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ABSTRACT
Nowadays, a huge amount of applications exist that natively
adopt a data-streaming model to represent highly dynamic
phenomena. A challenging application is constituted by data
from the stock market, where the stock prices are naturally
modeled as data streams that fluctuate very much and re-
main meaningful only for short amounts of time. In this
paper we present a technique to track evolving clusters of
financial time series, with the aim of constructing reliable
models for this highly dynamic application. In our technique
the clustering over a set of time series is iterated over time
through sliding windows and, at each iteration, the di↵er-
ences between the current clustering and the previous one
are studied to determine those changes that are “significant”
with respect to the application. For example, in the financial
domain, if a company that has belonged to the same cluster
for a certain amount of time moves to another cluster, this
may be a signal of a significant change in its economical or
financial situation.

1. INTRODUCTION
A data stream is an ordered sequence of data elements

that are made available over time, and is potentially un-
limited. Nowadays, many applications exist that natively
adopt this data model, e.g., all the data produced by sensor
readings of any kind, in so many application domains. Very
interesting data stream applications can be found in finance,
where the life of a given company evolves with time and,
at each specific time instant, is characterized by di↵erent
streams of data reporting its stock price, exchange volumes,
balance data, and so on. Companies may even appear and
disappear from the market, or change their financial behav-
ior: in fact, the speed and dynamics of the financial market
make modeling it a challenging task.

Several techniques for analyzing streaming data have been
studied; many of them rely on the use of a sliding window,
thus they allow to build a model of the data over a sequence
of consecutive time instants, i.e. a window, that moves over
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time in order to keep into account the newest data. Several
clustering methods have been investigated in the financial
context to cluster companies that have the same behavior,
e.g., in terms of stock-prices. However, especially when stock
prices are concerned, clusterings performed on di↵erent win-
dows – even though these might overlap greatly – tend to
change a lot, due to the high dynamicity of the market and
to the scarce permanence of relationships between compa-
nies over time. In such a scenario the constructed model
tends to fluctuate and remains meaningful only for short
amounts of time.

To build reliable and stable models we present PETRA, a
Progressive clustEring TRAcker where the clustering analy-
sis is iterated over time in order to constantly provide an up-
to-date and consistent model. PETRA also focuses on iden-
tifying “significant” changes in the clusterings constructed
over time. The“significance”of a change is defined by means
of parameters. This provides a good deal of flexibility as
it also allows the system to be easily adapted to di↵erent
application domains through an appropriate parameter tun-
ing. When applying PETRA to stock prices, we can capture
the intrinsic dynamics of the stocks’ (and companies’) rela-
tionships, through the recognition of points in time where
their co-movements change, that is, we identify changes in
the behavior of a company relatively to the behavior of the
other companies in the same cluster. A company changing
cluster is a signal to present to investors as well as a build-
ing block for more accurate prediction tasks. For example,
well-known companies communicate more than small ones,
however, small companies are often more interesting for in-
vestors since they can bring a higher profit. After clustering
we can use the rich information available for the well-known
companies in a cluster to obtain some guidelines also for the
small ones inside the same cluster.

PETRA is part of a broader project: Mercurio [3], whose
aim is to support financial investors in their decision-making
process. In particular, PETRA helps investors understand
how companies influence each other in order to guide them
towards a deeper understanding of the market structure.
The system has been designed and optimized for the finan-
cial application domain; however, it can be easily applied to
any set of time series with rapidly evolving behaviors, pro-
vided that the clustering algorithm, the similarity metrics
and some other parameters are appropriately tuned.

