s2

is dead. However, featured transition s1
a | f1
−−−−−→ s2 is no longer false

optional, since it is indeed not present in F ′ |λ2 even though its

source state s1 is reachable in that LTS. Moreover, not only state s2
is a hidden deadlock (for the same reason as before) but so is state

s1, since it is a deadlock in F ′ |λ2 . Hence also F
′
is ambiguous.

SPLC ’19, September 9–13, 2019, Paris, France M.H. ter Beek et al.

s0 s1 s2

F fm = f1 ⊕ f2

a |f1

a |f2

a |f1

a |f2

s0 s1 s2

F ′ fm = f1 ⊕ f2

a |⊤

a |f2

a |f1

a |f2

Figure 3: Ambiguous FTSs

s0 s1 s2

F |λ
1
=F ′ |λ

1

a a s0

F |λ
2

a

s0 s1

F ′ |λ
2

a

a

Figure 4: LTSs of products λ1 and λ2 of the FTSs of Fig. 3

s0 s1 s2

F∗ fm = f1 ⊕ f2

a |f1

a |f2

a |⊤ s0 s1 s2

s†

F ′∗ fm = f1 ⊕ f2

a |⊤

a |f2

a |f1

† |¬f1

Figure 5: Unambiguous FTSs obtained from the FTSs of Fig. 3

In Fig. 5(right), we depict an unambiguous FTS F ′∗ that was ob-

tained by transforming the ambiguous FTS F ′ of Fig. 3 as follows.

We removed the dead featured transition s2
a | f2
−−−−−→ s2 and we added

the explicit deadlock transition s1
† | ¬f1
−−−−−−→ s† from the hidden dead-

lock state s1 to the newly added explicit deadlock state s†. Note
that in this case, without adding this explicit deadlock transition,

state s1 would remain a hidden deadlock state in F ′∗ .

4 CRITERIA FOR AMBIGUITIES

The ambiguities in FTSs can be characterised by criteria that enable

the definition of the static analysis algorithm given in Sect. 5.

Our goal is to spot ambiguities by exploring once the whole FTS

in order to infer properties holding for all its products. It is worth

noting that the reachability of a state in an FTS (via a path) is not a

sufficient condition to ensure that there exist a product including

such a state (because the conjunction of the feature expressions

of the transitions in each path reaching the state may be false for

all configurations). Anyway, the set of configurations of the FTS

contains sufficient information to identify its products. In order to

circumvent the generation of all products and analyse them one by

one, we use Boolean formulas suitable for SAT solver processing.

Definition 4.1 (FTS notations). LetF = (S, Σ, s0,δ , F ,Λ) be an FTS.

(1) For a transition t = (s,a,ϕ, s ′) ∈ δ , we denote its source

state s by t .source, its target state s ′ by t .target, and its

feature expression ϕ by t .bx.
(2) We write Paths(s) to denote the set of all (finite) paths (start-

ing from the initial state s0 and) ending in state s ∈ S , and we
write Paths(t) to denote the set of all (finite) paths (starting

from the initial state s0 and) ending with transition t ∈ δ .
(3) For a pathp, we define its path expression, denoted by bxp , as

the formula

∧
t ∈p (t .bx), i.e., the conjunction of all formulas

labelling the transitions visited by p.

Finiteness of an FTS does not imply that the set Paths(s) is finite.
For instance, the FTS F of Fig. 1 is such that Paths(s0) contains an
infinite number of paths of the form s0t1s1t2s0 . . . s0t1s1t2s0, where
t1 = (s0, ins |⊤, s1) and t2 = (s1, std |e, s0).

Definition 4.2 (cycle-free path). Let F = (S, Σ, s0,δ , F ,Λ) be an
FTS. A path is cycle-free whenever it visits each state at most once.

Let cfPaths(s) denote the set of all cycle-free paths ending in state

s ∈ S . Let cfPaths(t) denote the set of all cycle-free paths ending
with transition t ∈ δ .

Since a cycle-free path visits each transition at most once, finite-

ness of an FTS ensures that cfPaths(t) is finite. A cycle-free path p
can be seen as the canonical representative of the equivalence class

of the paths that become p when removing the cycles.

Lemma 4.3. Let F = (S, Σ, s0,δ , F ,Λ) be an FTS and let s ∈ S .
If p ∈ Paths(s), then the path q ∈ cfPaths(s) obtained from p by

removing its cycles is such that bxp ⇒ bxq .

Proof. By construction, for all transitions t it holds that t ∈ q
implies t ∈ p. Thus, by Definition 4.1, bxp ⇒ bxq holds. □

4.1 Dead Transitions Criterion

The next lemma formalises Definition 3.1 in terms of an FTS’ paths,

explicating that to decide whether a transition is dead it suffices to

inspect the path expressions of all paths ending with that transition.

Then, Lemma 4.5 states that it suffices to consider cycle-free paths.

Lemma 4.4. Let F = (S, Σ, s0,δ , F ,Λ) be an FTS, let t ∈ δ , and
let Paths(t) , ∅. The transition t is dead if and only if fmF ∧ bxp
is not satisfiable, for all p ∈ Paths(t).

Proof. (⇒) We prove the contrapositive. Let p∗ ∈ Paths(t) be
the path s0t1s1 . . . sn−1tnsn such that fm ∧ bxp∗ is satisfiable. A

formula is satisfiable whenever it can be made true by assigning

appropriate logical values to its variables; namely, there exists a

configuration λ∗ that assigns logical values to features such that

λ∗ |= fm∧bxp∗ ; namely, both λ∗ |= fm and λ∗ |= bxp∗ . But λ
∗ |= fm

simply means that λ∗ ∈ Λ. Moreover, λ∗ |= bxp∗ means that, for

all 1 ≤ i ≤ n, if ti = (si−1,ai ,ϕi , si), then λ∗ (ϕi) = ⊤; this is trivial
in case ϕi = ⊤. Concluding, p

∗
identifies a path reaching t in the

product F |λ∗ defined by λ∗, so t is not dead and the proof is done.

(⇐) We prove the contrapositive. Let t = (s,a,ϕ, s ′) and assume

that t is not dead, i.e., t ′ = (s,a, s ′) is reachable in a product F |λ∗

defined by the configuration λ∗ ∈ Λ. Namely, t ′ is visited by a path

p = s0t
′
1
s1t
′
2
s2 . . . sn−1t

′
nsn of F |λ∗ such that s = sn−1, s

′ = sn , and
t ′ = t ′n , for some n > 0. Then, the transition injectivity (cf. Def-

inition 2.3) guarantees there exists a unique list of transitions

t1, . . . , tn ∈ δ such that tn = t and, for all 1 ≤ i ≤ n, ti =
(si−1,ai ,ϕi , si) for some ϕi such that λ∗ (ϕi) = ⊤. Thus the path
s0t1s1 . . . sn−1tnsn is included in Paths(t) by Definition 4.2 and

λ∗ |= bxp . As λ
∗ |= fm, we conclude that fm∧bxp is satisfiable. □

Lemma 4.5. fm ∧ bxp is not satisfiable, for all p ∈ Paths(t), if
and only if fm ∧ bxq is not satisfiable, for all q ∈ cfPaths(t).

Proof. Direction (⇒) is trivial, because cfPaths(t) ⊆ Paths(t).
Direction (⇐) follows by Lemma 4.3, we prove the contrapositive. If

there is a pathp ∈Paths(t) such that fm∧bxp is satisfiable, then we

can find a path q ∈ cfPaths(t) such that fm ∧ bxq is satisfiable. □

Static Analysis of Featured Transition Systems SPLC ’19, September 9–13, 2019, Paris, France

The next theorem, which follows by Lemmas 4.4 and 4.5, provides

an equivalent definition that can be used as an effective criterion

to decide whether a transition is dead (cf. Definition 3.1).

Theorem 4.6 (dead transitions criterion).

Let F = (S, Σ, s0,δ , F ,Λ) be an FTS, let t ∈ δ , and let cfPaths(t) , ∅.
The transition t is dead if and only if fmF ∧ bxq is not satisfiable,

for all q ∈ cfPaths(t).

4.2 False Optional Transitions Criterion

The next lemma formalises Definition 3.2 in terms of an FTS’ paths,

explicating that to decide whether a transition is false optional

it suffices to inspect the path expressions of all paths ending in

the source state of that transition. Then, Lemma 4.8 states that it

suffices to consider cycle-free paths.

Lemma 4.7. Let F = (S, Σ, s0,δ , F ,Λ) be an FTS and let t ∈ δ be

such that t .bx , ⊤. The transition t is false optional if and only if,

for all p ∈ Paths(t .source), fmF ⇒ (bxp ⇒ t .bx) is a tautology.

