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ABSTRACT
Driven by stringent delay requirements of mobile applications, the

mobile edge cloud has emerged as a major platform to offer low

latency network services from the edge of networks. Most con-

ventional network services are implemented via hardware-based

network functions, such as firewalls and load balancers, to guar-

antee service security and performance. However, implementing

such hardware-based network functions incurs high purchase and

maintenance costs. Network function virtualization (NFV) as a

promising technology exhibits great potential to reduce the pur-

chase and maintenance costs by implementing network functions

as software in virtual machines (VMs). In this paper, we consider a

fundamental problem of NFV-enabled multicasting in a mobile edge

cloud, where each multicast request requires to process its traffic in

a specified sequence of network functions (referred to as a service

chain) before the traffic from a source to a set of destinations. We

devise a provable approximation algorithm with an approximation

ratio for the problem if requests do not have delay requirements;

otherwise, we propose an efficient heuristic for it. We also evaluate

the performance of the proposed algorithms against the state-of-

the-art NFV-enabled multicasting algorithms, and results show that

our algorithms outperform their counterparts.
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1 INTRODUCTION
Data traffic in the mobile edge has been increasing dramatically due

to abundant multimedia data and data generated from various appli-

cations, such as social networks and Internet-of-Things (IoT). Such

data traffic usually needs to be transferred to multiple subscribers,

which is referred to asmulticasting. It however places a great strain
on the network, by not only requiring various network functions

such as firewalls, Intrusion Detection Systems (IDSs), proxies, and

WAN optimizers, to guarantee the data transfer security, but also

having stringent Quality-of-Service (QoS) requirements to make

sure that the traffic is transferred on time. The emerging technique

of Mobile Edge Cloud (MEC) [4, 10, 11, 13, 17, 19, 23, 30, 31, 33]

enables the provisioning of low-latency and inexpensive resources

for multicasting within the proximity of users in edge of networks.

Also, Network Function Virtualization (NFV) utilizes virtualization

technology to reduce dependency on underlying hardware by mov-

ing network functions from dedicated hardware to virtual machines

(VMs) that can run on commodity hardware, thereby reducing the

maintenance cost. In this paper, we consider NFV-enabled multi-

casting in a mobile edge cloud, where each user request requires to

forward its traffic to pass a sequence of network functions, referred

to as service chains, before reaching its destinations.

Implementing NFV-enabled multicast requests in mobile edge

clouds poses many challenges. The first challenge is that a mobile

edge cloud usually has limited computing resource in implement-

ing VNFs of service chains. Allowing multicast requests to share

existing VNF instances can significantly improve the resource uti-

lization of the mobile edge cloud. It however requires strategic

selections of existing VNF instances or creating new VNF instances.

Careless selection or instantiation of VNF instances can lead to

low resource utilizations in the mobile edge cloud. That is, how to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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find appropriate cloudlets for the VNFs of a service chain of a re-

quest such that its implementation cost is minimized while meeting

its end-to-end delay requirement? Which existing VNF instances

can be used for which request? The second challenge is that each

NFV-enabled multicast request usually has a QoS requirement to

guarantee its traffic reaching its destinations within the specified

end-to-end delay requirement. How to meet the end-to-end delay

requirement of each admitted NFV-enabled multicast request is

challenging. The third challenge is that each service chain consists

of a sequence of VNFs, and where such VNFs can be placed and

how should the placed VNFs be chained together, given that the

computing resource of each cloudlet is limited. How to jointly route

the traffic of each request and place VNF instances into the mobile

edge cloud?

Existing studies on multicasting usually focus on conventional

networks or software-defined networks, without considering the

service chain requirements of requests [12, 13, 34]. The solutions

of these studies thus cannot be applied to NFV-enabled multicas-

ting directly, due to lack of efficient methods of jointly finding

locations for VNFs and routing paths for the request. There are a

few recent studies on NFV-enabled multicasting. They however

did not consider the delay requirements of multicast requests [26],

assumed that only one instance is used for each VNF of the service

chain [34], or the VNFs in each service chain are consolidated into a

single location [31]. This unfortunately may increase the cost/delay

of implementing NFV-enabled multicast requests. The reason is

that placing VNFs into multiple cloudlets allows the selection of

cloudlets that can achieve lower costs/delays.

Themain contributions of this paper are as follows.We first study

the problem of NFV-enabled multicasting problem in a mobile edge

cloud with cloudlet being deployed, our objective is to minimize

the implementation cost of each NFV-enabled multicast request.

Specifically, for a NFV-enabled multicast request, we assume that

each cloudlet has sufficient computing resource to accommodate

the request. We devise the very first approximation algorithm with

an approximation ratio for it by a novel reduction of the problem

without end-to-end delay requirements to a Steiner tree problem.

We also propose an efficient heuristic for NFV-enabled multicasting

problem with the end-to-end delay requirements of requests. We fi-

nally evaluate the performance of the proposed algorithms through

experimental simulations. Experimental results demonstrate that

the proposed algorithms outperform existing algorithms.

The rest of the paper is organized as follows. Section 2 reviews

the related work. Section 3 introduces the system model, nota-

tions, and problem definition. Section 4 devises an approximation

algorithm for the NFV-enabled multicasting problem without end-

to-end delay requirements in a mobile edge cloud, and proposes an

efficient heuristic for the problem with delay requirements through

using the proposed approximation algorithm as a subroutine. Sec-

tion 6 evaluates the performance of the proposed algorithms by

experimental simulation, and Section ?? concludes the paper.

