
Breaking Band: A Breakdown of High-performance
Communication

Rohit Zambre
rzambre@uci.edu

EECS, University of California, Irvine, USA

Megan Grodowitz
Megan.Grodowitz@arm.com

Arm Research, USA

Aparna Chandramowlishwaran
amowli@uci.edu

EECS, University of California, Irvine, USA

Pavel Shamis
Pavel.Shamis@arm.com
Arm Research, USA

ABSTRACT
The critical path of internode communication on large-scale sys-
tems is composed of multiple components. When a supercomputing
application initiates the transfer of a message using a high-level
communication routine such as an MPI_Send, the payload of the
message traverses multiple software stacks, the I/O subsystem on
both the host and target nodes, and network components such as
the switch. In this paper, we analyze where, why, and how much
time is spent on the critical path of communication by modeling
the overall injection overhead and end-to-end latency of a system.
We focus our analysis on the performance of small messages since
fine-grained communication is becoming increasingly important
with the growing trend of an increasing number of cores per node.
The analytical models present an accurate and detailed breakdown
of time spent in internode communication. We validate the mod-
els on Arm ThunderX2-based servers connected with Mellanox
InfiniBand. This is the first work of this kind on Arm. Alongside
our breakdown, we describe the methodology to measure the time
spent in each component so that readers with access to precise CPU
timers and a PCIe analyzer can measure breakdowns on systems of
their interest. Such a breakdown is crucial for software developers,
system architects, and researchers to guide their optimization ef-
forts. As researchers ourselves, we use the breakdown to simulate
the impacts and discuss the likelihoods of a set of optimizations that
target the bottlenecks in today’s high-performance communication.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation; •
Networks → Network measurement; • Software and its engi-
neering → Software performance.

KEYWORDS
analytical modeling, performance analysis, what-if analysis, break-
down, high-performance communication, Arm-based server, Thun-
derX2, InfiniBand

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337910

ACM Reference Format:
Rohit Zambre, Megan Grodowitz, Aparna Chandramowlishwaran, and Pavel
Shamis. 2019. Breaking Band: A Breakdown of High-performance Com-
munication. In 48th International Conference on Parallel Processing (ICPP
2019), August 5–8, 2019, Kyoto, Japan. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3337821.3337910

1 INTRODUCTION

"To measure is to know." — Lord Kelvin

Internode communication is the crux of supercomputing. We can
classify the various components involved in sending a message into
one of three categories: CPU, I/O, or network fabric, as shown in
Figure 1. Software stacks on the CPU include the Message Passing
Interface (MPI) and the communication protocol processing in the
underlying communication frameworks. I/O encompasses subsys-
tems on the processor chip such as PCI Express (PCIe). Network
components are the high-performance interconnect’s switches and
physical wire. Each of these components on the critical path of
communication poses an opportunity for optimization. However,
blindly optimizing all of the components is impractical considering
the technical challenges associated with each and the wide variety
of use cases. For example, the latency of sending a large message
is driven by the time spent in the network components. Hence,
optimizing the software stack for this case would be a futile effort.
On the other hand, the time spent in the software stack during the
propagation of a small message is a considerable portion of the
overall latency and, hence, optimizing the time spent in the CPU
would be beneficial. Therefore, it is important to understand where
to focus our optimization efforts.

With the apparent end of Moore’s law, the architectures of recent
servers are now featuring a large number of cores per node [11, 15],
a trend that is likely to continue moving forward [25]. Furthermore,
other on-node resources such as memory, translation lookaside
buffers, and network-hardware registers are not growing at the
same rate. Since developers desire to solve the same problem faster
on newer machines, they need to rely on strong scalability with the
decreasing amount of memory per core (assuming a static split with
a process per core). At the limits of strong scaling lies fine-grained
communication, that is, each core participates in communication,
eliminating the need to synchronize with the cores on a node. Since
each core communicates independently of the others, the size of
the messages involved in communication is small. Hence, we focus
our analysis on the communication performance of small messages
since it is a critical factor in overall performance.

ar
X

iv
:2

00
2.

02
56

3v
1

 [
cs

.D
C

]
 7

 F
eb

 2
02

0

https://doi.org/10.1145/3337821.3337910
https://doi.org/10.1145/3337821.3337910

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zambre et al.

Figure 1: Components involved in the transmission of ames-
sage (on one end).

CPU, I/O, and network equally contribute to the communica-
tion performance of small messages; the times spent in each of the
categories are on the same order of magnitude on state-of-the-art
systems (we demonstrate this in § 6). Hence, optimizations of each
category’s constituents would be beneficial. This raises the ques-
tion: how much will optimizing component X improve the overall
communication performance? The answer to this question can guide
the research and engineering efforts of software developers, system
architects, and the HPC community at large. Typically, one mea-
sures the limits of a system’s communication performance using
injection-rate and latency tests. But such measurements do not
inform the researcher where time is being spent or why the perfor-
mance of one version of the system varies from that of another.

In this paper, we answer the posed question by analyzing the
time spent in state-of-the-art software and system components
during the transmission of messages. We classify the components
into two levels: low and high. Low-level components include those
that are not exposed to a typical end-user of an HPC system. These
include the low-level communication framework (e.g. Verbs), the
I/O subsystem (e.g. PCIe), and network components (e.g. Mellanox
InfiniBand fiber). High-level components include programming
model frameworks such as MPI.

Contributions and findings. This paper makes the following
contributions.
(1) Detailed breakdown. As a first step to answer the posed ques-

tion, we construct analytical models of the overall injection
overhead and end-to-end latency of a system. Our models ex-
plain where and why time is spent during the transmission of a
message. By attributing times to the models’ constituents using
precise CPU timers and traces from a PCIe analyzer, we show
how much time is spent in low-level (§ 4) and high-level (§ 5)
components, and thus present a detailed breakdown of high-
performance communication. Our analytical models estimate
the observed performance within a 5% margin of error on Arm
ThunderX2. This work is the first of its kind on Arm. We use
the breakdown to provide key insights in § 6.

(2) Measurement methodology. We present a detailed method-
ology to measure the overhead of each component such as the
PCIe wire, the interconnect’s wire, etc. Researchers with access
to a similar analysis infrastructure described in § 3 can then
measure overheads for components of their interest using our
methodology.

(3) Simulated optimizations. Finally, we answer the aforemen-
tioned question in § 7 through a what-if analysis. We discuss
the impact and likelihood of a set of optimizations that target
the CPU, I/O, and network components of high-performance
communication.

Figure 2: PCIe transactions andmechanisms on sender node
to transmit data over wire.

2 BACKGROUND
The Network Interface Cards (NICs) of modern interconnects are
typically connected to the processor chip on the node as a PCI
Express (PCIe) device. In this section, we delineate the transmission
and completion of messages in the context of the PCIe fabric.