Proof. (⇒) We recall that t is false optional whenever for all
λ ∈ Λ, for all p ∈ Paths(t .source), λ |= bxp implies λ |= t .bx. We

assume that t is false optional and prove that fm ⇒ (bxp ⇒ t .bx)
is a tautology, for all p ∈ Paths(t .source). Let λ∗ be an assignment

of logical values to all features. We consider two sub-cases. First,

assume that λ∗ ̸ |= fm∧bxp . Then immediately λ∗ |= fm ⇒ (bxp ⇒
t .bx). Second, assume that λ∗ |= fm ∧ bxp . Clearly λ

∗ ∈ Λ, because
λ∗ |= fm. Moreover, λ∗ |= t .bx because λ∗ |= bxp and t is false
optional. Therefore, also in this case we conclude λ∗ |= fm ⇒

(bxp ⇒ t .bx). Summarising, fm ⇒ (bxp ⇒ t .bx) is a tautology.
(⇐) Assume that fm ⇒ (bxp ⇒ t .bx) is a tautology, for all

p ∈ Paths(t .source). If, for allp ∈ Paths(t .source), for all λ∗ ∈ Λ,
λ ̸ |= bxp , then t is trivially false optional. Hence, we assume that

λ∗ ∈ Λ is such that λ∗ |= bxp∗ for a p
∗ ∈ Paths(t .source) and we

aim to prove that λ∗ |= t .bx. Clearly, λ∗ |= fm by Definition 4.1.

Therefore λ∗ |= fm ⇒ (bxp ⇒ t .bx) implies λ∗ |= t .bx, which
completes the proof. □

Lemma 4.8. fm ⇒ (bxp ⇒ t .bx) is a tautology, for all p ∈
Paths(t .source), if and only if fm ⇒ (bxq ⇒ t .bx) is a tautol-

ogy, for all q ∈ cfPaths(t .source).

Proof. Direction (⇒) is trivial, because cfPaths(s) ⊆ Paths(s).
Direction (⇐) is proved by contraposition. Let λ∗ be an assignment

of logical values to all features such that λ∗ ̸ |= fm ⇒ (bxp ⇒ t .bx),
for some p ∈ Paths(t .source). This means that λ∗ |= fm ∧ bxp
and λ∗ ̸ |= t .bx. By Lemma 4.3, there is a path q ∈ cfPaths(t) such
that λ∗ |= fm ∧ bxq but, still, λ∗ ̸ |= t .bx. This proves the logical
equivalence. □

The next theorem, which follows by Lemmas 4.7 and 4.8, provides

an equivalent definition that can be used as an effective criterion

to decide whether a transition is false optional (cf. Definition 3.2).

Theorem 4.9 (false optional transitions criterion).

Let F = (S, Σ, s0,δ , F ,Λ) be an FTS and let t ∈ δ be such that

t .bx , ⊤. The transition t is false optional if and only if, for all

p ∈ cfPaths(t .source), fmF ⇒ (bxp ⇒ t .bx) is a tautology.

4.3 Hidden Deadlock States Criterion

The next lemma formalises Definition 3.3 in terms of an FTS’ paths,

explicating that to decide whether a state is a hidden deadlock it

suffices to inspect the path expressions of all paths ending with a

transition having such state as its source state. Then, Lemma 4.11

states that it suffices to consider cycle-free paths.

Lemma 4.10. Let F = (S, Σ, s0,δ , F ,Λ) be an FTS, let s ∈ S , and
let s .exit_trs denote the set of transitions starting from s . The state
s is not a hidden deadlock if and only if, either s .exit_trs = ∅ or
for all p ∈ Paths(s), fmF ⇒ (bxp ⇒ (

∨
t ∈s .exit_trs t .bx)) is a

tautology.

Proof. (⇒) A state s is not a hidden deadlock whenever, ei-

ther s .exit_trs = ∅ or for all configurations λ ∈ Λ and for all

paths p ∈ Paths(s), λ |= bxp implies that there exists a transi-

tion t ∈ s .exit_trs such that λ |= t .bx. Assume that s is not a

hidden deadlock. If s .exit_trs = ∅, then the proof is immediate;

hence we assume that for all λ ∈ Λ and for all p ∈ Paths(s),
λ |= bxp implies λ |= (

∨
t ∈s .exit_trs t .bx) and we aim to prove

that fm ⇒ (bxp ⇒
∨
t ∈s .exit_trs t .bx) is a tautology. The proof is

straightforward, because for all λ ∈ Λ we know that λ |= fm.

(⇐) If s is such that s .exit_trs = ∅, then the proof is immediate.

Let p ∈ Paths(s) be such that fm ⇒ (bxp ⇒ (
∨
t ∈s .exit_trs t .bx))

is a tautology. This means that for all assignments λ of logical

values to features, the following holds: if λ |= fm and λ |= bxp ,

then λ |= (
∨
t ∈s .exit_trs t .bx). Clearly, λ |= fm implies λ ∈ Λ, so

the proof is straightforward. □

Lemma 4.11. fm ⇒ (bxp ⇒ (
∨
t ∈s .exit_trs t .bx)) is a tautology,

for all p ∈Paths(s), if and only if fm⇒ (bxq⇒ (
∨
t ∈s .exit_trs t .bx))

is a tautology, for all q ∈ cfPaths(s).

Proof. Direction (⇒) is trivial, because cfPaths(s) ⊆ Paths(s).
Direction (⇐) is proved by contraposition. Let λ∗ be an assignment

of logical values to all features such that λ∗ ̸ |= fm ⇒ (bxp ⇒
(
∨
t ∈s .exit_trs t .bx)), for some path p ∈ Paths(s). This means that

λ∗ |= fm ∧ bxp and λ∗ ̸ |= (
∨
t ∈s .exit_trs t .bx). By Lemma 4.3, there

is a path q ∈ cfPaths(s) such that λ∗ |= fm ∧ bxq but, still, λ∗ ̸ |=
(
∨
t ∈s .exit_trs t .bx). This proves the logical equivalence. □

The next theorem, which follows by Lemmas 4.10 and 4.11, pro-

vides an equivalent definition that can be used as an effective cri-

terion to decide whether a state is a hidden deadlock (cf. Defini-

tion 3.3).

Theorem 4.12 (hidden deadlock states criterion).

Let F = (S, Σ, s0,δ , F ,Λ) be an FTS, let s ∈ S , and let s .exit_trs
denote the set of transitions starting from s . The state s is a hidden

deadlock if and only if both s .exit_trs , ∅ and there exists a path

p ∈ cfPaths(s) such that fmF ⇒ (bxp ⇒ (
∨
t ∈s .exit_trs t .bx)) is

not a tautology.

4.4 SAT Solving

All criteria presented in this section are defined as deciding for a

given Boolean formula if it is a tautology or not satisfiable. Checking

these criteria are thus variations of the SAT problem [33], where

instead of finding if a Boolean formula has a solution, we want

to find if it has no solution (e.g., a formula ϕ is a tautology iff ¬ϕ

SPLC ’19, September 9–13, 2019, Paris, France M.H. ter Beek et al.

has no solution). We can thus remark that these problems are co-

NP-complete. Additionally, SAT solvers can be used to solve these

problems. SAT solving is an active field of research [4, 22, 48, 50]

and tools exist that compute, more or less efficiently, a solution for

an input formula, or fail if the formula is not satisfiable. Hence, by

feeding the formula of a criterion to a SAT solver and checking if

it fails, we can conclude if the criterion is validated or not. In our

implementation, we used the Z3 SMT solver [40, 57] (that includes

a SAT solver) developed by Microsoft Research and freely available

under the MIT license.

5 STATIC ANALYSIS ALGORITHM

In this section, we present an algorithm that visits all cycle-free

paths (starting from the initial state) of an FTS in a depth-first order.

We describe the algorithm via python pseudocode that identifies

the bodies of functions, selection, and iteration operators, by means

of a suitable indentation, in place of the more common C-like curly

brackets (cf. Listings 1 and 2). The algorithm assumes that as input

is provided a suitable representation of an FTS. Then in a unique

FTS traversal it is able to identify all ambiguities: hidden deadlock

states (cf. Definition 3.3) and dead and false optional transitions (cf.

Definitions 3.1 and 3.2). We remark that our solution rests on the

use of a suitable SAT solver.