2 RELATEDWORK
Recently traffic steering in NFV-enabled networks has attracted

much attention from the literature [3, 4, 10, 11, 13, 17, 19, 23, 30, 31,

33]. Most of these studies investigated unicasting between pairs of

nodes. For example, Moens et. al. [23] focused on hybrid networks

with both hardware and software network functions. Yu et. al [21]
investigated the profit maximization of placing VNFs into a set

of locations, and they considered the delay requirement of each

unicast request. Also, Xu et. al. [29] studied the offloading of delay-

sensitive tasks with network function requirements in a mobile

edge cloud network by proposing efficient heuristics and an online

algorithm with a competitive ratio. Although there exist studies

that consider the delay requirements of user requests [16, 21, 29],

they only consider unicast requests and their solutions cannot be

applied to the NFV-enabled multicasting problem. Recently, Chen

and Wu [3] devised a series of innovative algorithms for the VNF

placement. Their algorithms show great potential in balancing the

set-up and bandwidth consumption costs, thereby minimizing the

cost of implementing NFV-enabled unicast requests.

There are studies on multicasting in conventional wired or wire-

less networks [1, 24]. Recently, with the emerging of new network-

ing technologies such as mobile edge computing, software-defined

networking (SDN) and NFV, multicasting has re-gained the atten-

tion by the research community [12, 13]. For example, Huang et
al. [13] studied online multicasting in software-defined networks

with both node and link capacity constraints. Huang et al. [12] stud-
ied the scalability problem of multicasting in SDNs, by proposing an

efficient algorithm to find a branch-aware Steiner Tree for each mul-

ticast request. These solutions however cannot be directly applied

to the problem of NFV-enabled multicasting in mobile edge clouds,

because they did not consider the service chain requirements of

multicast requests.

Studies that investigated NFV-enabled multicasting include [26,

27, 31, 34]. For instance, Zhang et al. [34] investigated the NFV-

enabled multicasting problem in an SDN without resource capaci-

ties, assuming that data traffic of each multicast request can only

be processed by one server. Xu et al. [31, 32] considered the NFV

multicasting problem by assuming the traffic of each request can

be processed by multiple servers, with the objective to minimize

the implementation cost. Approximation and online algorithms are

proposed. They however assumed that the VNFs in each service

chain is consolidated into a single data center. Ren et al. [26] inves-
tigated the problem of embedding a service graph that consisting

of VNF instances into a substrate network. This study assumed that

the traffic of each multicast request can be processed by multiple

instances of the VNFs in its service chain. An approximation al-

gorithm with an approximation ratio of 1 + ρ is proposed, where

ρ is the best approximation ratio of Steiner tree problem. Soni et
al. [27] proposed a scalable multicast group management scheme

and a load balancing method for the routing of best-effort traffic

and bandwidth-guaranteed traffic. These studies did not consider

the end-to-end delay requirement of each multicast request.

3 PRELIMINARIES
In this section, we first introduce the system model, notations and

notions. We then define the problems precisely.

3.1 System model
We consider a mobile edge cloudG = (V ,E) with a setV of switches,

a set C of cloudlets that can implement various network functions
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as software in VMs, and a set E of links between switches and the

cloudlets. Each cloudlet is attached to a switch in V via optical

fibers, and the communication delay between a switch and its at-

tached cloudlet is negligible. Let VCL be the set of switches with

attached cloudlets, clearly,VCL ⊆ V . Cloudlets are usually deployed

in shopping malls, airports, or base stations. Due to the space limita-

tions of installing cooling equipments in those places, each cloudlet

is usually equipped with limited number of servers and thus has

limited computing resource to implement VNF instances. Denote

by Cv the computing capacity of the cloudlet attached to a switch

node v ∈ VCL . In addition, transferring data through links in E
incurs communication latencies. Let de be the delay of transmitting

a unit data traffic via link e ∈ E. We assume that there is an SDN

controller that both makes traffic steering decisions and manages

network function instances that run on a server in the mobile edge

cloud G. Fig. 1 is an illustrative example of a mobile edge cloud.

Figure 1: A cloud network G with a set V =

{v1,v2,v3,v4,v5,v6} of SDN switches and a subset
VCL = {v1,v2,v6} of switches with attached cloudlets.

3.2 NFV-enabled multicast requests and service
chains

ANFV-enabledmulticast request is a request that transfers an amount

of data traffic from a source to a given set of destinations and re-

quires the traffic being processed by a sequence of VNFs before

reaching its destinations. Let rk be a NFV-enabled multicast request,

which is denoted by a quadruple rk = (sk ,Dk ;bk , SCk ), where
sk ∈ V is the source, Dk is the set of destinations with Dk ⊆ V ,
bk is the size of its data traffic, and SCk is the service chain of rk
that consists of a sequence of VNFs. Without loss of generality, we

assume that the data traffic bk of each request rk is given, as it

usually can be obtained from historical information. Let F be the

set of network functions that are provided by the network service

provider in the mobile edge cloud G. A network function fl ∈ F
can be needed by request rk to form its service chain SCk . Assume

that there are Lk network functions in SCk , where 1 ≤ l ≤ Lk for

each SCk and SCk ⊂ F . We further assume that there is a number

of already instantiated VNF instances for each type of network

function fl in cloudlets of the mobile edge cloud G. Due to the re-

source capacity constraints of the cloudlets, we allow the instances

of VNF fl can be shared among different requests.