1.1 Objective and contributions
Our objective is to dynamically track the evolution of a set

of entities E = (e1, e2, ..., ej , ..., eN ) by iteratively clustering
their data streams over a sliding window Wi = [ti�w, ti] of
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Figure 1: A cluster of similarly-behaving companies

width w (see Figure 3). Given a window Wi, the companies
in it are clustered according to their stock price; Figure 1
depicts one such cluster and shows how related companies
appear inside the cluster. At each time ti, the sliding win-
dow shifts one time-point ahead, and its content is clustered
in K clusters Ci = (Ci

1, C
i
2, ..., C

i
K). Then, Ci is compared

with Ci�1 by associating each new cluster with its “previ-
ous version”. At the end of the procedure PETRA identifies
those entities that have made a ”persistent” change of clus-
ter1. In particular, our method is aimed at clustering time
series that: (i) represent entities belonging to the same do-
main (e.g. stock-market prices of di↵erent companies) and
are enough to be grouped into clusters; (ii) are sampled at
regular intervals, with the same sampling frequency; (iii)
contain a number of time points su�cient to allow a sliding
window to move along a significant number of times2.

Summarizing, our main contributions are:

• the identification of an approach to generate clusters
that are well-balanced w.r.t. the problem under con-
sideration;

• the design of a method to trace clusters’ behaviors and
spot entities’ changes of membership;

• the definition of a set of rules needed to identify rele-
vant entity switches.

The rest of the paper is organized as follows: in Section 2
we discuss previous works, Section 3 provides the details
about our approach while in Section 4 we show the experi-
mental results and, in Section 5 we draw the conclusions.

2. STATE OF THE ART
Most previous works on clustering stock-market firms showed

how custom-made clusters outperform traditional industrial
grouping criteria [6, 2]. Our work di↵ers from them in that
we move from a static to a progressive clustering approach,
which allows us to overcome THE big problem found when
dealing with financial information: stock markets move fast,

1Note that some changes might be less interesting because
being temporary, in the sense that one stream might return
to a previous cluster after some time.
2Note that the term significant is strongly domain-
dependent and should be judged by the designer.

financial insights expire and get old very quickly. Our pro-
gressive clustering provides fresh suggestions daily.

Cluster Tracking in evolving data streams is a topic only
recently covered by the scientific community. A lot has been
done on visually tracking groups of objects [9], e.g., groups
of moving people [15] or facial features [12], and on wireless
channel modeling to track multi-path components [11]. Our
work is di↵erent because we are not interested in tracking
the shift in position of a cluster at consecutive time instants;
rather, we focus on tracking the membership of each object.

General-purpose techniques [5, 4] exist that face the cluster-
tracking problem in terms of outliers, i.e. the clustering is
considered valid until the number of outliers crosses a prede-
fined threshold, then re-clustering is performed. In PETRA
instead, we re-cluster at each iteration since we are not just
interested in having a consistent model but also in detect-
ing as soon as possible the entities that change cluster, and
promptly report it.

A system similar to PETRA is MONIC [16] that models
and monitors cluster transitions. However, PETRA tracks
the movements of the companies between clusters in order to
generate signals about each company, while MONIC is inter-
ested in the transition of the entities between clusters with
the scope of drawing conclusion on the lifetime and stabil-
ity of the clusters. Moreover, MONIC detects the transitions
by keeping track of the entity trajectories on spatiotemporal
coordinates, while PETRA detects movements by analyzing
the contents of the clusters.

3. THE PETRA METHOD
We first discuss our design choices and some domain-

dependent parameters that need to be set in PETRA, then
we concentrate on the clustering procedure, and finally we
show how we track the clusters along time. The description
follows the steps of Algorithm 1.

K  desired number of clusters;
i 0;
repeat

CORR = computeCorrelationMatrix(Wi)
D = computeDistanceMatrix(CORR)
Ci=clusterData(D, K)
forall change 2 trackClusters(Ci, Ci�1) do

if change is relevant then
trigger warning;

end
end
i i+ 1;

until new data keeps coming ;
Algorithm 1: The PETRA procedure

3.1 Design choices and parametrizations
Time series clustering algorithms rely on similarity mea-

sures for quantifying how homogeneous two observations are.
PETRA uses similarity in time, which is based on compar-
ing di↵erent time series at the same time points, as it is the
most suitable one to identify sudden changes in the streams’
behaviors.