Listing 1: Ambiguities discovery algorithm

1 for t in fts.trs: // initialise transition deadness & optionality

2 t.dead ←true
3 if (t.bx ,true): t.false_opt == true
4 else: t.false_opt == false
5 for s in fts.states: s.live ←true // initialise state liveness

6 path_discover(fts.initial, true)
7 for s in fts.states: // set state hidden deadlockness

8 s.hDead ←(s.exit_trs , ∅ && not (s.live))

Listing 2: Depth-first visit procedure

1 def path_discover(s, bxp):
2 s.visited ←true
3 if(s.live == true && (s.exit_trs , ∅)):
4 s.live ←((fts.fm⇒ (bxp ⇒ (

∨
t∈s.exit_trs t.bx))) is tautology)

5 for t ∈ s.exit_trs:
6 if(t.false_opt == true)
7 t.false_opt ←((fts.fm⇒ (bxp ⇒ t.bx)) is tautology)
8 ext_bxp ←bxp && t.bx
9 validp ←((fts.fm && ext_bxp) is satisfiable)
10 if(t.dead == true): t.dead ←not(validp)
11 if((not t.exit_state.visited) && validp):

12 path_discover(t.exit_state, ext_bxp)
13 s.visited ←false

First of all, we introduce the structure of global variables. The

considered FTS is stored in the global variable fts. It has four (rele-

vant) fields:

(1) trs is the set of all the transitions in the FTS;

(2) states is the set of all states in the FTS;

(3) initial is the initial state of the FTS;

(4) fm is the Boolean expression representing the feature model

of the FTS.

The structure of states has four fields as well:

(1) visited is a Boolean value indicating if the state is included

in the path currently visited;

(2) exit_trs is the set of transitions exiting from this state;

(3) live is a Boolean flag that stores the discovery of products

with states (having at least one outgoing transition) that are

deadlocks;

(4) hDead is a Boolean flag meant to mark the hidden deadlock

status of states.

The data structure of transitions is crucial:

(1) bx is a Boolean expression formalising the FTS logic con-

straint on features that identifies in which variants the tran-

sition has to be included;

(2) exit_state is the state to which the transition points;

(3) dead is a Boolean flag meant to mark the dead status of tran-

sitions;

(4) false_opt is a Boolean flag meant to mark the false optional

status of transitions.

It is worth to recall that, in accordance with Definition 2.2, we

are interested only in paths starting in the initial state of the FTS;

moreover, we focus on cycle-free paths that never cross twice the

same state or the same transition.

Definition 5.1 (path notations). LetF= (S, Σ, s0,δ , F ,Λ) be an FTS
represented in above data structures and let p = s0t1s1 . . . sn−1tnsn
(n ∈ N) be a cycle-free path of F .

• Let p.endState denote the final state of p, namely sn .
• Let p.endTrs denote the final transition of p, namely tn .
• Let VsTed(p) denote the predicate that holds whenever:

s.visited == true iff s = si , for all i ≤ n − 1.
• Let SaTed(p) denote the predicate that holds exactly when

fts.fm ∧ bxp is satisfiable.

• Let extp denote the set of all cycle-free paths extending p in

a product, i.e., all paths p′ = s0t1s1 . . . sn−1tnsn . . . tn+ksn+k
(k ≥ 0) such that SaTed(p′) holds.

We remark that VsTed(p) predicates that the states marked as

“visited” are exactly those in p, except for the last one. Moreover, as

stated by the following proposition, extp is closed under prefixes

extending p.

Proposition 5.2 (ext-closure). Let F = (S, Σ, s0,δ , F ,Λ) be
an FTS and let p be one of its cycle-free path. If p′ ∈ extp then

extp′ ⊆ extp .

Proof. If SaTed(p) is false then extp′ = extp = ∅. If there is

p′′ ∈ extp′ then p′′ extends p′ and SaTed(p′′) holds. Clearly p′′

extends also p, so we conclude p′′ ∈ extp . □

We first prove correctness of the procedure path_discover from

Listing 2.

Lemma 5.3 (correctness of procedure path_discover).

Let F = (S, Σ, s0,δ , F ,Λ) be the FTS represented in the algorithm

data structures and let p = s0t1s1 . . . sn−1tnsn (n ∈ N) be a cycle-

free path such that both SaTed(p) and VsTed(p).

(1) The execution of path_discover(p .endState, bxp) recursively calls

the function path_discover(p′ .endState, bxp′) in a situation in

which VsTed(p′) holds, for all and onlyp′ ∈extp andp,p′.
(2) The execution of path_discover(fts.initial, true) always ends

in a finite number of steps.

Static Analysis of Featured Transition Systems SPLC ’19, September 9–13, 2019, Paris, France

(3) Let p′ ∈ extp and s ∈ p′.endState. If s.exit_trs , ∅ and
fmF ⇒ (bxp ⇒ (

∨
t ∈s .exit_trs t .bx)) is not a tautology,

then the execution of path_ discover(p .endState, bxp) ensures

that s.live is flagged false.

(4) Let p′ ∈ extp , s ∈ p′.endState, and t ∈s.exit_trs. If
fmF ⇒ (bxp′ ⇒ t .bx) is not a tautology, then the execution

of path_discover(p .endState, bxp) ensures that t.false_opt is

flagged false.

(5) Let p′ ∈ extp be a path including at least a transition, and let

t be p′.endTrs. The execution of path_discover(p .endState, bxp)
ensures that t.dead is flagged false.

Proof. (1) First we show that, if p′ ∈ extp , this implies a

recursive call to path_discover(p′ .endState, bxp′) (in a situation

in which VsTed(p′) holds). The proof is by induction on the

number of paths in extp . If extp = ∅, the proof is trivial; so,

assume p′ = s0t1s1 . . . sn−1tnsntn+1sn+1 ∈ extp extending

p with the unique additional transition tn+1. Execution of

path_discover(p .endState, bxp) is driven by the code of List-

ing 2. Line 2 predisposes a flag visited and makes VsTed(p′)
hold, thus a first statement requirement is satisfied. Then,

since p′ is cycle-free and SaTed(p′) holds, lines 11–12 con-
cretely do the recursive call path_discover(p′ .endState, bxp′).

As extp′ ⊆ extp by Proposition 5.2, the statement holds for

all paths in extp′ by induction; so, the proof follows.

Assume that, by executing path_discover(p .endState, bxp) a re-

cursive call to path_discover(p′ .endState, bxp′) is done, in a sit-

uation in which VsTed(p′) holds. The proof is done by in-

duction on the number N of transitions of p′ not in p. The
call must be done by means of the lines 11–12 of Listing 2. If

N = 1 then line 11 ensures that p′ is still a cycle-free path
(properly extending p) and SaTed(p′); namely p′ ∈ extp . If
N ≥ 1 then the proof follows by induction.

(2) As usual, we define FTSs without finiteness assumptions;

but as for SPLs, their practical interest implicitly assumes

that all constituents of F are finite (this allows to store F in

our algorithm’s data structure). First note that the number of

transitions starting from the nodes of the FTS is bounded by

maxs ∈S #(s .exit_trs) ∈ N. Thus, line 5 of the procedure in
Listing 2 does a finite number of recursive calls. Next, note

that the number of states visited==false is strictly decreased

at each of the previous calls. Thus, the proof follows.

(3) If p , p′ then, path_discover(p′ .endState, bxp′) is recursively
called by the point 1 of this lemma. Line 3 of the procedure

prevents the update of the flag (p′ .endState).live whenever it

is already set to false. Line 4, if necessary, updates this flag

in accordance to our statement.

(4) If p , p′ then, path_discover(p′ .endState, bxp′) is recursively
called by the point 1 of this lemma. Line 6 of the procedure

prevents the update of the flag (p′ .endTrs).false_optwhenever

it is already set to false. Line 7, if necessary, updates this flag

in accordance to our statement.

(5) p′ ∈ extp ensures that SaTed(p′), i.e., p is a path such that

fts.fm ∧ bxp is satisfiable. Line 9 of the procedure stores true in

validp . Line 10 prevents the update of the flag (p′ .endTrs).dead

whenever it is already false and, if necessary, updates this

flag in accordance to our statement. □

1 2 3

4 5

6

7 8 9

fm = s ∨ t

pay |¬f

free |f

change |¬f

can
cel |c

s
o
d
a
|s

te
a
|t

re
tu
rn
|c

s
e
r
v
e
S
o
d
a
|s

s
e
r
v
e
T
e
a
|t

open |¬f

take |f

take |¬f

close |¬f

Figure 6: FTS of the vending machine from [27]

Next we prove correctness of the analysis algorithm in Listing 1.

Theorem 5.4 (correctness of algorithm).

LetF = (S, Σ, s0,δ , F ,Λ) be an FTS represented in the algorithm data

structures. The execution of the ambiguities discovery algorithm (cf.

Listing 1) sets the flags dead, false_opt, and hDead in the data structure

in accordance with the fact that a transition is dead, a transition is

false optional, and a state is not a hidden deadlock, respectively.

Proof. The algorithm of Listing 1 begins by executing some

initialisation, after which it calls path_discover(fts.initial, true).

Lemma 5.3 specifies the content of the flags dead, false_opt, and live

following the aforementioned procedure call. The algorithm ends

by setting the flags s.hDead as expected. Hence, the proof follows

by Theorems 4.6, 4.9 and 4.12. □

6 ILLUSTRATIVE EXAMPLES

The python code allowing the verification of the examples presented

in this section and in Sect. 8 is publicly available [7].