To implement request rk , we need to enforce every data packet in
its traffic from the source sk of rk to go through an instance of each

network function fl ∈ SCk in its service chain prior to reaching its

destinations in Dk , as illustrated in Fig. 2. To this end, an instance

must be selected for each VNF fl ∈ SCk , or a new instance of fl
must be instantiated in a cloudlet ofG. Without loss of generality,

we assume that existing or newly created instances of VNFs of SCk
can be placed in multiple cloudlets, because a single cloudlet may

not have all the instances of the VNFs in SCk or there is inadequate

computing resource in a cloudlet to create new instances for all

VNFs in SCk .
Each multicast request needs an amount of computing resource

to process its traffic. Let Cunit ( fl ) be the amount of computing

resource needed to process a unit amount of its data rk . If fl is
implemented in a newly created instance of fl , the total amount of

computing resource that should be assigned to the new instance is

Cunit ( fl ) · bk . Otherwise, an existing instance of fl should have at

least an amount Cunit ( fl ) · bk of available computing resource to

process the traffic of rk . Notice that we assume that the accumu-

lative available resources in the cloudlets of G are higher then the

total resource demand of a single request rk ; however, for a specific
cloudlet inVCL , it may not have enough amount of resource that is

demanded by rk .

Figure 2: A service chain ⟨ NAT, Firewall, IDS ⟩ with one in-
stance of NAT and two instances of Firewall and IDS.

3.3 Delay requirements of multicast requests
The experienced delay of each NFV-enabled multicast request con-

sists of the total processing delay in the selected cloudlets and

the total transfer delay from the source to cloudlets and from the

cloudlets to the destinations, which are defined in the following.

Processing delay: The processing delay experienced by a mul-

ticast request rk depends on both the amount of data traffic that

needs to be processed and the computing resource assigned to

process the traffic. Without loss of generality, we assume that the

processing delay d
p
k,l of each multicast request rk by VNF fl is

proportion to the amount of traffic it needs to process, i.e.,

d
p
k,l = αl · bk , (1)

where αl is a given proportional factor of VNF fl and bk is size

of data traffic of request rk . The accumulative processing delay

incurred due to the traffic processing by network functions in SCk
of rk thus is

d
p
k =
∑

fl ∈SCk
d
p
k,l . (2)

Transmission delay: Let Pk be the set of routing paths from

source sk to destinations in Dk , with each path pm ∈ Pk denotes

a routing path from sk to destination tm ∈ Dk . The transmission

delay of each rk is the maximum end-to-end delay incurred in the

paths in Pk . Denote by dtk the transmission delay of request rk ,
which can be defined as,

dtk = argmaxpm ∈Pk

∑
e ∈pm

de · bk . (3)
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The delay experienced by multicast request rk thus is

dk = d
p
k + d

t
k , (4)

which needs to be no greater than its specified delay requirement

Dk , i.e.,

dk ≤ Dk . (5)

3.4 Cost models
As the network service provider that operates its mobile edge cloud

G charges each admitted multicast request on a pay-as-you-go

basis, the major concern of the service provider is its operational
cost, which usually consists of computing resource usage costs

in cloudlets, bandwidth resource usage costs in links, and VNF

instance instantiation costs. Let c (e ) and c (v ) be the usage costs
of one unit of bandwidth and computing resources at link e ∈ E
and cloudlet v ∈ VCL , respectively. Denote by cl (v ) the cost of

instantiating an instance of network function fl in cloudletv ∈ VCL ,
and let n′l,v be the number of newly created instances for network

function fl in cloudlet v .
The operational cost of the admission of multicast request rk

thus is

ck =
∑

fl ∈SCk

∑
v ∈VCL

(
yk,l,v ·

(
c (vfl ,rk ) · bk + cl (vfl ,rk )

)
+ n′l,v · cl (v )

)
+
∑
e ∈Tk

c (e ) · bk .
(6)

3.5 Problem definition
Given a mobile edge cloud (MEC) G = (V ,E) with a set VCL of

cloudlets with VCL ⊂ V , and a set of multicast requests R in which

each multicast request rk is represented by (sk ,Dk ;bk , SCk ), as-
suming that each multicast request can be implemented using the

computing resources assigned to existing VNF instances, the NFV-
enabled multicasting problem in mobile edge cloudG is to route the

traffic of request rk to each destination in Dk by chaining either

existing or newly created instances of VNF in different cloudlets,

such that the operational cost (i.e., Eq.(6)) of the implementation of

rk is minimized, while meeting the end-to-end delay requirement

Dk of rk and the capacity constraint on each cloudlet v ∈ VCL .
The NFV-enabled multicasting problem is NP-hard, as its special

case – the traditional multicast problem without NFV service chain

constraints is NP-hard [5].

4 ALGORITHMS FOR THE NFV-ENABLED
MULTICASTING PROBLEM IN AN MEC

In this section we deal with the NFV-enabled multicasting problem.

We first devise an approximation algorithm for the problemwithout

delay requirements. We then propose an efficient heuristic for the

problem by incorporating the end-to-end delay requirement.