PCI Express. The main conductor of the PCIe subsystem is
the Root Complex (RC). It connects the processor and memory to
the PCIe fabric. The peripherals connected to the PCIe fabric are
called PCIe endpoints. The PCIe protocol consists of three layers:
the Transaction layer, the Data Link layer, and the Physical layer.
The first, the upper-most layer, describes the type of transaction
occurring. In this paper, two types of Transaction Layer Packets
(TLPs) are relevant: MemoryWrite (MWr), andMemory Read (MRd).
Unlike the standalone MWr TLP, the MRd TLP is coupled with a
Completion with Data (CplD) transaction from the target PCIe end-
point which contains the data requested by the initiator. The Data
Link layer ensures the successful execution of all transactions using
Data Link Layer Packet (DLLP) acknowledgements (ACK/NACK)
and a credit-based flow-control mechanism. An initiator can issue a
transaction as long as it has enough credits for that transaction. Its
credits are replenished when it receives Update Flow Control (Up-
dateFC) DLLPs from its neighbors. Such a flow-control mechanism
allows the PCIe protocol to have multiple outstanding transactions.

Mechanisms of a high-performance interconnect. From a
CPU programmer’s perspective, there exists a transmit queue (TxQ)
and a completion queue (CQ). The user posts their message descrip-
tor (MD) to the transmit queue, after which they poll on the CQ to
confirm the completion of the posted message. The user could also
request to be notified with an interrupt regarding the completion.
However, the polling approach is latency-oriented since there is no
context switch to the kernel in the critical path. The actual transmis-
sion of a message over the network occurs through coordination
between the processor chip and the NIC using memory mapped
I/O (MMIO) and direct memory access (DMA) reads and writes. We
describe these steps below using Figure 2.
(0) The user first enqueues anMD into the TxQ. The network driver

then prepares the device-specific MD that contains headers for
the NIC, and a pointer to the payload.

(1) Using an 8-byte atomic write to a memory-mapped location,
the CPU (the network driver) notifies the NIC that a message
is ready to be sent. This is called ringing the DoorBell. The RC
executes the DoorBell using a MWr PCIe transaction.

(2) After the DoorBell ring, the NIC fetches the MD using a DMA
read. A MRd PCIe transaction conducts the DMA read.

Breaking Band: A Breakdown of High-performance Communication ICPP 2019, August 5–8, 2019, Kyoto, Japan

(3) The NIC will then fetch the payload from a registered memory
region using another DMA read (another MRd TLP). Note that
the virtual address has to be translated to its physical address
before the NIC can perform DMA-reads.

(4) Once the NIC receives the payload, it transmits the read data
over the network. Upon a successful transmission, the NIC
receives an acknowledgment (ACK) from the target-NIC.

(5) Upon the reception of the ACK, the NIC will DMA-write (using
a MWr TLP) a completion (64 bytes in Mellanox InfiniBand) to
the CQ associated with the TxQ. The CPU will then poll for this
completion to make progress.

In summary, the critical data path of each post entails one MMIO
write, two DMA reads, and one DMA write. The DMA-reads trans-
late to round-trip PCIe latencies which are expensive.

A faster way to send a message that eliminates the PCIe round-
trip latencies is Programmed I/O (PIO). With PIO, the CPU copies
the MD as a part of the DoorBell. Thus, the NIC doesn’t need to
DMA-read the MD. Another feature for small payloads is inlining
which means that the payload is a part of the MD. Hence, when the
NIC receives the MD, it does not need to DMA-read the payload.
Typically, communication frameworks, such as UCX, combine PIO
with inlining. This eliminates both the DMA-reads (steps (2) and (3)).
In Mellanox InfiniBand, the PIO occurs in 64-byte chunks. Note that
the CPU does more work in PIO (64-byte copy instead of an 8-byte
write) and inlining (memcpy). However, the increase in CPU’s work
compared to the benefit gained from elimination of PCIe round-trip
latencies is minimal.

3 EVALUATION SETUP
To measure the breakdown of time spent in components we use
a system of two nodes, node 1 and node 2, that are connected to
each other using a high-performance interconnect. Node 1 plays
the role of the initiator in our following experiments. We use the
CPU’s timers to measure the time spent in software. To measure
the time spent in other components, we use traces from a PCIe
analyzer. Note that one can use this analysis infrastructure for any
CPU or interconnect of interest.

We choose a state-of-the-art ThunderX2-based (TX2) server (run-
ning at 2 GHz) for the nodes and TOP500-popular Mellanox In-
finiBand [2] as the high-speed interconnect. Specifically, we use
ConnectX-4, a recent Mellanox InfiniBand adapter, and attach it
to the node through a PCIe slot. A Lecroy PCIe analyzer sits just
before the NIC on node 1, as shown in Figure 3. The overhead of
the PCIe analyzer is negligible as we did not observe any difference
in performance with and without it. Larsen et al [16] observe the
same. The analyzer is a passive instrument that allows data to pass
through fully unaltered [1].

For our software stack, we use the CH4 device of MPICH [21]
with Unified Communication (UCX) [23] as the underlying commu-
nication framework. Specifically, we use UCX’s rc_mlx5 transport
which is UCX’s implementation of the data-path operations, such
as posting to the transmit queue and polling from the completion
queue, for modern Mellanox InfiniBand adapters.

To measure time spent in the CPU, we instrument relevant code
with UCX’s UCS profiling infrastructure [4], which internally reads
the cntvct_el0 register timer preceded by an isb for aarch64.

Figure 3: Two-node setup with PCIe analyzer on node 1.

The mean overhead of this infrastructure is 49.69 nanoseconds (a
standard deviation of 1.48 for 1000 samples); we report software
measurements in the rest of the paper after removing this overhead.

Each reported CPU or PCIe analyzer measurement is a mean of
at least 100 samples. While measuring time of a component, we
do not simultaneously measure time in any other component to
minimize any effects of artificial slowdowns caused by the timer
infrastructure. Hence, we do not require synchronized timers.

4 BREAKDOWN OF THE LOWER LEVEL
In this section, we present a detailed breakdown of time spent in the
low-level components. These include the low-level communication
protocol (LLP), the I/O subsystem, and network components. The
LLP software drives the I/O and network hardware. We first define
terminology for time spent in each of the low-level components.
• LLP_post – LLP performing a PIO post of one 8-byte message.
• LLP_prog – LLP dequeuing one entry of the completion queue
during the progress of an operation.

• PCIe – payload traversing PCIe between RC and NIC.
• Wire – payload traversing the physical wire of the interconnect.
• Switch – overhead added by a network switch.
• Network – the total time in the interconnect (Wire + Switch).
• RC-to-MEM(xB) – RC writing an x-byte payload to memory.

We use UCX’s low-level transport API, UC-Transports (UCT) for
our LLP driver. It abstracts the capabilities of the various hardware
architectures withminimal software overhead. The UCT driver runs
the UCX perftest’s injection-rate and ping-pong style latency
microbenchmarks, namely the put_bw, and am_lat tests, with a
single thread. The put test corresponds to RDMA-writes while the
am∗ test corresponds to send-receive semantics. Each message is 8
bytes, the size of a double.