In Fig. 6, we depict an example FTS modelling the behaviour of

a configurable vending machine selling soda and tea from [27], an

FTS benchmark which was used in numerous publications, among

which [5, 6, 11, 30, 32, 42–45, 47]. Its feature model can be rep-

resented by the formula s ∨ t over the 4 features { f , c, s, t }, thus
resulting in 12 products (i.e., 2

4−4, excluding ∅, { f }, {c}, { f , c}). The
FTS of the vending machine contains 9 states and 13 transitions.

Listing 3 reports the result of applying static analysis to this FTS:

no dead transitions and no hidden deadlocks, but 6 false optional

transitions, viz. (2, change,¬f , 3), (4, return, c, 1), (5, serveSoda, s, 7),
(6, serveTea, t , 7), (8, take,¬f , 9), and (9, close,¬f , 1). Hence, the
FTS is ambiguous, but it suffices to turn its false optional transitions

into must transitions to make the FTS unambiguous.

Listing 3: Result of the static analysis on the FTS of Fig. 6

Vending Machine: live

LIVE STATES = [1,2,3,4,5,6,7,8,9]

DEAD TRANSITIONS = []

FALSE OPTIONAL TRANSITIONS = [(2,3),(4,1),(5,7),(6,7),(8,9),(9,1)]

HIDDEN DEADLOCK STATES = []

In Fig. 7, we depict an example FTS modelling the behaviour of

the so-called system FTS that models the logic of a configurable

controller of the mine pump model from [26, 27], a standard SPL

benchmark for FTSs which was used in numerous publications,

among which [10, 28, 30, 32, 35, 36, 43, 45–47]. The system FTS

of this mine pump model contains 25 states and 41 transitions.
1

1
Transitions with more than one label are abbreviations for a transition for each label.

SPLC ’19, September 9–13, 2019, Paris, France M.H. ter Beek et al.

s6 s7

s8

s9 s10 s11 s12

s13 s14 s15

s16 s17 s18 s19

s20

s21 s22 s23 s24 s25 s26

s27 s28 s29 s30

fm = (c ↔ (ct ∨cp)) ∧ l

receiveMsg |⊤

c
o
m
m
a
n
d
M
s
g
|c

palarmMsg |m

le
v
e
lM
s
g
|l

s
to
p
C
m
d
|c
t

s
ta
r
tC
m
d
|c
p

isRunning |ct

isNotRunning |ct

pumpStop |ct setStop |ct

τ |⊤

isNotRunning |cp

isRunning |cp

isReady |cp

setReady |cp

τ |⊤

isRunning |m

isNotRunning |m

pumpStop |m setMethaneStop |m

τ |⊤

n
orm

a
lL
evel | ln

h
ig
h
L
e
v
e
l
| lh

lo
w
L
e
v
e
l | ll

isReady | lh

isLowStop | ll

isMethaneStop |m

isRunning | lh isStopped | lh

setReady | lh

setMethaneStop |m

isReady | lh

isNotReady | lh

pumpStart | lh setRunning | lh

τ |⊤

isRunning | ll

isNotRunning | ll

pumpStop | ll setLowStop | ll

τ |⊤

Figure 7: The system FTS of the mine pump model from [27] (we have labelled transitions that were unlabelled with τ |⊤)

The controller of this mine pump model is the parallel composition

of the system FTS with the so-called state FTS, depicted in Fig. 8.

s2

s1

s4

s3

s5

isNotReady

isNotRunning

isStopped

setMethaneStop

setReady

setStop

isMethaneStop

setMethaneStop

isNotRunning

isNotReady

setReady

setStop

setMethaneStop

isLowStop

isNotRunning

isNotReady

setMethaneStop

setStop

setMethaneStop

isNotReady

isNotRunning

isReady

setRunning

setStop

setMethaneStop

setLowStop

setReady

isRunning

Figure 8: The state FTS of the mine pump model from [27]

The mine pump has to keep a mine safe from flooding by pump-

ing water from a shaft while avoiding a methane explosion. The

reason we use the model from [26, 27] is that it comes with de-

tailed FTSs. Its feature model can be represented by the formula

ϕ = (c↔ (ct∨cp))∧l over the feature set F = {c, ct, cp,m, l , ll, ln, lh},
thus resulting in 64 products (i.e., 2

6
, since ϕ is equivalent to con-

sidering features {ct, cp,m, ll, ln, lh} to be optional).

Listing 4 reports the result of applying static analysis to the

system FTS: no dead transitions, but numerous false optional tran-

sitions, among which (s7, levelMsg, l , s20), and one hidden deadlock

state, viz. s20. Indeed, state s20 is reachable in all products upon the

execution of two must transitions (the second one being the false

optional transition (s7, levelMsg, l , s20)), while s20 is a deadlock in

all 8 products that lack any of the features from the subset {ll, ln, lh}.

Listing 4: Result of the static analysis on the FTS of Fig. 7

Mine Pump: not live

LIVE STATES = [S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18,S19,

S21,S22,S23,S24,S25,S26,S27,S28,S29,S30]

DEAD TRANSITIONS = []

FALSE OPTIONAL TRANSITIONS = [(S10,S11),(S11,S12),(S13,S14),

(S13,S15,isReady),(S13,S15,isRunning),(S14,S15),(S16,S17),

(S16,S18),(S17,S18),(S18,S19),(S21,S22,isReady),

(S21,S26,isRunning),(S21,S26,isStopped),(S22,S23,setReady),

(S23,S24),(S23,S26),(S24,S25),(S25,S26),(S27,S28),(S27,S30),

(S28,S29),(S29,S30),(S7,S20),(S9,S10),(S9,S11)]

HIDDEN DEADLOCK STATES = [S20]

Static Analysis of Featured Transition Systems SPLC ’19, September 9–13, 2019, Paris, France

Hence the system FTS is ambiguous, but it suffices to turn its

false optional transitions into must transitions and to add an explicit

deadlock state s† and a transition (s20, †,¬ll∧¬ln∧¬lh, s†) to make

the system FTS unambiguous. Actually, a deadlock often indicates

an error in the modelling, either in the feature model or in the

behavioural model, i.e., the FTS. In fact, another solution to make

the system FTS unambiguous is to slightly change the feature model,

e.g., by requiring the presence of at least one of the features ll, ln,

or lh via an or-relationship. Doing so, the feature model becomes

ϕ = (c ↔ (ct∨cp))∧l∧ (ll∨ln∨lh), thus resulting in 56 products (i.e.,
excluding the 8 products over F that satisfy (c ↔ (ct ∨cp)) ∧ l , but
lack any of the features from the subset {ll, ln, lh}). In [26, 27, 32],

instead, an alternative feature model in which only c (and implicitly

ct and cp) andm are optional is considered, resulting in only the

four products over F that satisfy (c ↔ (ct ∧ cp)) ∧ l ∧ ll ∧ ln ∧ lh.

Yet another solution to make the system FTS unambiguous is to

slightly change the FTS itself, to make sure that it contains neither

a hidden nor an explicit deadlock state. In this case, it suffices to add

one or more transitions to leave state s20 in a meaningful way. This

is the solution opted for in [10, 30, 45–47], which use the specifica-

tion in fPromela of the complete mine pump model (see below) as

distributed with SNIP [28] (http://projects.info.unamur.be/fts/snip/)

and ProVeLines [34] (http://projects.info.unamur.be/fts/provelines/)

or translations thereof for mCRL2 [37] (http://www.mcrl2.org/) or

VMC [17] (http://fmtlab.isti.cnr.it/vmc/). Basically, three transitions

are added to the system FTS of Fig. 7 from state s20 to the initial state
s6 to cover the cases in which features from the subset {ll, ln, lh}

are missing, viz. (s20, highLevel,¬lh, s6), (s20, lowLevel,¬ll, s6), and
(s20, normalLevel,¬ln, s6).