4.1 An approximation algorithm for the
problem without delay requirements

The basic idea of the proposed approximation algorithm is to reduce

the problem in a sub-network ofG to the Steiner tree problem in an

auxiliary graphG ′, via a non-trivial reduction. Since each cloudlet

v ∈ VCL has computing capacity to implement the VNFs of each

request, the VNFs in each service chain SCk can be implemented in

multiple cloudlets or consolidated into a single cloudlet to save the

communication cost due to the transmissions between cloudlets. To

guarantee that each cloudlet has sufficient computing resource to

implement the VNFs in SCk of each multicast request rk , we adopt
a conservative method of reserving

∑
fl ∈SCk bk ·Cunit ( fl ) resource

for rk in each cloudlet. The cloudlet with an amount of available

computing resource that is less than

∑
fl ∈SCk bk ·Cunit ( fl ) will be

removed from the networkG, where the available resource in idle

VNF instances are also accounted.

The construction of auxiliary graph G ′ = (V ′,E ′):We now

construct the auxiliary graphG ′ based on the sub-network ofG . To
this end, we start by constructing the node setV ′ ofG ′. Specifically,
we first add source node sk into the auxiliary graph. We also add

each node inV intoV ′, i.e.,V ′ ← V ′∪V . Notice that, sinceVCL ⊂ V ,

all switch nodes in VCL are added into V as well. However, only

their functionalities of forwarding traffic will be used.

A multicast request can share the computing resource that is

assigned to an existing idle VNF instance, as long as its assigned

computing resource is larger than the amount demanded by rk , i.e.,
Cv ( fl ) ≥ Cunit ( fl ) · bk . Or, VNFs in SCk of multicast request rk
can be assigned to newly instantiated VNF instances. To determine

whether we make use of existing VNF instances or creating new

ones, we create a widget for each cloudlet v ∈ VCL and network

function fl ∈ SCk to represent the resource availability of the

cloudlet v for fl by two cases: case 1: the amount of available

computing resource to instantiate new instances of VNFs; case 2:
existing VNF instances of fl inv ∈ VCL that are available to process

the traffic of rk .
For case 1, we add a pair of virtual VNF nodes into the widget,

to represent each of existing VNF instances of fl with sufficient

computing resource processing the data traffic of rk in cloudlet

v ∈ VCL . Denote by f ′i,l,v and f ′′i,l,v the pair of virtual VNF nodes

for the ith VNF instance of fl in cloudlet v ∈ VCL . We then add

an edge from f ′i,l,v to f ′′i,l,v into the widget. The weight of edge

⟨f ′i,l,v , f
′′
i,l,v ⟩ is the cost of processing a unit traffic by an existing

VNF instance of fl in cloudlet v , i.e.,w ( f ′i,l,v , f
′′
i,l,v ) = c (vfl ,rk ).

For case 2, we add a pair of virtual cloudlets for each cloudlet

v ∈ VCL into each widget to denote the amount of available com-

puting resource to instantiate a new instance of fl in cloudlet v , as
shown in Fig. 3. Let v ′k,l and v

′′
k,l be such a pair of virtual cloudlets

for the lth VNF and cloudlet v . To make sure the processing and

transmission costs are considered jointly, we connect each pair

of virtual cloudlets, v ′k,l and v ′′k,l , i.e., E
′ ← E ′ ∪ {⟨v ′k,l ,v

′′
k,l ⟩}.

The weight of edge ⟨v ′k,l ,v
′′
k,l ⟩ is the sum of the instantiation

cost of VNF fl and the cost of processing a unit traffic by the

lth VNF in SCk for each multicast request rk in cloudlet v . That is,

w (⟨v ′k,l ,v
′′
k,l ⟩) =

cl (v )
bk
+ c (vfl ,rk ).

We also add a widget source nodewsl,v and a widget destination
nodewdl,v for the widget for network function fl and cloudlet v ∈
VCL . Nodewsl,v is connected to nodev ′k,l and the node f

′
l for each

existing instance of network function fl that has enough computing

resource to process the data traffic of rk . In addition, node v ′k,l and

node f ′l for each existing instance of network function fl are both
connected with the widget destination node wdl,v . The weights
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of those edges are set to zeros. It must be mentioned that widget

source and destination nodes are used to guarantee that either a

new instance for fl is created or an existing VNF instance of fl is
selected to process the traffic of rk , which will be proved in the

algorithm analysis part.

The widgets are then added into the auxiliary graph G ′.

Figure 3: An example of the widget for the VNF fl in SCk and
cloudlet v ∈ VCL

We then connect the constructed widgets and other nodes in the

auxiliary graph G ′ as follows.

• sk to widget source nodes: There is an edge from source

node sk to each widget source nodewsl,v of the widget for

the first VNF f1 of SCk and every v ∈ VCL . The weight of
edge ⟨sk ,wsl,v ⟩ is set as the transmission cost of data traffic

of rk
• widget destination to widget source nodes: Since the

data traffic of rk may be processed by multiple cloudlets,

there is an edge from the widget destination node of each

widget for network function fl to the widget source node

of each widget for VNF fl+1, for each l with 1 ≤ l ≤ Lk − 1,
i.e., E ′ ← E ′ ∪ {⟨wdl,v ,wsl+1,u ⟩} for l with 1 ≤ l ≤ Lk − 1
and v , u in VCL . The weight of edge ⟨wdl,v ,wsl+1,u ⟩ is the
transmission cost of a unit traffic along the shortest path

from cloudlet v to cloudlet u
• widget destinations of fLk to cloudlet nodes: We finally

connect each of the widgets that are created for the last

VNF fLk ∈ SCk with the cloudlet node. Specifically, there

is an edge from node wdLk ,v to cloudlet node u in V ′, i.e.,
E ′ ← E ′ ∪ {⟨wdLk ,v ,u⟩}. The weight of edge ⟨wdLk ,v ,u⟩ is
the transmission cost of a unit traffic along the shortest path

from cloudlet v to cloudlet u.