4.1 Breakdown of the LLP
The LLP implements the HW/SW interface required to transmit a
message and confirm its completion. The network driver (software)
invokes the NIC (hardware) directly after correctly preparing re-
sources and registers needed by the NIC during an LLP_post. The
following details the steps involved in an LLP_post.
(1) Prepare MD – this involves the time taken to write the control

segment of the descriptor. It also involves a memcpy of the small
payload when inlining is used.

(2) A store memory barrier – this ensures that theMD is completely
written before the CPU signals the NIC. This barrier is relevant
only for a weak memory model (dmb st on aarch64).

(3) DoorBell counter increment – the NIC reads a DoorBell counter
to perform speculative reads. The CPU updates this counter
before writing to the NIC.

∗am is short for active messages, terminology that describes send-receive style messag-
ing in UCX.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zambre et al.

(4) A store memory barrier – this ensures that the NIC sees the
update to the DoorBell counter before any subsequent write to
its device memory.

(5) PIO copy – this is the CPU’s write to the memory-mapped de-
vice memory instructing the NIC to transmit the message. De-
vice memory is typically an uncached, buffered memory region
that supports out-of-order writes. For the TX2-based server in
our setup, we use Device-GREmemory for the memory-mapped
location. Though there would be a store memory barrier (dsb
st) after the PIO copy to flush the data to the NIC, we observed
experientially that this flush is not necessary for the microar-
chitecture of the TX2-based server. The PIO copy of an 8-byte
message is one 64-byte chunk in Mellanox InfiniBand (see § 2).

Similarly, the LLP reads the designated memory location (where
the NIC DMA-writes its completions) during an LLP_prog, the
progress of an operation. This progress operation constitutes a
load memory barrier for aarch64’s weak memory model to ensure
that the read for a completion queue entry occurs before subsequent
updates to data structures.

Measuring LLP and its breakdown. We measure LLP_post
and LLP_prog by wrapping the UCS profiling infrastructure around
the calls to uct_ep_put_short and uct_worker_progress. We
use the same technique around the relevant regions of code in
the implementation of uct_ep_put_short to measure the time in
each of the categories of an LLP_post. While these categories are
critical components of an LLP_post, they do not account for other
miscellaneous time such as the function call overhead, branches to
decide code path, etc. We compute this time by taking the difference
of LLP_post and the sum of the times spent in the categories. Table 1
reports the times for LLP_post, LLP_prog, and each category of
LLP_post. Figure 4 shows the breakdown of LLP_post. Since the
LLP_prog contains only one critical category (the load memory
barrier), we don’t show its breakdown.

4.2 Injection overhead
Injection is the insertion of a message into the network. The mes-
sage is injected when the payload reaches the NIC. We study the
case when the user is transmitting messages continuously since this
represents a system’s injection limit. Then, the system’s injection
overhead, Inj_overhead, is the time difference between messages ar-
riving at the NIC. This Inj_overhead explains why all the messages
in a burst do not reach the NIC at time zero. We first model the
injection overhead of PIO posts for a small message, then measure
the overhead according to the model, and finally validate it.

Modeling injection overhead. Since the depth of the transmit
queue (TxQ) is finite, the user cannot post indefinitely. Polling the
completion queue (CQ) serves as the dequeue semantic for the
TxQ. Hence, the user must poll in between their posts to inject
messages into the NIC. Say, the user polls after every p posts. If
p = 1, the depth of the TxQ is not utilized and the post translates to
a synchronous post, that is, the user will be able to post the next
message only after the previous message has reached the target
node (since the completion is generated only when the host NIC
receives an ACK from the target NIC (see § 2)).

To remove the overhead of waiting for a previous message to
complete, the user must choose a value ofp such that the completion

15.84% 9.88% 12.01% 53.79% 8.49%

0 25 50 75 100
Percent

MD setup Barrier for MD Barrier for DBC PIO copy Other

Figure 4: Breakdown of time in an LLP_post (MD: message
descriptor; DBC: DoorBell counter).

for an earlier message is available during a poll. Such a value of p
depends on the value of LLP_post and the time taken to generate a
completion, дen_completion. From § 2, we can deduce that

дen_completion = 2 × (PCIe + Network) + RC-to-MEM(64B)

since the PCIe wire and the interconnect’s network fabric are tra-
versed twice: first while transmitting the message to the target
NIC, and second while receiving the ACK from the target NIC and
writing the corresponding completion. A completion in InfiniBand
is 64 bytes and hence, the RC conducts a 64-byte write to memory
on behalf of the host NIC. Then, to remove the overhead of waiting
for a previous message, the lower bound on p is

p ≥ дen_completion/LLP_post

In our modeling of the injection overhead, we assume that the user
meets this lower bound on p.

Typically, the API of the network driver allows the user to poll a
batch of completions, reducing the overhead of expensive memory
barriers and function calls [14]. Say the user polls b number of
completions in each batch. This means that the user can post only
b posts in the next round of posts since only b entries have been de-
queued from the TxQ. Note thatb meets the lower boundmentioned
above. Additionally, the user could perform some miscellaneous
operations during the window of b posts or b polls. Let tot_misc
demarcate the cumulative time spent in these other operations.
Then, the overhead of the CPU to post a message is

CPU_time =
b × LLP_post + b × LLP_prog + tot_misc

b
= LLP_post + LLP_prog +Misc

where Misc = tot_misc/b is the miscellaneous overhead amortized
for each message.

Hence, on average, messages arrive at the RC every CPU_time.
Since PCIe supports multiple outstanding requests (see § 2), the
RC initiates MWr PCIe transactions targeting the NIC as soon as
it receives messages from the CPU. Considering that the RC is
implemented with hardware logic, the time it takes to generate a
transaction would be in the order of a few cycles. Hence, we ignore
its contribution to the injection overhead. Note that the RC can
generate transactions only if it has enough credits. Otherwise, it
needs to wait for an UpdateFC DLLP from the NIC which would
incur the overhead of the PCIe wire between the NIC and the RC
(PCIe). Experientially, we observe that a single core does not exhaust
the credits for MWr transactions. Hence, we do not model for the
overheads imposed with exhausted credits in this paper.

Once the message leaves the RC, it incurs PCIe before arriving
at the NIC. Hence, the injection overhead of a single message is

Msg_inj_overhead = CPU_time + PCIe

While Msg_inj_overhead describes the time taken by each mes-
sage to reach the NIC, it is not the same as the injection overhead

Breaking Band: A Breakdown of High-performance Communication ICPP 2019, August 5–8, 2019, Kyoto, Japan

Table 1: Measured times of various components.