2

In [26, 27], the controller of the mine pump model, composed

of the system and state FTSs, interacts with an environment: it

operates a water pump based on methane and water level sensors,

modelled by three further FTSs. The parallel composition of these

five FTSs is the above mentioned complete mine pump model. We

depict the FTS of the methane level in Fig. 9 and refer to [26, 27] for

the remaining FTSs. Moreover, methaneRise and methaneLower are

local actions of this FTS that do not synchronise with any of the

other four FTSs. Hence, while the solutions presented above make

the system FTS of Fig. 7 unambiguous, it is immediately clear that

the FTS of the complete mine pump model is deadlock-free, since

it can indefinitely execute the sequence of actions methaneRise

followed by methaneLower. This demonstrates the usefulness of

analysing component FTSs in isolation. More on this in Sect. 8.

s1 s2
methaneRise |⊤

methaneLower |⊤

palarmMsg |⊤

setMethaneStop |⊤

Figure 9: FTS of the methane level environment from [27]

7 USEFULNESS OF UNAMBIGUOUS FTSs

In analogy with anomaly detection in feature models, dead featured

transitions in an FTS clearly indicate a modelling error, whereas

false optional featured transitions often provide a wrong idea of the

2
To satisfy the transition injectivity of Definition 2.3, in the FTS of Fig. 7 this results in

the substitution of transition (s20, normalLevel, ln, s6) with (s20, normalLevel, ⊤, s6).

domain by giving the impression that certain behaviour is optional

while actually it is mandatory (i.e., it occurs in all products of the

FTS). However, the transformation of an ambiguous FTS into an

unambiguous FTS also serves another purpose, viz. to facilitate

family-based model checking of properties expressed in a fragment

of the variability-aware action-based and state-based branching-

time modal temporal logic v-ACTL and interpreted on so-called

‘live’ MTSs [5, 11–13]. A Modal Transition System (MTS) is an

LTS that distinguishes admissible (‘may’), necessary (‘must’), and

optional (may but not must) transitions such that by definition all

necessary and optional transitions are also admissible [53, 54].

In [12], an MTS is defined to be live if all its states are live, where

a live state of an MTS is such that it does not occur as a final state in

any of its products (LTSs obtained from the MTS in a way similar to

Definition 2.4), resulting in an MTS in which every path is infinite.

Then it is proved that the validity of formulas expressed in a rich

fragment of v-ACTL is preserved in all products (cf. Theorem 4

of [12]), thus allowing family-based model checking of MTSs.

It is not difficult to see that this result continues to hold for MTSs

whose every state is either live or final.
3
Note that any FTS F can

be transformed into an MTS by considering its must transitions as

necessary transitions, its featured transitions as optional transitions,

and all its transitions as admissible, and by removing all feature

expressions. If the FTS is unambiguous, then the corresponding

MTS is live, with respect to the FTS’ set of products lts(F), because
it has no hidden deadlocks, and all transitions of the FTS that are

mandatorily present in all products moreover correspond to must

transitions in the MTS. This demonstrates that the above mentioned

result from [12] can be carried over to unambiguous FTSs, thus

allowing family-based model checking of such FTSs for the v-ACTL

fragment v-ACTLive
□
. Hence, the following result holds.

Proposition 7.1. Any formula ϕ of v-ACTLive
□
is preserved by

unambiguous FTSs: given an unambiguous FTS F , whenever F |= ϕ,
then F |λ |= ϕ for all products F |λ ∈ lts(F).

In the next section, we apply this result to an example FTS and

provide examples of v-ACTLive
□
formulas to illustrate its impact.

7.1 Family-Based Model Checking

We have seen in Sect. 3.2 how to transform an ambiguous FTS into

an unambiguous one. Furthermore, as mentioned above, an FTS can

be transformed into an MTS by considering its must transitions as

necessary transitions, its featured transitions as optional transitions,

and all its transitions as admissible, and by removing all feature

expressions. In Fig. 10, we depict the MTS
4
that is obtained in this

way from the unambiguous FTS (described in the beginning of

Sect. 6) that corresponds to the FTS of Fig. 6.

As we argued in the beginning of this section, the resulting MTS

is live, with respect to the FTS’ set of products, thus allowing family-

basedmodel checking for v-ACTLive
□
(cf. Proposition 7.1). Example

formulas of properties that can now be verified in a family-based

manner on the MTS of Fig. 10 are the following:

(1) AG AF
pay∨free ⊤: infinitely often, either action pay or action

free is executed;

3
Adding loops (labelled with a dummy symbol) to all final states makes the MTS live.

4
Dashed edges depict optional transitions and solid edges depict necessary transitions.

http://projects.info.unamur.be/fts/snip/
http://projects.info.unamur.be/fts/provelines/
http://fmtlab.isti.cnr.it/vmc/

SPLC ’19, September 9–13, 2019, Paris, France M.H. ter Beek et al.

1 2 3

4 5

6

7 8 9
pay

free

change

can
cel

s
o
d
a

te
a

re
tu
rn

s
e
r
v
e
S
o
d
a

s
e
r
v
e
T
e
a

open

take

take

close

Figure 10: MTS obtained from the FTS of Fig. 6

(2) AG [open] AF
close
⊤: it is always the case that the execution

of action open is eventually followed by that of action close;

(3) AG AF
cancel∨serveSoda∨serveTea ⊤: infinitely often, either action

cancel or action serveSoda or action serveTea is executed;

(4) ¬E [⊤ ¬teaUserveTea ⊤]: it is not possible that action serveTea is

executed without being preceded by an execution of action tea;

(5) [pay] AF
take∨cancel ⊤: whenever action pay is executed, even-

tually also either action take or action cancel is executed.
5

Such type of formulas can efficiently be verified with the variability

model checker VMC, which is a tool for the analysis of behavioural

SPL models specified as an MTS together with a set of logical

variability constraints (akin to feature expressions) [17, 18]. VMC

is the most recent member of the KandISTI product line of model

checkers developed at ISTI–CNR over the past decades [13, 14]. The

KandISTI toolset offers explicit-state on-the-fly model checking of

functional properties expressed in specific action-based and state-

based branching-time temporal logics derived from ACTL [41],

which is the action-based version of the well-known logic CTL [25].

However, it is important to underline that VMC currently uses

the variability constraints associated with the MTS to dynamically

evaluate the liveness of each node. In this paper, we introduced a

static analysis algorithm and transformation to turn any FTS into

an unambiguous FTS, and we showed that this allows to establish

a priori the liveness of all its nodes, and thus of the corresponding

MTS. This makes it possible to improve VMC with the possibility

to verify a live MTS without the need to use variability constraints

to dynamically evaluate the liveness of its nodes. As a result, VMC

could verify the above formulas in a family-based manner on the

MTS of Fig. 10, since this MTS is live with respect to the set of

products of the FTS of Fig. 6, meaning that whenever a formula

holds for the MTS it also holds for all products defined by the FTS.

The static analysis algorithm presented in Sect. 5 and the FTS

transformation defined in Sect. 3.2 could also give rise to a new

KandISTI tool, tailored for family-basedmodel checking of temporal

logic properties on FTSs. At present, efficient SPL model checking

against FTSs can be achieved by using dedicated family-basedmodel

checkers such as the ProVeLines [34] tool suite (including its pre-

decessor SNIP [28]) or, alternatively, by using one of the highly

optimised off-the-shelf classical model checkers such as SPIN or

mCRL2, which have recently been made amenable to family-based

SPL model checking against FTSs [10, 46].

5
Abusing notation, this concerns execution of transition (8, take, 9), not of (7, take, 1).

8 SCALABILITY

From our experience, the bottleneck of the static analysis algorithm

presented in this paper, as far as computational scalability is con-

cerned, is the identification of all possible cycle-free paths of the

FTS under scrutiny. While the static analyses performed on the ex-

emple FTSs reported in Sect. 6 required a negligible amount of time,

it is clear that this no longer holds for FTSs with hundreds of states

and thousands of transitions. For instance, the FTS of the complete

mine pump model of [26, 27], described in Sect. 6, has 417 states

and 1255 transitions, which already are too many to efficiently visit

all cycle-free paths in a depth-first manner. We plan to investigate

optimisations of the static analysis algorithm that allow to reduce

the impact of this bottleneck. We also plan to study the resulting

algorithm’s complexity.

However, it is not very likely that a system of a size like that of the

complete mine pump is modelled as one monolithic FTS. Typically,

a (large) system is designed in a modular way, as a composition

of (smaller) components. A more promising strategy is thus to

analyse FTS components in isolation and study the implications

that ambiguities detected at the component level have for the entire

system. This is confirmed by our analyses of the mine pump system

in Sect. 6, where we have seen that the complete mine pump system

is deadlock-free (i.e., live) even if the system FTS is not, simply

because progress is guaranteed by the presence of a cycle of local

actions in another component FTS.

In Table 1, we report some hard data concerning static analyses of

the FTSs discussed so far. In addition, we report the results for two

additional FTSs, viz. the configurable coffee machine from [3] de-

picted in Fig. 11, which is another FTS benchmark used in numerous

publications, amongwhich [8, 9, 12, 15, 16, 18, 19, 21, 26, 62], and the

aforementioned controller of the mine pump model from [26, 27],

i.e. the parallel composition of the system FTS with the state FTS.