An example of the constructed auxiliary graph is shown in Fig. 4.

Problem transformation:Wenow reduce the original problem

of G into the Steiner tree problem in the auxiliary graph G ′. Recall
that in the construction ofG ′, the VNF processing and transmission

costs are considered as the weights of edges. We thus find a Steiner

tree that spans nodes in {sk }∪Dk of the auxiliary graphG ′. We then

transfer the Steiner tree in auxiliary graph G ′ to routing paths for

rk in the original network G. Specifically, if a widget for fl ∈ SCk
of and cloudlet v ∈ VCL is included in the Steiner tree, either a

newly created instance or an existing one in cloudlet v will be

used to implement fl , depending on which edge of the widget is

included in the Steiner tree. Notice that the edges among widgets in

G ′ correspond to the shortest paths of their endpoints of the edges

in the original networkG . We thus replace each of such edges with

its shortest path in G. Notice that if there is cloudlet node along
the shortest path, only its forwarding functionality will be adopted,

and the traffic will not be forwarded to it for processing.

Algorithm 1 Appro_NoDelay

Input: G = (V , E ), VCL , computing capacity Cv for each cloudlet v ∈
VCL , and a multicast request rk = (sk , Dk ;bk , SCk ).

Output: The locations for the VNFs of service chain SCk of multicast

request rk and the multicast tree Tk to transfer its data.

1: Construct an auxiliary directed graphG′ = (V ′, E′), as shown in Fig. 4;

2: Find a directed Steiner tree T in G′ that spans nodes in {sk } ∪ Dk ,

using Charikar’s algorithm [2];

3: For each path from the widget source node to the widget destination

node of a widget in T , condense the path to a single node;

4: Replace each of all other edges in T with its corresponding shortest

path in network G ; /*The edges among widgets correspond to shortest

paths in the original network G . */

4.2 A heuristic algorithm for the problem
So far, the proposed algorithm does not consider the delay require-

ment of each multicast request rk . We now propose a heuristic for

the NFV-enabled multicasting problem, by using Algorithm 1 as a

subroutine. For each multicast request rk , the proposed algorithm

first ignores the delay requirement of rk and invokes Algorithm 1

to find routing paths for the request to multicast its traffic to desti-

nations in Dk . The obtained solution however may not meet the

delay requirement of multicast request rk .
We then adjust the obtained solution to make sure the end-

to-end delay requirement is met. To this end, we observe that a

longer delay will incur if the VNFs of SCk are implemented in more

cloudlets, because the data transfer among different cloudlets in-

curs delay. However, putting all VNFs into a single cloudlet may

also incur a longer delay, since the selected cloudlet may be far

away from the destinations of multicast request rk . We thus find

an appropriate number of cloudlets to implement the VNFs in SCk ,
by adopting binary search to find a proper number. Specifically,

let n′k be the number of cloudlets that are used to implement the

VNFs in SCk in the current infeasible solution, and denote by nk the

appropriate number of cloudlets in the feasible solution. We first set

nk = ⌊
|VCL |+1

2
⌋. The proposed algorithm first tries to re-assign the

VNFs in SCk such that they are implemented in exactly nk cloudlets.

If nk < n′k , we identify a number of (n′k − nk ) cloudlets that im-

plements VNFs of SCk in the obtained infeasible solution from the

Steiner tree in G ′ and have the longest average data transfer delay

from it to the destinations in Dk . Let F
′
be the set of instances of

VNFs in SCk that are implemented in the identified cloudlets. The

VNFs in F ′ are pre-consolidated to the rest nk cloudlets inV ′ one by
one, by selecting a cloudlet with the lowest implementation cost for

each fl ∈ Fv ′ . If the pre-consolidation makes the delay requirement

of rk being met, the algorithm terminates with a feasible solution.

Otherwise, if the experienced delay of rk is reduced but still greater
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Figure 4: An example of the auxiliary graphG ′ = (V ′,E ′) with two servers attached at nodev and node u and multicast request
rk transfer its data to destinations in Dk = {d1,d2}.
than its requirement, we continue the above procedure by searching

the appropriate number of cloudlets in the range of [1,nk ]. Instead,
if the experienced delay is increased, we try to find the appropriate

value for nk in the range of [nk , |VCL |]. This means increasing the

number of cloudlets for rk may reduce the experienced delay of

multicast request rk . On the other hand, if nk > n′k , we need to find

the additional nk − n
′
k cloudlets that have the lowest implementa-

tion cost for VNFs of rk , and pre-assign VNFs in F ′ to the cloudlets

one by one. The above binary search procedure continues until a

feasible solution is obtained or the multicast request is rejected.

4.3 Algorithm analysis
We analyze the solution feasibility and performance of the proposed

algorithms.