Component Time (ns)
Message descriptor setup 27.78

Barrier for message descriptor 17.33
Barrier for DoorBell counter 21.07

PIO copy (64 bytes) 94.25
Miscellaneous in LLP_post 14.99
LLP_post (total of above) 175.42

LLP_prog 61.63
Busy post 8.99

Measurement update 49.69
Misc in Inj_overhead (total of above) 58.68

PCIe for a 64-byte payload 137.49
Wire 274.81

Switch 108
Network (total of above) 382.81

RC-to-MEM(8B) 240.96
MPI_Isend in MPICH 24.37

MPI_Isend in UCP 2.19
Callback for a completed MPI_Irecv in MPICH 47.99
Successful MPI_Wait for MPI_Irecv in MPICH 293.29
Callback for a completed MPI_Irecv in UCP 139.78
Successful MPI_Wait for MPI_Irecv in UCP 150.51

observed by the NIC, Inj_overhead, as we shall see next. When the
system is issuing messages continuously, the CPU_time of the next
message overlaps with the PCIe of the previous one (see Figure 5).
Hence, the time difference between the initiation of messages is
CPU_time. This holds true for any relation of PCIe with CPU_time
(assuming that PCIe is not long enough to exhaust the RC’s credits).
When PCIe > CPU_time, PCIe of the next message can also overlap
with PCIe of the previous one. Hence, from the perspective of the
NIC, the time difference between the arrival of messages is the
same as that between the initiation of messages, that is,

(1)Inj_overhead = CPU_time

= LLP_post + LLP_prog +Misc

Next, we measure the constituents of Inj_overhead. In § 4.1, we
reported the times measured for LLP_post and LLP_prog. To account
for Misc, we first explain what occurs between consecutive posts
in UCX’s put_bw benchmark.

Every message in the benchmark generates a completion. How-
ever, the benchmark polls for one completion every 16 posts. Hence,
eventually the finite depth of the TxQ is fully utilized after which
an LLP_post results in a "busy" post, that is, an LLP_post fails since
an LLP_prog must occur before the next successful LLP_post. Thus,
in the average case, after every successful LLP_post, there occurs a
busy post. Additionally, the benchmark records a timestamp and up-
dates its injection-rate measurements after every LLP_post. Table 1
reports the times for a "Busy post" and a "Measurement update"
measured using the UCS profiling infrastructure wrapped around
the relevant code paths; Misc = 56.58 nanoseconds.

Breakdown of injection overhead. The PCIe trace of the
put_bw test shows the observed injection overhead of the system.

Figure 5: Injection overhead observed by the NIC.

Figure 6 shows a snippet of the PCIe trace after filtering for down-
stream (RC to NIC) transactions. The data in each downstream
transaction is 64 bytes corresponding to the PIO post of an 8-byte
payload. Every transaction is associated with a timestamp. This
timestamp corresponds to the timewhen the PCIe analyzer observes
the transaction. Since the PCIe analyzer is sitting just before the NIC,
these timestamps correspond to the times at which the messages
reach the NIC. Hence, calculating the delta of the timestamp of
consecutive transactions would result in the observed Inj_overhead.
Figure 7 shows the distribution of this overhead. The modeled in-
jection overhead of 295.73 nanoseconds is within 5% of 282.33
nanoseconds, themean observed injection overhead. Figure 8 shows
a percentage breakdown of Inj_overhead.

4.3 Latency
Latency is the total time incurred by a message starting from the
time the host node initiates the transfer to the time of writing the
payload in the destination buffer on the target node.

Modeling latency. We study the latency of a short message
transmitted using send-receive semantics. The initiation of the
transmission begins with an LLP_post, after which the message tra-
verses the PCIe fabric and reaches the NIC. The NIC then transmits
the message over the network fabric to reach the target node. On
the target node, the NIC performs a MWr PCIe transaction, which
traverses the PCIe wire and instructs the RC to write the payload
into the target node’s memory. Meanwhile the CPU on the target
node has been polling for its posted receive to complete. The user
can use its receive buffer only after a successful poll. Thus, for a
payload of size, x, the time for latency is derived as follows,
Latency = LLP_post+2(PCIe)+Network+RC-to-MEM(xB)+LLP_prog

Now, we measure the individual components that contribute to
Latency. The value of an LLP_post is the same as the one measured
in § 4.2, that is, 175.42 nanoseconds.

Measuring PCIe. To measure PCIe, we first measure the round-
trip latency of the PCIe wire between the NIC and the RC. Since the
PCIe analyzer sits just before the NIC, any transaction initiated by
the NIC and the corresponding ACK DLLP from the RC will give us
the start and end time of the required round-trip. For this purpose,
we use the MWr transactions initiated by the NIC during the DMA-
write of completions. The timestamp in the MWr transaction is
the start time of the round trip and that in the corresponding ACK
DLLP is the end time. Dividing this round-trip value by two is PCIe
(the size of this MWr transaction is the same as that of the PIO
copy: 64 bytes). We measure PCIe to be 137.49 nanoseconds.

Measuring Network. One way to measure Network would be to
first measure the time difference between when a PIO post reaches
the NIC and when the NIC receives an ACK from the target node
for that PIO post. Then, dividing that difference by two would
correspond to Network since the difference entails a round-trip

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zambre et al.

Figure 6: PCIe trace of downstream PCIe transactions for UCX’s RDMA-write injection-rate benchmark (put_bw).

0.00

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500
Nanoseconds

Pr
ob

ab
ili

ty
 d

en
si

ty

Mean: 282.33

Median: 266.30

Min: 201.30

Max: 34951.70

Std. dev = 58.4866

Figure 7: Distribution†of the observed injection overhead.

61.18% 21.49% 17.33%

0 25 50 75 100
Percent

LLP_post LLP_prog Misc

Figure 8: Breakdown of injection overhead with the LLP.

Network latency. The timestamps on the PCIe trace of the ping-
pong style am_lat benchmark allow us to employ this method. A
downstream 64-byte PCIe transaction corresponds to a ping and the
next upstream 64-byte PCIe transaction corresponds to the ping’s
completion which is generated upon reception of the ACK. Doing
so, we measured the value of Wire to be 274.81 nanoseconds for
a direct NIC-to-NIC connection. If the NICs are connected via a
switch, the overhead of Switch is 108 nanoseconds. We measured
this by taking the difference between two latency measurements:
one with a switch involved and one without.

Measuring RC-to-MEM(8B). To measure RC-to-MEM(8B), we
utilize the timestamps on the PCIe trace data of the am_lat ping-
pong benchmark. As shown in Figure 9, the time difference between
an incoming pong and outgoing ping entails an RC-to-MEM(8B),
two PCIes (one for the inbound pong and the other for the outbound
ping), a LLP_prog (successful poll), and a LLP_post (the ping). Once
we measure the pong-ping difference from the PCIe trace, we can
compute the value of RC-to-MEM(8B) since we have measured the
values of the other components. This way, we measured the value
of RC-to-MEM(8B) to be 240.96 nanoseconds.

Plugging in our measured values (reported in Table 1) into the
latency model of a short message transmitted with send-receive
semantics, we have Latency = 1135.8 nanoseconds.

†Max is not shown in the figure due to the large value.

Figure 9: Measuring RC-to-MEM(xB) using the time delta be-
tween an inbound pong and outbound ping on node 1.