5 6 7 8 9 10

3 4

2

1

11 12

1314

fm = s ∧ c ∧ (e ⊕ $) ∧ (p → r)

∧ ((d → ¬p) ∧ (p → ¬d))

1e |e 1$ |$

sugar |s no sugar |¬s

coffee |c
tea |t

cappuccino |p cappuccino |p
tea |t

coffee |c

pour

sugar |⊤

pour

sugar |⊤

pour sugar |⊤

pour milk |⊤ pour

coffee |⊤
pour tea |⊤

pour coffee |⊤

pour coffee |⊤
pour

milk |⊤

ring a tone |r

skip |¬r

take a cup |⊤

Figure 11: FTS of the coffee machine from [3]

Static Analysis of Featured Transition Systems SPLC ’19, September 9–13, 2019, Paris, France

Table 1: Characteristics of the FTSs mentioned in this paper and results of applying static analysis

FTS characteristics results of static analysis computational effort

Model # states # transitions # actions

live- # dead # false optional # hidden deadlock run- memory

ness transitions transitions states time (s) use (Mb)

Vending

9 13 12 yes 0 6 0 0.68 41

machine [27]

Coffee

14 22 14 yes 0 4 0 1.35 42

machine [3]

Mine pump

25 41 22 no 0 25 1 1.41 44

(system) [27]

Mine pump

77 104 22 no 0 59 4 5.37 48

(controller) [27]

Mine pump

417 1255 26 yes ? ? ? timeout –

(complete) [27]

The experiments have been performed on a virtual machine
6
with

2048Mb of allocatedmemory on aWindows 10 Pro 64 bit with 16Gb

of RAM and a CPU AMD Ryzen 7 1700X (8 core, 16 threads, 3.4 Ghz).

The FTSs of the vendingmachine (depicted in Fig. 6 and discussed

in Sect. 6) and the coffee machine (depicted in Fig. 11) are both live

(i.e., no deadlocks), with no dead transitions, while a respective

46% and 18% of their transitions are false optional. Their static

analysis is immediate. Also that of the system FTS of the mine

pump (depicted in Fig. 7 and discussed in Sect. 6) is immediate,

but it is not live because one of its 25 states is a hidden deadlock.

None of its transitions is dead, but 61% is false optional. Instead, it

takes more than 5 s to analyse the FTS of the mine pump controller

(i.e., the parallel composition of the system FTS and the state FTS

(depicted in Fig. 8 and discussed in Sect. 6). It is not live, due to

4 hidden deadlock states and 57% of its transitions is false optional.

Finally, from the discussion in Sect. 6 we know that the FTS of the

complete mine pump, not depicted here, is live, but further results

are missing, since we aborted the analysis after several hours.

We have not yet studied in detail what can be said about the

preservation of ambiguities in a parallel composition of FTSs, ei-

ther bottom-up, i.e., from the component FTSs to their parallel

composition, or top-down, i.e., from the parallel composition to

its constituting component FTSs. We conjecture that applying the

static analysis algorithm to individual component FTSs, and con-

sequently removing dead transitions and turning false optional

transitions into must transitions, will not affect the behaviour of

the parallel composition of these FTSs. On the contrary, it can be

shown that in general the parallel composition of two unambigu-

ous FTSs may result in a composed FTS with dead or false optional

transitions, and, moreover, that the parallel composition may result

in a composed FTS with more or less hidden deadlock states than

in the individual component FTSs.

The application of the static analysis algorithm to individual

component FTSs is surely desirable as it results in less ambiguous

specifications of the components constituting a composed system,

and it possibly also allows more efficient model checking of the

composed system (cf. Sect. 7.1). Instead, the application of the static

analysis algorithm to a composed FTS resulting from the parallel

composition of several FTSs is less desirable for at least two reasons.

6
Gentoo 201905, CLI Version VirtualBox (VDI) 64 bit, https://www.osboxes.org/gentoo/

On one hand, it risks to become problematic due to the exponential

growth of the number of paths to be considered. On the other hand,

the benefits of detecting ambiguities are greatly reduced because of

the lack of a detailed specification of the composed FTS, which is

merely a semantic model without a matching syntactic specification.

Composed configurable systems can be described as Multi SPLs

(MPLs), i.e., sets of interdependent SPLs [49]. It is not clear how

to obtain results for composed FTSs by reusing results of analyses

performed in isolation on its components, in analogy with recently

proposed compositional approaches for analysing MPLs [38, 39, 55].

We conclude this section with two ideas to improve the algo-

rithm, based on the fact that even though the number of paths in a

graph can be exponentially larger than its size, several heuristic-

based optimisations can be implemented to reduce the complexity of

our algorithm in many cases. Firstly, paths must be computed only

for transitions whose Boolean formula is not true (i.e., those that

could be false optional or that cannot easily be stated as dead), and

only for states whose live status is not trivial, i.e., states that have

input and output transitions, and none of their output transitions’

Boolean formula is true. For FTSs with very simple constraints on

their transitions, this could greatly reduce the search space when

traversing them. Secondly, checking the ambiguity criteria in a

cycle-free FTS can be performed with a linear traversal, following

the topological order of the FTS. It could be possible to extend

this principle to FTSs with cycles, by using the topological order

traversal only on the DAG subgraphs of an FTSs and thus greatly

improving the efficiency of our algorithm on FTSs with few cycles.

9 CONCLUSION

In this paper, we have introduced several types of static analysis

that can be performed over an FTS, we have given an effective

algorithm for these analyses and demonstrated its correctness and

completeness, and we have shown a number of example applica-

tions. The python code allowing to reproduce the verification of

the examples presented Sect. 6 and Sect. 8 is publicly available [7].

In future work we plan to: (i) investigate the improvements

suggested in the previous section, and (ii) evolve the prototype into

a tool that supports to perform the static analysis of generic FTSs

(specified in some standard format), to automatically disambiguate

them, and to apply v-ACTL model checking to generic FTSs.

https://www.osboxes.org/gentoo/

SPLC ’19, September 9–13, 2019, Paris, France M.H. ter Beek et al.

ACKNOWLEDGMENTS

We thank the four anonymous reviewers for useful comments and

suggestions that helped us to improve the presentation.

REFERENCES

[1] Bowen Alpern and Fred B. Schneider. 1985. Defining liveness. Inf. Process. Lett. 4,

21 (1985), 181–185. https://doi.org/10.1016/0020-0190(85)90056-0

[2] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines: Concepts and Implementation. Springer. https:

//doi.org/10.1007/978-3-642-37521-7

[3] Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and Stefania Gnesi.

2011. Formal Description of Variability in Product Families. In Proceedings of the

15th International Software Product Lines Conference (SPLC’11). IEEE, 130–139.

https://doi.org/10.1109/SPLC.2011.34

[4] Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, and Sébastien Tabary.

2016. An Adaptive Parallel SAT Solver. In Proceedings of the 22nd International

Conference onPrinciples and Practice of Constraint Programming (CP’16) (LNCS),

M. Rueher (Ed.), Vol. 9892. Springer, 30–48. https://doi.org/10.1007/978-3-319-

44953-1_3

[5] Maurice H. ter Beek, Ferruccio Damiani, Stefania Gnesi, Franco Mazzanti, and

Luca Paolini. 2015. From Featured Transition Systems to Modal Transition Sys-

tems with Variability Constraints. In Proceedings of the 13th International Confer-

ence on Software Engineering and Formal Methods (SEFM’15) (LNCS), R. Calinescu

and B. Rumpe (Eds.), Vol. 9276. Springer, 344–359. https://doi.org/10.1007/978-3-

319-22969-0_24

[6] Maurice H. ter Beek, Ferruccio Damiani, Stefania Gnesi, Franco Mazzanti, and

Luca Paolini. 2019. On the Expressiveness of Modal Transition Systems with

Variability Constraints. Sci. Comput. Program. 169 (2019), 1–17. https://doi.org/

10.1016/j.scico.2018.09.006

[7] Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Mazzanti,

and Luca Paolini. 2019. Supplementary material for: “Static Analysis of Featured

Transition Systems”. https://doi.org/10.5281/zenodo.2616646

[8] Maurice H. ter Beek and Erik P. de Vink. 2014. Towards Modular Verification

of Software Product Lines with mCRL2. In Proceedings of the 6th International

Symposium on Leveraging Applications of Formal Methods, Verification and Valida-

tion (ISoLA’14) (LNCS), Tiziana Margaria and Bernhard Steffen (Eds.), Vol. 8802.

Springer, 368–385. https://doi.org/10.1007/978-3-662-45234-9_26

[9] Maurice H. ter Beek and Erik P. de Vink. 2014. Using mCRL2 for the Analysis

of Software Product Lines. In Proceedings of the 2nd FME Workshop on Formal

Methods in Software Engineering (FormaliSE’14). IEEE, 31–37. https://doi.org/10.

1145/2593489.2593493

[10] Maurice H. ter Beek, Erik P. de Vink, and Tim A. C. Willemse. 2017. Family-

Based Model Checking with mCRL2. In Proceedings of the 20th International

Conference on Fundamental Approaches to Software Engineering (FASE’17) (LNCS),

M. Huisman and J. Rubin (Eds.), Vol. 10202. Springer, 387–405. https://doi.org/

10.1007/978-3-662-54494-5_23

[11] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti.