We first show the feasibility of the algorithm 1. Intuitively, if

a solution to the NFV-enabled multicasting problem for a single

multicast request is feasible, it needs to satisfy the following condi-

tions:

• condition (1): each VNF fl ∈ SCk will be assigned to one

or multiple cloudlets by either creating a new instance or

using an existing instance

• condition (2): the traffic of rk will be processed by VNFs as

the specified order in SCk
• condition (3): the processed traffic by the VNFs in SCk is

forwarded to destinations in Dk of rk .

For condition (1), we show that in each of the selected cloudlets

for fl , either a new instance is created or an existing instance is

selected for it, in the following lemma.

Lemma 1. If a cloudlet v ∈ VCL is selected for VNF fl ∈ SCk
of multicast request rk , either an existing instance of fl or a newly
created instance is used to process the traffic of rk .

Proof. According to the construction of auxiliary graph G ′,
showing the feasibility is to show that if the Steiner tree found in

auxiliary graphG ′ has one path fromwsl,v towdl,v of each selected

widget in it, the path will be the only path in the Steiner tree, and no

other paths in the widget will be included. LetWl,v be the widget

that is built for network function fl in cloudlet v ∈ VCL . Assume

Algorithm 2 Heu_Delay

Input: G = (V , E ), VCL , computing capacity Cv for each cloudlet v ∈
VCL , and a multicast request rk = (sk , Dk ;bk , SCk ) and its delay

requirement dr eqk .

Output: The locations for the VNFs of service chain SCk of multicast

request rk and the multicast tree Tk to transfer its data.

1: Find a multicast tree for rk without considering its delay requirement

dr eqk , by invoking algorithm 1;

2: Let n′k be the number of cloudlets that are used to implement VNFs in

SCk ;
3: nmin ← 1;

4: nmax ← |VCL |;
5: while nmin <= nmax do
6: nk ← ⌊

nmin+nmax
2

⌋;

7: if nk < n′k then
8: Identify the number of n′k − nk cloudlets that implements VNFs

of SCk in the obtained solution from the Steiner tree in G′ and
has the top-( n′k − nk ) highest average data transfer delays from
it to the destinations in Dk ;

9: Move the VNFs that were implemented in the n′k − nk cloudlets

of the infeasible solution to the rest cloudlets one by one.

10: else
11: Find the additional nk − n′k cloudlets that have the lowest im-

plementation cost for VNFs of rk , and assign VNFs in Fv ′ to the

cloudlets one by one.

12: end if
13: if the experienced delay of rk is met then
14: return;

15: else
16: if the experienced delay of rk is decreased then
17: nmax ← nk ;
18: else
19: nmin ← nk ;
20: end if
21: end if
22: end while

that widgetWl,v is included into the Steiner tree for the subgraph,

and let p be the path from wsl,v to wdl,v of Wl,v in G ′ that is
included in the Steiner tree. We prove by contradiction. Assume

that there is another instance (either newly created or existing one)
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of fl is used to process the traffic of rk . Let the ith instance of fl
be such an additional instance. This means that edge ⟨f ′i,l,v , f

′′
i,l,v ⟩

has to be included in the Steiner tree found in G ′. To this end,

edges ⟨wsl,v , f
′
i,l,v ⟩ and ⟨f

′′
i,l,v ,wdl,v ⟩ have to included, according

to the structure of the widget; otherwise, edge ⟨f ′i,l,v , f
′′
i,l,v ⟩ is

a standalone edge that can be removed. Let p′ be the path that

consisting of edges ⟨wsl,v , f
′
i,l,v ⟩, ⟨f

′
i,l,v , f

′′
i,l,v ⟩, and ⟨f

′′
i,l,v ,wdl,v ⟩,

as shown in Fig. 5. Paths p′ and p however make it not a tree.

Therefore, only one path from wsl,v to wdl,v will be included in

Figure 5: A widget and its paths from its source to destina-
tion nodes that are selected in the Steiner tree.

the Steiner tree for the subgraph of G ′ that is composed of source

node sk and the widgets, meaning that a newly created or existing

instance of fl will be selected in cloudlet v ∈ VCL . The lemma

holds. □

We condition (2) in the following lemma.

Lemma 2. The traffic of rk will be processed by the VNF instances
in SCk in the specified order.

Proof. Assume that the traffic of rk is not processed by the

specified order in SCk . We have the following two cases: (1) two

instances of the same VNF fl processed the traffic, and (2) the traffic

of rk is processed by a previous VNF fl−1 after being processed by

fl .
For case (1), the two instances must be in different cloudlets as

shown in Lemma 1. This means that two widgets of the same VNF

fl is selected in the Steiner tree inG
′
. According to the construction

of G ′ and Lemma 1, if the instances of fl in two cloudlets are used,

the source and destination nodes of the corresponding two widgets

have to be included in the Steiner tree in G ′; otherwise, the edges
will be standalone edges that can be removed from the Steiner tree.

Therefore, according to the problem transformation method of the

algorithm, this will correspond to the processing of rk ’s traffic by

two instances of fl in different cloudlets, rather than a sequence

processing of the two instances. Similarly, for case (2), if the Steiner

tree includes a widget for fl−1, it has to include the source and

destination nodes of the widget, which actually means a sequence

process of the traffic by fl−1 and fl . Therefore, these two cases are

not possible according to the construction ofG ′ and the problem

transformation methods.