16.33% 12.80% 25.58% 10.05% 12.80% 22.43%

0 25 50 75 100
Percent

LLP_post TX PCIe Wire Switch RX PCIe RC-to-MEM(8B)

Figure 10: Breakdown of latency with the LLP.

Breakdown of latency. The observed latency from UCX’s
am_lat test is 1215 nanoseconds. The benchmark measures a round-
trip latency and then divides the measurement by two to report
the latency. Since a measurement update occurs before the target
responds with a pong, we need to deduct half of "Measurement
update" from Table 1 from the observed latency, which results in
1190.25 nanoseconds. The modeled latency is within 5% of this ob-
served latency. Figure 10 shows a percentage breakdown of latency.

5 BREAKDOWN OF THE HIGHER LEVEL
In this section, we present a breakdown of the time spent in the
high-level components of high-performance communication. This
comprises of the high-level communication protocols (HLP). The
most commonly used programming model for large-scale parallel
systems today isMPI [25]. Hence, at the highest level of the software
stack sits an MPI library that implements the MPI standard. Modern
implementations, such as the CH4 device of MPICH, rely on abstract
communication frameworks, such as UCX, so that the MPI libraries
do not need to maintain separate critical paths for all interconnects.

UCX in turn is composed of multiple components such as UC-
Transports (UCT) and UC-Protocols (UCP). UCT is the LLP that
we analyze in § 4.1. UCP implements high-level communication
protocols such as collectives, message fragmentation, etc. using the
low transport-level capabilities exposed through UCT. MPI libraries
then use UCP to implement the specifications of the MPI standard.

Breaking Band: A Breakdown of High-performance Communication ICPP 2019, August 5–8, 2019, Kyoto, Japan

8.24% 91.76%

33.91% 66.09%

MPI_Isend

RX MPI_Wait

0 25 50 75 100
Percent

HLP UCP MPICH

Figure 11: Breakdown of time in HLP.

We present a breakdown of time spent in the HLP for a
communication-initiation operation such as MPI_Isend, and a
communication-progress operation such as a successful (i.e. no
busy waiting) MPI_Wait corresponding to an MPI_Irecv.

Measuring HLP and its breakdown. In an MPI_Isend, the
MPI library first decides how to best execute the operation by
checking if the data is contiguous, computing which communi-
cation interface to use, etc. Ultimately it will call into the UCP
layer (ucp_tag_send_nb) which will eventually execute the LLP in
the UCT layer (uct_ep_am_short). To measure the time spent in
MPICH and UCP for an MPI_Isend, we first measure the total time
of MPI_Isend, the total time of ucp_tag_send_nb inside MPICH,
and the total time of uct_ep_am_short inside UCP by wrapping
them with the UCS profiling infrastructure. We can then measure
the time spent in MPICH and UCP by taking the differences of times
between the upper and lower layers. For example, subtracting the
total time of ucp_tag_send_nb from that of MPI_Isend gives us
the time spent in MPICH.

Similarly, in an MPI_Wait, the MPI library executes its
progress engine which ultimately calls into the UCP layer
(ucp_worker_progress). UCP will then ensure progress on all out-
standing operations that have posted by progressing the low-level
UCT layer (uct_worker_progress). When an operation completes,
UCT executes a registered callback into the upper UCP layer to
update data structures that indicate the completion of the opera-
tion. Similarly, the UCP callback also executes a registered callback
into the upper MPICH layer to indicate that the operation has com-
pleted. Note that these callbacks are executed before returning from
uct_worker_progress. To measure the time spent in MPICH and
UCP for an MPI_Wait, we measure the times spent in the registered
MPICH and UCP callbacks in addition to measuring the total times
of MPI_Wait, ucp_worker_progress, and uct_worker_progress.
Since the UCP callback entails the MPICH callback, we can measure
the time spent in the UCP callback alone by taking the difference
between the total times spent in the callbacks. We can then measure
the time spent in MPICH and UCP by taking the differences of times
between the upper and lower layers and adding in the time for the
upper layer’s registered callback. For example, subtracting the total
time of ucp_worker_progress from that of MPI_Wait and adding
in the time of the MPICH callback gives us the time spent in MPICH.

Table 1 reports the time spent in MPICH and UCP on top of the
LLP’s HW/SW interface for an MPI_Isend (26.56 nanoseconds in
total), and a successful MPI_Wait for an MPI_Irecv (443.8 nanosec-
onds in total). Figure 11 shows their percentage breakdown.

6 THE COMPLETE PICTURE
In this section, we first present a breakdown of the overall injection
overhead and end-to-end latency including all the software, I/O,

1.20% 22.58% 76.23%

0 25 50 75 100
Percent

Misc Post_prog Post

Figure 12: Breakdown of the overall injection overhead.

and network components for send-receive communication. Then,
analyzing the breakdown, we note a number of insightful findings.

Overall injection overhead. § 4.2 shows that the injection
overhead observed by the NIC for a single core is governed by the
rate at which the CPU can send messages to the RC. Equation 1
defines this injection overhead. CPU_time in § 4.2 involved only
the overhead of the LLP; in this section, we add in the overheads of
the HLP to complete the picture. We redefine CPU_time as follows.

(2)CPU_time = Post + Post_prog +Misc

where Post is the total time taken by the HLP and LLP to initiate
an operation, and Post_prog is the total overhead imposed by both
the HLP and LLP for the progress of a send-operation. Post is the
sum of LLP_post and HLP_post, the time spent in the HLP during
the initiation of a message. For our setup, HLP_post equals 26.56
nanoseconds, which implies Post equals 201.98 nanoseconds. Before
attributing times to Post_prog andMisc, we delineate certain caveats.

First, UCP schedules the successful execution of LLP_post for
busy posts (see § 4.2) during the progress of operations. Second,
progress for a bunch of initiated operations is typically conducted
with a batch-progress operation in the HLP such as MPI_Waitall.
MPICH executes its progress engine until all the operations listed in
MPI_Waitall complete. More important, UCP reduces the overhead
of progress using unsignaled completions [14], which means the
NIC DMA-writes a completion only every c operations to indicate
the completion of all c operations (c = 64 in UCX). Hence, the
overhead of progress is amortized over c operations.

The first caveat implies that the progress of some operations
includes the overhead of initiation in the LLP. Since we already
account for the successful posts of busy posts in Post, we deduct the
cumulative LLP_posts corresponding to the busy posts from the total
time of MPI_Waitall for analytical purposes. We do so by keeping
track of the number of busy posts occurred before MPI_Waitall.
Dividing the resulting total time by the number of operations pro-
gressed, we measure Post_prog to be 59.82 nanoseconds. Less than a
nanosecond of Post_prog (due to the aforementioned amortization)
occurs in the LLP; the rest occurs in the HLP (HLP_tx_prog).

We include the time incurred in busy posts under Misc. Using
the tracked number of busy posts we can compute the total time
spent in busy posts during an MPI_Isend-MPI_Waitall window.
Dividing this total time by the number of operations in the window
gives us an average of 3.17 nanoseconds per operation in Misc.