2015. Using FMC for Family-based Analysis of Software Product Lines. In Proceed-

ings of the 19th International Software Product Line Conference (SPLC’15). ACM,

432–439. https://doi.org/10.1145/2791060.2791118

[12] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti.

2016. Modelling and analysing variability in product families: Model checking

of modal transition systems with variability constraints. J. Log. Algebr. Meth.

Program. 85, 2 (2016), 287–315. https://doi.org/10.1016/j.jlamp.2015.11.006

[13] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti.

2019. States and Events in KandISTI: A Retrospective. In Models, Mindsets, Meta:

The What, the How, and the Why Not?, T. Margaria, S. Graf, and K. G. Larsen

(Eds.). LNCS, Vol. 11200. Springer, 110–128. https://doi.org/10.1007/978-3-030-

22348-9_9

[14] Maurice H. ter Beek, Stefania Gnesi, and Franco Mazzanti. 2015. From EU

Projects to a Family of Model Checkers. In Software, Services and Systems, R. De

Nicola and R. Hennicker (Eds.). LNCS, Vol. 8950. Springer, 312–328. https:

//doi.org/10.1007/978-3-319-15545-6_20

[15] Maurice H. ter Beek, Axel Legay, Alberto Lluch Lafuente, and Andrea Vandin.

2015. Quantitative Analysis of Probabilistic Models of Software Product Lines

with Statistical Model Checking. Electron. Proc. Theor. Comput. Sci. 182 (2015),

56–70. https://doi.org/10.4204/EPTCS.182.5

[16] Maurice H. ter Beek, Alberto Lluch Lafuente, and Marinella Petrocchi. 2013.

Combining Declarative and Procedural Views in the Specification and Analysis

of Product Families. In Proceedings of the 17th International Software Product

Line Conference (SPLC’13), Vol. 2. ACM, 10–17. https://doi.org/10.1145/2499777.

2500722

[17] Maurice H. ter Beek and Franco Mazzanti. 2014. VMC: Recent Advances and Chal-

lenges Ahead. In Proceedings of the 18th International Software Product Line Con-

ference (SPLC’14), Vol. 2. ACM, 70–77. https://doi.org/10.1145/2647908.2655969

[18] Maurice H. ter Beek, Franco Mazzanti, and Aldi Sulova. 2012. VMC: A Tool for

Product Variability Analysis. In Proceedings of the 18th International Symposium on

Formal Methods (FM’12) (LNCS), D. Giannakopoulou and D. Méry (Eds.), Vol. 7436.

Springer, 450–454. https://doi.org/10.1007/978-3-642-32759-9_36

[19] Maurice H. ter Beek, Michel A. Reniers, and Erik P. de Vink. 2016. Supervisory

Controller Synthesis for Product Lines Using CIF 3. In Proceedings of the 7th

International Symposium on Leveraging Applications of Formal Methods, Verifica-

tion and Validation: Foundational Techniques (ISoLA’16) (LNCS), T. Margaria and

B. Steffen (Eds.), Vol. 9952. Springer, 856–873. https://doi.org/10.1007/978-3-319-

47166-2_59

[20] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated

Analysis of Feature Models 20 Years Later: a Literature Review. Inf. Syst. 35, 6

(2010), 615–636. https://doi.org/10.1016/j.is.2010.01.001

[21] Harsh Beohar, Mahsa Varshosaz, and Mohammad Reza Mousavi. 2016. Basic

behavioral models for software product lines: Expressiveness and testing pre-

orders. Sci. Comput. Program. 123 (2016), 42–60. https://doi.org/10.1016/j.scico.

2015.06.005

[22] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. νZ – An Optimiz-

ing SMT Solver. In Proceedings of the 21st International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS’15) (LNCS), C. Baier

and C. Tinelli (Eds.), Vol. 9035. Springer, 194–199. https://doi.org/10.1007/978-3-

662-46681-0_14

[23] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and

Mira Mezini. 2013. SPL
LIFT

— Statically Analyzing Software Product Lines in

Minutes Instead of Years. In Proceedings of the 34th Conference on Programming

Language Design and Implementation (PLDI’13). ACM, 355–364. https://doi.org/

10.1145/2491956.2491976

[24] Brian Chess and Jacob West. 2007. Secure Programming with Static Analysis.

Addison-Wesley.

[25] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. 1986. Automatic

Verification of Finite-State Concurrent Systems Using Temporal Logic Spec-

ifications. ACM Trans. Program. Lang. Sys. 8, 2 (1986), 244–263. https:

//doi.org/10.1145/5397.5399

[26] Andreas Classen. 2010. Modelling with FTS: a Collection of Illustrative Examples.

Technical Report P-CS-TR SPLMC-00000001. University of Namur.

[27] Andreas Classen. 2011. Modelling and Model Checking Variability-Intensive Sys-

tems. Ph.D. Dissertation. University of Namur.

[28] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves

Schobbens. 2012. Model checking software product lines with SNIP. Int. J. Softw.

Tools Technol. Transf. 14, 5 (2012), 589–612. https://doi.org/10.1007/s10009-012-

0234-1

[29] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-

Yves Schobbens. 2014. Formal semantics, modular specification, and symbolic

verification of product-line behaviour. Sci. Comput. Program. 80, B (2014), 416–439.

https://doi.org/10.1016/j.scico.2013.09.019

[30] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel

Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations

for Verifying Variability-Intensive Systems and Their Application to LTL Model

Checking. IEEE Trans. Softw. Eng. 39, 8 (2013), 1069–1089. https://doi.org/10.

1109/TSE.2012.86

[31] Andreas Classen, Pierre Heymans, Pierre-Yves Schobbens, and Axel Legay. 2011.

Symbolic model checking of software product lines. In Proceedings of the 33rd

International Conference on Software Engineering (ICSE’11). ACM, 321–330. https:

//doi.org/10.1145/1985793.1985838

[32] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-

François Raskin. 2010. Model Checking Lots of Systems: Efficient Verification

of Temporal Properties in Software Product Lines. In Proceedings of the 32nd

International Conference on Software Engineering (ICSE’10). ACM, 335–344. https:

//doi.org/10.1145/1806799.1806850

[33] Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In

Proceedings of the 3rd Annual Symposium on Theory of Computing (STOC’71).

ACM, 151–158. https://doi.org/10.1145/800157.805047

[34] Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and

Axel Legay. 2013. ProVeLines: A Product Line of Verifiers for Software Product

Lines. In Proceedings of the 17th International Software Product Line Conference

(SPLC’13), Vol. 2. ACM, 141–146. https://doi.org/10.1145/2499777.2499781

[35] Maxime Cordy, Andreas Classen, Gilles Perrouin, Pierre-Yves Schobbens, Patrick

Heymans, and Axel Legay. 2012. Simulation-Based Abstractions for Software

Product-Line Model Checking. In Proceedings of the 34th International Conference

on Software Engineering (ICSE’12). IEEE, 672–682. https://doi.org/10.1109/ICSE.

2012.6227150

[36] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2013.

Beyond Boolean Product-Line Model Checking: Dealing with Feature Attributes

and Multi-features. In Proceedings of the 35th International Conference on Software

Engineering (ICSE’13). IEEE, 472–481. https://doi.org/10.1109/ICSE.2013.6606593

[37] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers, Erik P.

de Vink, Wieger Wesselink, and Tim A. C. Willemse. 2013. An Overview of the

mCRL2 Toolset and Its Recent Advances. In Proceedings of the 19th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1109/SPLC.2011.34
https://doi.org/10.1007/978-3-319-44953-1_3
https://doi.org/10.1007/978-3-319-44953-1_3
https://doi.org/10.1007/978-3-319-22969-0_24
https://doi.org/10.1007/978-3-319-22969-0_24
https://doi.org/10.1016/j.scico.2018.09.006
https://doi.org/10.1016/j.scico.2018.09.006
https://doi.org/10.5281/zenodo.2616646
https://doi.org/10.1007/978-3-662-45234-9_26
https://doi.org/10.1145/2593489.2593493
https://doi.org/10.1145/2593489.2593493
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1145/2791060.2791118
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1007/978-3-030-22348-9_9
https://doi.org/10.1007/978-3-030-22348-9_9
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.4204/EPTCS.182.5
https://doi.org/10.1145/2499777.2500722
https://doi.org/10.1145/2499777.2500722
https://doi.org/10.1145/2647908.2655969
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.scico.2015.06.005
https://doi.org/10.1016/j.scico.2015.06.005
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1145/2491956.2491976
https://doi.org/10.1145/2491956.2491976
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1016/j.scico.2013.09.019
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1145/1985793.1985838
https://doi.org/10.1145/1985793.1985838
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1109/ICSE.2012.6227150
https://doi.org/10.1109/ICSE.2012.6227150
https://doi.org/10.1109/ICSE.2013.6606593

Static Analysis of Featured Transition Systems SPLC ’19, September 9–13, 2019, Paris, France

(TACAS’13) (LNCS), N. Piterman and S. A. Smolka (Eds.), Vol. 7795. Springer,

199–213. https://doi.org/10.1007/978-3-642-36742-7_15

[38] Ferruccio Damiani, Michael Lienhardt, and Luca Paolini. 2017. A Formal Model

for Multi SPLs. In Proceedings of the 7th International Conference on Fundamen-

tals of Software Engineering (FSEN’17) (LNCS), M. Dastani and M. Sirjani (Eds.),

Vol. 10522. Springer, 67–83. https://doi.org/10.1007/978-3-319-68972-2_5

[39] Ferruccio Damiani, Michael Lienhardt, and Luca Paolini. 2019. A formal model

for Multi Software Product Lines. Sci. Comput. Program. 172 (2019), 203–231.

https://doi.org/10.1016/j.scico.2018.11.005

[40] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient

SMT Solver. In Proceedings of the 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’08) (LNCS), C. R.