In addition, since each edge in G ′ may correspond to a shortest

path in G, making the traffic being forwarded to a cloudlet more

than once. this does not mean that the traffic is to be processed by

the cloudlet twice. This is because we assume in such cloudlets will

just forward the traffic instead of processing.

We thus conclude that the traffic of rk will be processed by the

VNFs in the specified order in SCk . □

We now show condition (3) as follows.

Lemma 3. The traffic of rk will be forwarded to its destinations in
Dk after being processed by the instances of its VNFs in SCk .

Proof. In the construction of the auxiliary graphG ′, we can see

that the destination nodes of the widgets for the last VNF fLk is

connected to its corresponding switch node in the original network.

For eachWLk ,k of such widgets, if its edges are included in the

Steiner tree, edge ⟨wdLk ,k ,v⟩ has to be included in the Steiner tree.

The reasons include (1) this is the only edge to the destination

nodes in Dk , and (2) as shown in Lemma 2, the traffic cannot be

processed sequentially by other cloudlets of the same VNF fLk or

the instances of its previous VNFs in SCk . The lemma holds. □

Theorem 1. Given a mobile edge cloud G = (V ,E) with a set
VCL of cloudlets and a multicast request rk (= (sk ,Dk ;bk , SCk )) that
requires to transfer an amount bk of data from its source to a set Dk
of destinations and process its traffic by the VNFs in SCk . There is an
approximation algorithm, i.e., Algorithm 1, for a special case of the
NFV-enabled multicasting problem without the delay requirement,
which delivers a feasible solution that has an approximation ratio
of i (i − 1) |Dk |

1/i [2], and the time complexity of the approximation
algorithm is O ((Lk · |V | ·

Cv
Cunit (fl )

+ |V |)i · |Dk |
2i ), where Lk is the

number of VNFs in the service chain SCk of multicast request rk , i.e.,
Lk = |SCk |, and i is the level of the directed Steiner tree [2].

Proof. From Lemmas 1, 2, and 3, we know that the solution

obtained by finding a Steiner tree in the auxiliary graph G ′ is feasi-
ble. In the following, we analyze the approximation ratio and the

running time of the proposed approximation algorithm.

Assume c∗ is the optimal solution for the NFV-enabled multicas-

ting problem. In algorithm 1, we find an approximate Steiner tree

T ′ in the auxiliary graph G ′. T ′ is then converted to routing paths

for rk inG by (1) selecting either an existing instance for a network

function or a newly created instance of each VNF fl in SCk if the

widget for fl is included in the Steiner tree, and (2) replacing the

edges between selected widgets using their corresponding shortest

paths in G. In (1), the processing is determined according to which

type of VNF instance is selected. In (2), the replaced auxiliary graph

edge has the same weight as the total cost of its corresponding

shortest path inG . Therefore, the cost do not change in the transfer

from tree T ′ to the multicast tree T for multicast request rk . Since

the approximation ratio of the algorithm in [2] is i (i − 1) |Dk |
1/i

,

the approximation of algorithm 1 is i (i − 1) |Dk |
1/i

as well.

We now show the time complexity of algorithm 1. It can be

seen that the most time consuming part of the algorithm is the

finding of a Steiner tree in the auxiliary graph. The time complex-

ity of Charikar’s algorithm in auxiliary graph G ′ = (V ′,E ′) is

O ( |V ′ |3) [15]. We can see that there are O ( Cv
Cunit (fl )

) instances of

VNF fl in cloudlet v ∈ VCL . According to the construction of the

auxiliary graph, we thus haveO ( Cv
Cunit (fl )

+4) = O ( Cv
Cunit (fl )

) nodes

for eachwidget. In total, we have Lk · |VCL |widgets. Therefore, there
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areO (Lk · |VCL | ·
Cv

Cunit (fl )
+ |V |) nodes in auxiliary graphG ′. The

time complexity thus isO ((Lk · |V | ·
Cv

Cunit (fl )
+ |V |)i · |Dk |

2i ). □

We now show the performance of algorithm 2 in the following

theorem.

Theorem 2. Given a mobile edge cloud G = (V ,E) with a set
VCL of cloudlets and a multicast request rk (= (sk ,Dk ;bk , SCk )) that
requires to transfer an amount bk of data from its source to a set
Dk of destinations with an end-to-end delay requirement dr eqk and
process its traffic by the VNFs in SCk . There is a heuristic algorithm,
i.e., algorithm 2, for the NFV-enabled multicasting problem for a
single multicast request, which delivers a feasible solution in time
O (⌊logVCL+1⌋ · |V |

3+ (Lk · |V | ·
Cv

Cunit (fl )
+ |V |)i · |Dk |

2i ), where Lk
is the number of VNFs in the service chain SCk of multicast request
rk , i.e., Lk = |SCk |, and i is the level of the directed Steiner tree [2].

Proof. We first show the feasibility of the proposed heuristic

by showing that the end-to-end delay requirement of rk is met as

well. Also, algorithm 2 adopts a binary search based heuristic to

find the right number of cloudlets for each multicast request rk
until the end-to-end delay requirement of rk is met or it is rejected.

Therefore, as long as the request is admitted, its end-to-end delay

requirement is met.

We then show the time complexity of the proposed heuristic.