We use OSU Micro-Benchmark’s [3] message rate test‡ to mea-
sure the observed injection overhead. By taking the inverse of the
message rate, we measure the mean injection overhead to be 263.91
nanoseconds. The injection overhead computed with Equation 2 is
264.97 nanoseconds which is within 1% of the observed overhead.
Figure 12 shows the breakdown of the overall injection overhead.

‡We remove the send-receive sync after every window of posts for a clear analysis.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zambre et al.

1.91%

12.65%
9.91%

19.81%

7.79%
9.91%

17.37%

4.44%

16.20%

0
50

100
150
200
250
300

HLP_post

LLP_post

TX PCIe
Wire

Switch
RX PCIe

RC-to
-MEM(8B)

LLP_prog

HLP_rx_prog

N
an

os
ec

on
ds

Figure 13: Breakdown of the end-to-end latency.

End-to-end latency. § 4.3 describes the constituents of Latency
with minimal software involvement. To complete the picture, we
add in the latencies of the HLP as follows.

Latency = HLP_post + LLP_post + 2(PCIe) + Network

+ RC-to-MEM(xB) + LLP_prog + HLP_rx_prog

HLP_rx_prog refers to the overhead of progressing the reception
of an incoming message with MPI (after it has been written to
memory by the RC). We assume the initiation of the receive (such
as MPI_Irecv) overlaps with the rest of the constituents and, hence,
do not account for its time in the end-to-end latency.

HLP_rx_prog is the sum of the times spent in the registered call-
backs of MPICH and UCP along with the remaining time spent
in MPICH after ucp_worker_progress returns. Note that the lat-
ter is not the equivalent of the total time spent in MPICH for
a successful MPI_Wait minus the time spent in the MPICH call-
back. MPI_Wait is a blocking call and incurs a portion of the 293.99
nanoseconds before even progressing UCP. MPICH internally loops
on ucp_worker_progress until the operation is complete. Hence,
we specifically measure the time spent in MPICH after a successful
ucp_worker_progress and observe this time to be 36.89 nanosec-
onds. The value ofHLP_rx_prog then is 224.66 nanoseconds. Adding
in the values of LLP_prog, HLP_post, and HLP_rx_prog to the mod-
eled latency in § 4.3, the end-to-end latency is 1387.02 nanoseconds.
This is within 4% of the observed latency of 1336 nanoseconds
measured by OSU Micro-Benchmark’s point-to-point latency test.
Figure 13 shows a detailed breakdown of this latency.

Insight 1. § 4.2 describes that the programmer cannot indefi-
nitely initiate messages. Hence, the progress of a send operation
serves as a "semantic bottleneck". Once the performance overheads
imposed by this bottleneck is minimized through optimizations
like unsignaled completions, Figure 12 shows that Post dominates
(more than 70% of total) the overall injection overhead. Within Post,
the LLP dominates as seen in "Initiation" of Figure 14.

Insight 2. Figure 15 presents the overall percentage breakdown
of the end-to-end latency of a small message in the three categories:
CPU, I/O, and network. The constituents of the software and I/O
categories contribute almost equally (within 4% of each other) to
their respective total times. In the case of Network, the latency
of Wire dominates the overall off-node time. Note that none of
the three categories dominates the overall latency. However, we
observe that the network fabric constitutes less than a third of the
overall latency while CPU and I/O components together contribute
towards 72.4% of the latency. Hence, most of the overhead in the
transmission of a small message is incurred on the node.

Insight 3. Figure 16 shows a high-level breakdown of the time
spent on the node during the transmission of the message. The
majority of this time occurs on the target node. Out of the time

1.61% 98.39%

21.53% 78.47%

86.85% 13.15%

TX Progress

RX Progress

Initiation

0 25 50 75 100
Percent

Communication protocol LLP HLP

Figure 14: Breakdown of time in HLP and LLP during the
initiation and progress of communication.

Network

27.60%

I/O

37.20%

CPU

35.20%

LLP

48.55%

HLP

51.45%

RC-to-MEM

46.70%

PCIe

53.30%

Wire

71.79%

Switch

28.21%

0

25

50

75

100

End-to-end latency CPU I/O Network

Pe
rc

en
t

Figure 15: High-level breakdown of the end-to-end latency.

Target

66.20%

Initiator

33.80%

I/O

40.50%

CPU

59.50%

I/O

56.93%

CPU

43.07%

RC-to-MEM

63.67%

PCIe

36.33%

0

25

50

75

100

On-node Initiator Target Target I/O

Pe
rc

en
t

Figure 16: Breakdown of time spent on node.

on the target node, the majority occurs during I/O, the majority of
which is comprised by the RC writing the payload to memory. On
the contrary, software comprises the majority of the time spent on
the initiator node. This is due to the use of Programmed I/O (see
§ 2) for short messages. Consequently, I/O on the initiator node
comprises only of a PCIe transaction unlike that on the target node.

Insight 4. Figure 14 shows that the HLP dominates the progress
of both send and receive operations. The progress of a receive
operation is 4.78× higher than that of a send operation.

7 SIMULATED OPTIMIZATIONS
In this section, we use the insights gained from the breakdown
of the complete picture in § 6 to study the effects of optimizing
the CPU, I/O, and network fabric components on the injection and
latency of small message transfers. In the figures that follow, we aim
to answer the following question: if we optimize component X by
Y%, what is the corresponding reduction in injection overhead and
latency? The horizontal axis of Figure 17 represents the degree of
optimization for the component of interest. It consists of five evenly
spaced reductions in overhead, starting from 10% (1.1× faster) to
90% (10× faster). The vertical axis represents the speedup in the
overall injection or end-to-end latency as a result of reducing the
component’s overhead. Note that the components of our models
are not concurrent, that is, their executions do not overlap. Hence,
evaluating the impacts of reductions in overheads on benchmarks
such an MPI stencil kernel through a distributed system simulator

Breaking Band: A Breakdown of High-performance Communication ICPP 2019, August 5–8, 2019, Kyoto, Japan

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

10% 30% 50% 70% 90%
Overhead reduction

In
je

ct
io

n
sp

ee
du

p

HLP
LLP
LLP_post
PIO
HLP_tx_prog
HLP_post
LLP_tx_prog

(a) CPU

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

10% 30% 50% 70% 90%
Overhead reduction

La
te

nc
y

sp
ee

du
p

HLP
LLP
HLP_rx_prog
LLP_post
PIO
HLP_post
LLP_prog

(b) CPU

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

10% 30% 50% 70% 90%
Overhead reduction

La
te

nc
y

sp
ee

du
p

Integrated NIC
PCIe
RC-to-MEM

(c) I/O

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

10% 30% 50% 70% 90%
Overhead reduction

La
te

nc
y

sp
ee

du
p

Wire
Switch

(d) Network

Figure 17: Simulated speedups in overall injection (a) and end-to-end latency (b, c, d) by reducing overheads of CPU, I/O, and
network components (note the differences in y-axis scales).