Ramakrishnan and J. Rehof (Eds.), Vol. 4963. Springer, 337–340. https://doi.org/

10.1007/978-3-540-78800-3_24

[41] Rocco De Nicola and Frits W. Vaandrager. 1990. Action versus State based

Logics for Transition Systems. In Semantics of Systems of Concurrent Processes:

Proceedings of the LITP Spring School on Theoretical Computer Science (LNCS),

I. Guessarian (Ed.), Vol. 469. Springer, 407–419. https://doi.org/10.1007/3-540-

53479-2_17

[42] Xavier Devroey, Gilles Perrouin, Axel Legay, Maxime Cordy, Pierre-Yves

Schobbens, and Patrick Heymans. 2014. Coverage Criteria for Behavioural

Testing of Software Product Lines. In Proceedings of the 6th International Sympo-

sium on Leveraging Applications of Formal Methods, Verification and Validation

(ISoLA’14) (LNCS), T. Margaria and B. Steffen (Eds.), Vol. 8802. Springer, 336–350.

https://doi.org/10.1007/978-3-662-45234-9_24

[43] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves

Schobbens, and Patrick Heymans. 2016. Featured Model-based Mutation Analy-

sis. In Proceedings of the 38th International Conference on Software Engineering

(ICSE’16). ACM, 655–666. https://doi.org/10.1145/2884781.2884821

[44] Aleksandar S. Dimovski. 2018. Abstract Family-Based Model Checking Using

Modal Featured Transition Systems: Preservation of CTL
∗
. In Proceedings of the

21st International Conference on Fundamental Approaches to Software Engineering

(FASE’18) (LNCS), A. Russo and A. Schürr (Eds.), Vol. 10802. Springer, 301–318.

https://doi.org/10.1007/978-3-319-89363-1_17

[45] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and An-

drzej Wąsowski. 2017. Efficient family-based model checking via variabi-

lity abstractions. Int. J. Softw. Tools Technol. Transf. 5, 19 (2017), 585–603.

https://doi.org/10.1007/s10009-016-0425-2

[46] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej

Wąsowski. 2015. Family-Based Model Checking Without a Family-Based Model

Checker. In Proceedings of the 22nd International SPIN Symposium on Model Check-

ing of Software (SPIN’15) (LNCS), B. Fischer and J. Geldenhuys (Eds.), Vol. 9232.

Springer, 282–299. https://doi.org/10.1007/978-3-319-23404-5_18

[47] Aleksandar S. Dimovski and Andrzej Wąsowski. 2017. Variability-Specific Ab-

straction Refinement for Family-Based Model Checking. In Proceedings of the

20th International Conference on Fundamental Approaches to Software Engineering

(FASE’17) (LNCS), M. Huisman and J. Rubin (Eds.), Vol. 10202. Springer, 406–423.

https://doi.org/10.1007/978-3-662-54494-5_24

[48] Marijn Heule, Matti Järvisalo, and Martin Suda. [n.d.]. The international SAT

Competitions web page. https://www.satcompetition.org/. Accessed: 2019-03-22.

[49] Gerald Holl, Paul Grünbacher, and Rick Rabiser. 2012. A systematic review and an

expert survey on capabilities supporting multi product lines. Inf. Softw. Technol.

54, 8 (2012), 828–852. https://doi.org/10.1016/j.infsof.2012.02.002

[50] Frank Hutter, Marius Lindauer, Adrian Balint, Sam Bayless, Holger Hoos, and

Kevin Leyton-Brown. 2017. The Configurable SAT Solver Challenge (CSSC).

Artifi. Intell. 243 (2017), 1–25. https://doi.org/10.1016/j.artint.2016.09.006

[51] Christian Kästner and SvenApel. 2008. Type-checking Software Product Lines –A

Formal Approach. In Proceedings of the 23rd International Conference on Automated

Software Engineering (ASE’08). IEEE, 258–267. https://doi.org/10.1109/ASE.2008.

36

[52] Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. 2011. Reducing

Combinatorics in Testing Product Lines. In Proceedings of the 10th International

Conference on Aspect-Oriented Software Development (AOSD’11). ACM, 57–68.

https://doi.org/10.1145/1960275.1960284

[53] Jan Křetínský. 2017. 30 Years of Modal Transition Systems: Survey of Extensions

and Analysis. InModels, Algorithms, Logics and Tools, L. Aceto, G. Bacci, G. Bacci,

A. Ingólfsdóttir, A. Legay, and R. Mardare (Eds.). LNCS, Vol. 10460. Springer,

36–74. https://doi.org/10.1007/978-3-319-63121-9_3

[54] Kim Guldstrand Larsen and Bent Thomsen. 1988. A Modal Process Logic. In

Proceedings of the 3rd Symposium on Logic in Computer Science (LICS’88). IEEE,

203–210. https://doi.org/10.1109/LICS.1988.5119

[55] Michael Lienhardt, Ferruccio Damiani, Simone Donetti, and Luca Paolini. 2018.

Multi Software Product Lines in the Wild. In Proceedings of the 12th International

Workshop on Variability Modelling of Software-Intensive Systems (VaMoS’18). ACM,

89–96. https://doi.org/10.1145/3168365.3170425

[56] Zohar Manna and Amir Pnueli. 1995. Temporal Verification of Reactive Systems:

Safety. Springer. https://doi.org/10.1007/978-1-4612-4222-2

[57] Marcílio Mendonça, Andrzej Wąsowski, and Krzysztof Czarnecki. 2009. SAT-

based Analysis of Feature Models is Easy. In Proceedings of the 13th International

Software Product Line Conference (SPLC’09). ACM, 231–240.

[58] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 2005. Principles of

Program Analysis. Springer. https://doi.org/10.1007/978-3-662-03811-6

[59] Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven

Apel. 2018. Variability-Aware Static Analysis at Scale: An Empirical Study. ACM

Trans. Softw. Eng. Methodol. 27, 4 (2018), 18:1–18:33. https://doi.org/10.1145/

3280986

[60] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.

2014. A Classification and Survey of Analysis Strategies for Software Product

Lines. ACM Comput. Surv. 47, 1 (2014), 6:1–6:45. https://doi.org/10.1145/2580950

[61] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,

and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-

oriented software development. Sci. Comput. Program. 79 (2014), 70–85. https:

//doi.org/10.1016/j.scico.2012.06.002

[62] Mahsa Varshosaz, Harsh Beohar, and Mohammad Reza Mousavi. 2018. Basic

behavioral models for software product lines: Revisited. Sci. Comput. Program.

168 (2018), 171–185. https://doi.org/10.1016/j.scico.2018.09.001

https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-319-68972-2_5
https://doi.org/10.1016/j.scico.2018.11.005
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/978-3-662-45234-9_24
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1007/978-3-319-89363-1_17
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/978-3-662-54494-5_24
https://www.satcompetition.org/
https://doi.org/10.1016/j.infsof.2012.02.002
https://doi.org/10.1016/j.artint.2016.09.006
https://doi.org/10.1109/ASE.2008.36
https://doi.org/10.1109/ASE.2008.36
https://doi.org/10.1145/1960275.1960284
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1145/3168365.3170425
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1145/2580950
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1016/j.scico.2018.09.001

	Abstract
	1 Introduction
	2 Background
	3 Ambiguities in FTSs
	3.1 Behavioural Ambiguities
	3.2 Removing Ambiguities

	4 Criteria for Ambiguities
	4.1 Dead Transitions Criterion
	4.2 False Optional Transitions Criterion
	4.3 Hidden Deadlock States Criterion
	4.4 SAT Solving

	5 Static Analysis Algorithm
	6 Illustrative Examples
	7 Usefulness of Unambiguous FTSs
	7.1 Family-Based Model Checking

	8 Scalability
	9 Conclusion
	Acknowledgments
	References