The similarity measures that can be adopted for cluster-
ing time series [1] range from simple ones such as Euclidean
distance to more complex ones like Dynamic Time Warping



(DTW). DTW is extremely powerful, as it finds a relation-
ship between two time series S1 and S2 not only when S2

is obtained by shifting S1 in time, but also when S2 is a
contraction or an expansion of S1; e.g. DTW associates the
last week of a company with the last month’s behavior of an-
other company. However, this feature is not needed in the
financial case, where we need to compare companies in the
same time interval and at the same time point, thus, sim-
pler approaches, such as the Euclidean metrics and metrics
based on correlation, are su�ciently expressive.

As for the clustering method, PETRA employs hierarchi-
cal clustering, since it does not require to set the number
of clusters a-priori, and at the same time is well suited for
easy visualization. Using a Euclidean distance and hierar-
chical clustering allows us to use Ward’s method for linkage
[13], which, as we will see, provides a big advantage in the
tracking phase. At each iteration, the Pearson Correlation
corrij [10] between each pair of time series i and j is com-
puted and a global similarity matrix CORR is obtained.
Then, to obtain a suitable input for a clustering algorithm,
a transformation from correlation coe�cients to distances is
needed. According to Gower and Legendre[8], if CORR is a
positive semidefinite similarity matrix, the dissimilarity ma-
trix D where dij =

p
(1� corrij) is a matrix of euclidean

distances. Finally, the width w of the sliding window, and
the number of desired clusters K, are left as parameters in
PETRA since the best choice strictly depends upon the ap-
plication goal; in Section 4 we present a possible solution to
perform an educated guess; we chose a window of 105 days
and a number of clusters equal to 4.

3.2 Clustering
At each new iteration, the distance matrix D is computed

for the portions of time series inside the window. Then, the
hierarchical clustering using Ward’s linkage method is per-
formed, a hierarchy of clusters – represented by means of a
dendrogram like in Figure 2 – is obtained, and the dendro-
gram is cut in order to obtain K clusters. Ward’s method
promotes the merges of small clusters, which is crucial to
the tracking phase since well-balanced clusters are easier to
track. However, depending on the level of the cut, we ob-
tain di↵erent numbers of clusters, and a constant-height cut
is not suitable in this case: cutting a dendrogram to obtain
a fixed number of clusters irrespectively of its general struc-
ture is likely to result in highly unstable clusters. Langfelder
at al. [14] solved the problem of sub-optimal performances on
complicated dendrograms presenting the Dynamic Tree Cut
(DTC) algorithm, which provides a dynamic branch-cutting
method for detecting clusters in a dendrogram, depending
on their shape. Like in the standard dendrogram creation
procedure, clusters are merged in a bottom-up fashion, but
this merging depends on a set of parametric criteria such
as the minimum size of each cluster and the minimum gap
between the joining heights. By using DTC we can obtain
much more balanced clusters, both in their size and com-
position, avoiding the downsides of the standard approach
and facilitating the tracking phase. Figure 2 shows an ex-
ample in which, although both cuts identify three clusters,
those obtained with the fixed-height cut are highly imbal-
anced (i.e. there are two clusters of just one element), while
DTC cut delivers very balanced clusters.

3.3 Tracking Clusters
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Figure 2: Fixed-height versus Dynamic Tree Cut

The goal of the tracking phase is to observe how clusters
evolve and how the clustered streams change their member-
ship. To track cluster dynamics, we have to recognize the
same cluster at di↵erent times without relying on any exter-
nal reference. We address this problem by using the Jaccard
similarity index [10] and a Linear Programming (LP) formu-
lation. Given two clusterings Ci and Ci�1 obtained from the
series over two consecutive windows Wi and Wi�1, we com-
pute the Jaccard score of each pair of clusters in the two
clusterings. The pairs with highest Jaccard score are the
most similar clusters, likely representing the same cluster at
consecutive time points. Of course, once a cluster is ascribed
to one predecessor it cannot be ascribed to any other one:
each cluster needs to be linked to one and only one predeces-
sor. This can easily be formalized in LP. Given two cluster-
ings Ci = (Ci