(such as SimGrid [9]) results in exactly the same linear speedups
that we generate through a manual what-if analysis in Figure 17.
We organize our discussion into a set of relevant optimizations that
target the different components. For each optimization we discuss
their likelihood and evaluate their impact. We consider speedups
more than 5% to be substantial.

7.1 On-node optimizations
In § 6 we learn that most of the time in the transmission of a small
message is spent on the node. CPU and I/O components make for
the on-node time. Below we discuss three relevant optimizations.

NIC integrated into a System-on-Chip (SoC). The idea of
this optimization is that the NIC sits on the same die as that of
the processor. The deployment of such a solution would be in
the form of an SoC so that instead of interfacing with the CPU
through the PCIe subsystem, the NICwould connect to the network-
on-chip (NoC). Such a tight integration of the NIC and the CPU
would eliminate a majority of the I/O subsystem’s overhead, which
accounts for the majority of the time in the latency of a small
message. While integrated NICs are not commonplace in today’s
HPC systems, they are more than likely to become ubiquitous in
the future given the potential of their impact. There have been
multiple works [8, 17] that argue for and evaluate the performance
of SoC-integrated NICs showing their benefits in terms of better
performance and higher CPU availability for all message sizes. More
recently, Arm-based supercomputers are on the rise [13] since they
allow HPC vendors to integrate their custom solutions (such as
an integrated NIC) with Arm IP on SoCs. The Tofu interconnect
D [5] on Fujitsu’s post-K machine is a prominent example of this
optimization. With Tofu’s NIC integrated into a post-K-node, the
RDMA-write latency has been improved by nearly 400 nanoseconds.

Impact. "Integrated NIC" in Figure 17c shows the impact of a
solution that simply brings the NIC closer to the TX2-based SoC.
While one can expect such a solution to eliminate most of the I/O
overhead, we can observe over a 15% improvement in overall latency
even with a modest 50% reduction in I/O time. In fact, a tightly
integrated NIC allows for opportunities to reduce the involvement
of the CPU in the LLP’s HW/SW interface and thereby increase its
availability for computational tasks. Recall that the reason for the
use of PIO for small messages is expensive PCIe round-trip latencies
with the communication-offloading approach (see §§ 1 and 2). Since
an integrated NIC would sit close to memory, round-trip latencies
performed by the hardware logic of the NIC would most likely be
faster than involving the CPU in PIO.

Improving the initiation of a message in LLP. This opti-
mization deals with how writes to device memory occur in the
microarchitecture of a processor. Ideally, writes to aarch64’s Device
memory [18] should be as fast as writes to its Normal memory [18].
Such an optimization is likely since the current difference between
64-byte writes to Normal and Device memory is more than 90%,
hinting that there exists room for optimization. It would reduce the
time spent in the PIO copy, which accounts for more than 50% of
the time in LLP_post (see Figure 4).

Impact. "PIO" in Figure 17a and Figure 17b shows the impact
of improving the 64-byte PIO copy on the overall injection and
end-to-end latency, respectively. A regular 64-byte memcpy on the
TX2-based server takes less than a nanosecond as expected. If we
modestly project the overhead of PIO to reduce to 15 nanoseconds
(84% reduction), overall injection can improve by more than 25%
and end-to-end latency can improve by more than 5%.

Reducing software overheads. This optimization deals with
software engineering targeted to reduce overheads in the HLP.
However, unlike the previous optimizations, it is unlikely that this
optimization would reduce overheads by more than 50%. For exam-
ple, the current implementation of MPICH is highly optimized [21],
reducing the number of instructions by 76% from its previous im-
plementation for an MPI_Isend. We conjecture that software opti-
mizations would reduce overheads by less than 20%.

Impact. Figure 17a and Figure 17b show the what-if analysis
for the different components in the HLP and LLP. The "HLP" and
"LLP" lines in the figures reflect the upper bound on speedups that
would result from optimizing the components that constitute the
HLP and LLP, respectively. For both injection and latency, opti-
mizing the progress of operations in the HLP (HLP_tx_prog and
HLP_rx_prog) can achieve speedups close to HLP’s upper bound.
Similarly, optimizing LLP_post can achieve speedups close to LLP’s
upper bound. If we consider software overheads would be reduced
at most by 20%, the upper bounds reflect a less than 5% speedup
in the end-to-end latency. On the other hand, a 20% reduction in
overhead in the HLP can speedup injection by up to 6.44% while
that in the LLP can do so by up to 13.33%.

7.2 Off-node optimizations
Figure 15 shows that 27.6% of the end-to-end latency is spent on
the interconnect’s Wire and in the Switch. Our foresight is that
the reduction in off-node overheads is less than likely and that the
resulting speedups with off-node optimizations alone would not be
substantial. We explain our foresight below.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Zambre et al.

The reduction in Wire’s overhead is less than likely due to en-
gineering complexities at the physical layer. In fact, it is possible
that the latency will increase in future interconnects in order to
accommodate for higher throughput. The conversion between the
parallel PCIe signals and the serial signals on the interconnect’s
fiber transmission link occurs through SerDes (serializer/deserial-
izer) integrated circuits. For throughputs higher than 100 Gb/s, the
SerDes unit needs to be able to deliver higher throughput. While
higher degrees of pulse amplitude modulation (PAM) deliver higher
signal rates, they require more complex forward error correction
(FEC), which increases the latency of the transmission in some
cases by 300 nanoseconds [7, 12, 24].

The current latency of a high-performance interconnect’s switch
is already an order of magnitude lower than that of an Ethernet’s
switch [22]. New technologies like GenZ forecast their switch laten-
cies to be 30-50 nanoseconds [10]. However, such low latencies are
yet to be demonstrated. Only an optimistic reduction to 30 nanosec-
onds (72% overhead reduction) would correspond to a substantial
speedup (5.45%) in end-to-end latency according to Figure 17d.

8 RELATEDWORK
Prior research (described below) show the effects of optimizing
certain components on the overall communication performance.
We take an inverse approach that first explains the observed perfor-
mance and then showcases the potential of optimizations. To the
best of our knowledge, this paper’s detailed breakdown encompass-
ing all CPU, I/O, and network components is the first of its kind.
Additionally, such work is the first for an Arm-based server.

Communication breakdown. Papadopoulou et al. [20] present
a detailed instruction breakdown of initiation and progress func-
tions between UCP and UCT to identify engineering and abstraction
overheads. Similarly, Raffenetti et al. [21] analyze the overheads
in the MPICH library using instruction analysis. Both reduce the
number of instructions used in commonly used functions, resulting
in higher communication performance. However, they only focus
on one level of the stack. Our work spans both the MPICH and
UCX stacks in addition to I/O and network components. Ajima
et al. [5] present a breakdown of an RDMA-write latency on the
post-K system using simulation waveforms of hardware emulators.
Our work presents a breakdown with measured times using our
described methodology as opposed to instructions or simulations
to explain the observed communication performance.