1, C
i
2, ..., C

i
h, ..., C

i
K) and Ci�1 = (Ci�1

1 , C
i�1
2 ,

..., C
i�1
j , ..., C

i�1
K ), we define the square matrix M of dimen-

sion K as the matrix of the Jaccard scores of all the possible
pairs (Ci

h, C
i�1
j ) of clusters. Then we define the square ma-

trix X as a decision variable matrix of dimension K, such
that xhj is 1 if Jac(C

i
h, C

i�1
j ) inM is chosen by the optimiza-

tion process, 0 otherwise. The LP model aims to select from
M the K values having highest sum, with the strong con-
straint that each selected value can share neither the row nor
the column with the other selected values. This is equiva-
lent to selecting the K cluster pairs with the highest Jaccard
scores, without selecting a cluster more than once. The ob-
jective function is defined as maximize M �X (where � rep-
resents the element-wise matrix product), subject to the con-
straints:

P
j Xhj = 1 8h 2 [1,K],

P
h Xhj = 1 8j 2 [1,K],

Xhj 2 N 8h, j 2 [1,K].

3.4 Discerning relevant changes in clustering
At each new iteration PETRA moves its analysis forward

of one time point, performs a new clustering and links each
new cluster to its ”previous version”. By doing so, we detect
when an entity moves to another cluster. Three types of
change are possible:

• exit : a company exits the Reference Cluster, moving
into a di↵erent cluster;

• re-entry : an entity re-enters the Reference Cluster;

• change outside the reference cluster : an entity moves
between two ”non-Reference Clusters”.

Note that the Reference Clusters strictly depend on the do-
main under assessment; in our use case the reference clusters
turn out to be the industrial sectors. Reference clusters are
re-computed every time we move the time window, and are
assigned the industrial sector of the majority of the compa-
nies inside it. Thus, a cluster that contains mostly banks
will be assigned the label “Bank”, one that contains mostly
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Figure 3: Intersection and Union windows

automotive companies will be assigned “Automotive”, and
so on. For example, the industrial sector of Unicredit, a
famous Italian bank, is “Bank”, thus its reference cluster is
the one that contains mostly banks. After an iteration, if
most of the companies inside Unicredit’s cluster are banks,
we say that Unicredit is in its reference cluster, and out-
side its reference cluster otherwise. This allow us to give
more importance to those cluster changes that involve the
Reference Cluster.

Note that, when using a sliding window, the change in
the new configuration might be caused by the new point
added or by the one that has been removed. Our goal is
to detect changes that are caused by current events, thus,
PETRA triggers warnings only when a change is caused by
the new point. To do so we use the intersection window
W

\
i = [ti�w, ti�1] = Wi \ Wi�1, and the union window

W
[
i = [ti�w�1, ti] = Wi [Wi�1 as shown in Figure 3. By

computing the clustering also on the intersection window
and comparing it with that of Wi we can say, in case they
are di↵erent, that the new time point ti has actually influ-
enced the clustering results. Moreover, by computing the
clustering also on W

[
i and comparing it with that of Wi, if

no change has happened, we can also say that the removal
of the last point ti�w�1 has not contributed to the change,
meaning that it is entirely due to the new point.

4. EXPERIMENTAL RESULTS
To test and validate PETRA in a real application, we per-

form a market simulation consisting in the purchase and sale
of companies’ stocks. This is because, since cluster switches
are a latent feature, there is no general ground truth to test
against and prove their actual relevance directly. However,
as far as the financial domain is concerned, we can use the
market gain as an indicator for the goodness of the clustering
performed by PETRA.

We consider the stock market prices of the 40 most highly
capitalized companies in the Italian Stock Exchange 3 in
the period between 2008 and 2017. There are 2 values for
each trading day: the opening price (open) and the closing
price (close); we cluster based on the close-open indicator.
Among the 40 companies we randomly select some of them
as leaders. Leaders are companies whose behaviour we know
in advance (i.e. when their price trend changes): for each
of them we identify some companies that are “close to the
leader” (friends) for which we don’t know the future behav-

3https://en.wikipedia.org/wiki/FTSE\ MIB

ior. The simulation consists in buying and selling stocks
of the friends depending on the behavior of the leaders. If
the clustering is correct, the friends’ behavior is similar to
the leader’s one, hence the simulation will buy and sell the
stocks at the right time, resulting overall in a profit.

For the validation, since no ground truth for the trend
changes of a company’s stock price is available, and since
the state-of-the-art techniques for segmenting time series re-
vealed to be not suitable as they do not lend themselves
to a unique parametrization suitable for all the companies,
we designed an ad-hoc procedure for identifying the major
changes in the price trend of a leader a-posteriori. The pro-
cedure divides the price timeline of a company into intervals
of up-trend, down-trend and congestion4 according to the
position of the company’s price w.r.t. three moving aver-
ages over the price [3].

For each friend, its closeness to the leader is evaluated
using PETRA, thus, we first need to appropriately tune the
window length and the number of clusters.

The width of the sliding window is a crucial parameter:
a too narrow window would result in an excessive sensitiv-
ity providing poor generalization potential, while with a too
wide one we risk to miss important events. To identify the
best width we analyze each possible width value, that is: (i)
for each value n between 2 (the smallest possible window)
and 1260 (half of the 2008-2017 period) we divide the com-
panies’ time series into segments of width n; (ii) for each n,
for each time segment T of length n, and for each pair of
companies, we compute the correlation between their seg-
ments, and arrange them all into a matrix AT,n ; (iii) we
compute the di↵erence between each correlation matrix and
the one at the previous time slot; (iv) we compute their
variance and then (v) we average all variances together ob-
taining a single score for each window width n. We chose
the value associated with the smallest score corresponding
to 105 days. We estimated the number of clusters through
knee/elbow analysis, which suggested an optimal number
of 4 clusters. After parameter tuning, the simulation picks
3 leaders and then runs PETRA which, at each iteration,
adopts a conservative policy:

• If a leader enters an up-trend phase, pick the 4 closest
companies in the same cluster as friends and buy them.

• If a leader enters a down-trend phase, sell all its friends.

• If a friend changes cluster, sell it.

To constitute valuable evidence we run the simulation ten
thousand times over di↵erent portfolios of leaders and then
averaged the profits. Comparing the results to a stock mar-
ket index is the common practice when it comes to market
simulation, thus, we use the FTSE MIB3 index as a base-
line; Figure 4 reports the aggregated results for each year
by showing the average profits obtained with PETRA and
the FTSE MIB profits for the same year. Note how the
profits yielded by our procedure are always positive: even in
years like 2008, when the market underwent a severe crisis,
our procedure managed to generate profits. Although there
are certain years in which FTSE MIB outperforms our ap-
proach, our results remains still very comparable, especially
when considered on the long term.

4A period in which the price undergoes oscillations without
a clear direction.



According to [7], the traditional approach when validating
Stock Market Clustering is to check if the resulting clusters
are consistent w.r.t. the business sectors. Being the in-
dustrial sectors static entities, we decided not to use this
approach for the validation since the aim of our procedure
is to dynamically spot anomalies and changes. Neverthe-
less our clusters have proved to be consistent also under this
point of view. The four clusters identified by our proce-
dure coincide with the sectors: banking, energy, consumer
products and industrial products.

2008 3,37 -49,53
2009 13,06 16,52
2010 4,85 -14,32
2011 9,65 -26,16
2012 9,34 5,3
2013 9,18 12,3
2014 5,04 0,44
2015 9,15 11,96
2016 11,66 -10,2
2017 4,14 11,69
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Figure 4: Average profit (in %) for each year be-
tween 2008 and 2017

5. CONCLUSIONS
We presented a technique to cluster time series where the

clustering is iterated over time and, at each iteration, the
di↵erences between the current clustering and the previous
one are studied in order determine significant changes. We
illustrated the technique on an example in the financial do-
main, where companies are clustered using the time series
of their stocks, and cluster changes are considered as signals
of changes of the company’s economical or financial situ-
ation. By observing the way clusters evolve in time, we
see data streams (and the corresponding companies) mov-
ing from one cluster to the other one: this results in an
e�cient way of spotting anomalies and out-of-the-ordinary
events that could potentially carry a high predictive power.
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