Relevance of I/O. Like us, several others also mention the bot-
tlenecks imposed by PCIe in datacenter networking systems. Kalia
et al. [14] emphasize the need to consider the low-level details and
features of Verbs and the PCIe subsystem while designing RDMA-
based systems. In fact, R. Neugebauer et al. [19] and Alian et al. [6]
contribute PCIe models to evaluate the impact of improvements to
current I/O subsystems. We quantitatively compare the I/O over-
heads against those of CPU and network components. In addition to
PCIe, we profile the time spent by the RC towrite tomemory. Unlike
prior work, we use PCIe traces to validate software measurements.

9 CONCLUSION
Our analytical models of the injection overhead and latency of
high-performance communication on state-of-the-art components

explain observed performance with a 5% margin of error. The mod-
els and their resulting breakdown give the reader insights into
where, why, and how much time is spent during the transfer of
small messages. As the importance of small, fine-grained commu-
nication is rising, we believe that such a breakdown can guide the
efforts of software developers and system architects alike to address
the bottlenecks present today. More importantly, researchers and
engineers can identify bottlenecks on their own systems using our
detailed methodology described in this paper.

ACKNOWLEDGMENTS
We thank Giri Chukkapalli and Ham Prince from Marvell Technol-
ogy Group, Yossi Itigin from Mellanox Technologies, and Pavan
Balaji from Argonne National Laboratory for their aid and support.

REFERENCES
[1] [n. d.]. Teledyne LeCroy Summit T3-16 Analyzer. https://teledynelecroy.com/

protocolanalyzer/pci-express/summit-t3-16-analyzer
[2] 2018. Top 500 High Performance Computing Platform Interconnect. Retrieved

June 7, 2019 from http://www.mellanox.com/solutions/hpc/top500.php
[3] 2019. OSU Micro-Benchmarks 5.6.1. http://mvapich.cse.ohio-state.edu/

benchmarks/
[4] 2019. UCS profiling. https://github.com/open/ucx/wiki/Profiling
[5] Yuichiro Ajima et al. 2018. The Tofu Interconnect D. In 2018 IEEE Intl. Conf. on

Cluster Computing (CLUSTER). IEEE, 646–654.
[6] Mohammad Alian et al. 2018. Simulating PCI-Express Interconnect for Future

System Exploration. In 2018 Intl. Symp. on Work. Char. (IISWC). IEEE, 168–178.
[7] Sudeep Bhoja et al. 2014. FEC codes for 400 Gbps 802.3 bs. IEEE P802. 3bs 400

(2014).
[8] Nathan L Binkert et al. 2006. Integrated network interfaces for high-bandwidth

TCP/IP. ACM Sigplan Not. 41, 11 (2006), 315–324.
[9] Henri Casanova et al. 2014. Versatile, Scalable, and Accurate Simulation of

Distributed Applications and Platforms. J. Parallel and Distrib. Comput. 74, 10
(June 2014), 2899–2917. http://hal.inria.fr/hal-01017319

[10] Greg Casey. 2018. Gen-Z: High-performance interconnect for the data-centric
future. https://www.opencompute.org/files/OCP-GenZ-March-2018-final.pdf

[11] Eric G. 2014. What public disclosures has Intel made about Knights Land-
ing? Retrieved June 7, 2019 from https://software.intel.com/en-us/articles/
what-disclosures-has-intel-made-about-knights-landing

[12] Ali Ghiasi et al. 2012. Investigation of PAM-4/6/8 signaling and FEC for 100 Gb/s
serial transmission. IEEE P802. 3bm 40 (2012).

[13] Adrian Jackson et al. 2019. Evaluating the Arm Ecosystem for High Performance
Computing. In Proc. of the Platform for Advanced Scientific Computing Conf.ACM.

[14] Anuj Kalia et al. 2016. Design Guidelines for High Performance {RDMA} Systems.
In 2016 {USENIX} Annual Technical Conf. ({USENIX}{ATC} 16). 437–450.

[15] Patrick Kennedy. 2018. Cavium ThunderX2 Review and Benchmarks a Real Arm
Server Option. Retrieved June 7, 2019 from https://www.servethehome.com/
cavium-thunderx2-review-benchmarks-real-arm-server-option/

[16] Steen Larsen et al. 2015. Reevaluation of PIO with write-combining buffers to
improve I/O performance on cluster systems.. In NAS. 345–346.

[17] Guangdeng Liao et al. 2009. Performance measurement of an integrated NIC
architecture with 10GbE. In 2009 17th IEEE Symp. on High Perf. Inter. IEEE, 52–59.

[18] Arm Ltd. 2019. ARMv8-A Memory types. Retrieved June 7, 2019 from https:
//developer.arm.com/docs/100941/latest/memory-types

[19] Rolf Neugebauer et al. 2018. Understanding PCIe performance for end host
networking. In Proc. of the 2018 Conf. of the ACM Special Interest Group on Data
Communications. ACM, 327–341.

[20] Nikela Papadopoulou et al. 2017. A performance study of UCX over InfiniBand.
In Proc. of the 17th IEEE/ACM Intl. Symp. on Cluster, Cloud and Grid Computing.
IEEE Press, 345–354.

[21] Ken Raffenetti et al. 2017. Why is MPI so slow?: Analyzing the fundamental
limits in implementing mpi-3.1. In Proc. of the Intl. Conf. for High Performance
Computing, Networking, Storage and Analysis. ACM, 62.

[22] Stephen M Rumble et al. 2011. It’s Time for Low Latency.. In HotOS, Vol. 13.
11–11.

[23] Pavel Shamis et al. 2015. UCX: an open source framework for HPC network APIs
and beyond. In 2015 IEEE 23rd Ann. Symp. on High-Perf. Inter.. IEEE, 40–43.

[24] Phil Sun. 2017. 100Gb/s Single-lane SERDES Discussion. IEEE P802.3 New Ethernet
Applications Ad Hoc (2017).

[25] Rajeev Thakur et al. 2010. MPI at Exascale. Proc. of SciDAC 2 (2010), 14–35.

https://teledynelecroy.com/protocolanalyzer/pci-express/summit-t3-16-analyzer
https://teledynelecroy.com/protocolanalyzer/pci-express/summit-t3-16-analyzer
http://www.mellanox.com/solutions/hpc/top500.php
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/open/ucx/wiki/Profiling
http://hal.inria.fr/hal-01017319
https://www.opencompute.org/files/OCP-GenZ-March-2018-final.pdf
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
https://www.servethehome.com/cavium-thunderx2-review-benchmarks-real-arm-server-option/
https://www.servethehome.com/cavium-thunderx2-review-benchmarks-real-arm-server-option/
https://developer.arm.com/docs/100941/latest/memory-types
https://developer.arm.com/docs/100941/latest/memory-types

	Abstract
	1 Introduction
	2 Background
	3 Evaluation setup
	4 Breakdown of the Lower Level
	4.1 Breakdown of the LLP
	4.2 Injection overhead
	4.3 Latency

	5 Breakdown of the Higher Level
	6 The Complete Picture
	7 Simulated Optimizations
	7.1 On-node optimizations
	7.2 Off-node optimizations

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