Clearly, in the worse case, the binary search can make ⌊logVCL +1⌋
iterations. Within each iteration, the most time consuming parts

include (1) the identification of cloudlets that involved finding the

delays from cloudlets to destinations in Dk via all pair shortest

paths, which take O ( |V |3) time, and (2) the assignment of VNFs

one by one, taking O ( |SCk |) time. In total, the time complexity of

the proposed heuristic isO (⌊logVCL + 1⌋ · |V |
3 · |SCk | + (Lk · |V | ·

Cv
Cunit (fl )

+ |V |)i · |Dk |
2i ) = O (⌊log |V |+1⌋ · |V |3+(Lk · |V | ·

Cv
Cunit (fl )

+

|V |)i · |Dk |
2i ), assuming that |SCk | is a small constant. □

5 SIMULATIONS
In this section we evaluate the performance of the proposed algo-

rithms through experimental simulation.

5.1 Environment settings
We consider a cloud network consisting of 50 to 250 nodes, where

each network is generated using a graph generation tool GT-ITM [7].

The number of servers in each network is set to 10% of the net-

work size, and they are randomly co-located with switches. We also

use real network topologies, i.e., GÉANT [6] and an ISP network

from [28]. There are nine cloudlets for the GÉANT topology as

set in [8] and the number of data centers in the ISP networks are

provided by [25]. The computing capacity of cloudlet varies from

40,000 to 120,000 MHz [9] (cloudlets with around tens of servers).

Five types of network functions, i.e., Firewall, Proxy, NAT, IDS, and

Load Balancing, are considered, and their computing demands are

adopted from [8, 22]. The source and destination nodes of each

multicast request is randomly generated, the ratio of the maximum

number Dmax of destinations of a multicast request to the network

size |V | is randomly drawn in the range of [0.05, 0.2]. The data of

each request is randomly drawn from [10, 200] Megabyte, and the

delay requirement of transferring such data is randomly generated

from [0.05, 5] seconds . Notice that the transfer of larger amount

of data can be divided into smaller amounts and transferred by

multiple multicast requests. The running time of each algorithm

is obtained based on a machine with a 3.70GHz Intel i7 Hexa-core

CPU and 16 GiB RAM. Unless otherwise specified, these parameters

will be adopted in the default setting.

Benchmark algorithm: We compare the performance of the

proposed approximation and heuristic algorithms with the follow-

ing benchmarks.

• We consider the case where the VNFs of each multicast

request may be placed to multiple cloudlets for processing

while there exist solutions that consolidate all VNFs of a

multicast request into a single location. We thus compare

our solutions with such solutions, which is referred to as

algorithm Consolidated
• We evaluate the performance of the proposed approximation

and heuristic algorithms against the one in [26] that does

not consider the delay requirement of multicast requests,

and we use NoDelay to represent the algorithm

• We also compare the performance of our algorithm against

that of a greedy solution that prefers to select existing VNF

instances for each multicast request rk . Specifically, it finds
the cloudlet that is closest to source node sk and has an

VNF instance for its first VNF in SCk , if there does not

exist such cloudlets a new VNF instance is created in the

cloudlet that is closest. The procedure continues until all

VNFs in SCk are considered. This greedy is referred to as

algorithm ExistingFirst
• Another greedy benchmark prefers to create new instances

for each of the VNFs in SCk , which is referred to as algo-

rithm NewFirst
• The fifth benchmark selects the cloudlet that can achieve

the lowest processing cost for each VNF in SCk . For sim-

plicity, it is referred to as algorithm LowCost. Specifically,
algorithm LowCost finds the cloudlet that is closest to the

source sk and then packs asmanyVNFs in SCk to the cloudlet

until all existing VNF instances are used or no computing

resource available to instantiate new ones. If there are still

VNFs in SCk that are not assigned, algorithm LowCost finds

the next cloudlet that is the closest to the found cloudlets.

5.2 Performance evaluation of
algorithms Appro_NoDelay and Heu_Delay

We first evaluate the performance of algorithm Appro_NoDelay
and Heu_Delay against that of algorithms Consolidated, NoDelay,
ExistingFirst, NewFirst, and LowCost in terms of average opera-

tional cost, average end-to-end delay, and running time, by varying

the network size from 50 to 250 and fixing the number of requests

to 100. Fig. 6 shows the result of the proposed algorithms. From

Fig. 6 (a), we can see that algorithm Heu_Delay achieves the lower

operational cost than algorithms ExistingFirst, NewFirst, and
LowCost. The reason is that algorithm Heu_Delay jointly considers
the use of existing VNF instances and newly instantiated ones. How-

ever, greedy approaches NewFirst, ExistingFirst, and LowCost
only prefers new, existing, or low processing cost VNF instances.
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(a) Average cost of implementing a multicast re-

quest.

(b) Average delay experienced by a multicast re-

quest.

(c) Running times.

Figure 6: The performance of algorithms Appro_NoDelay, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

(a) Average cost of implementing a multicast re-

quest in network AS1755.

(b) Average delay experienced by a multicast re-

quest in network AS1755.

(c) Running times in network AS1755.

(d) Average cost of implementing a multicast re-

quest in network AS4755.

(e) Average delay experienced by a multicast re-

quest in network AS4755.

(f) Running times in network AS4755.

Figure 7: The performance of algorithms Appro_NoDelay, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost in net-
works AS1755 and AS4755.

They unfortunately could miss the opportunities of further reduc-

ing the operational costs if the use of existing VNF instances can

save processing cost, creating new VNF instances in close cloudlets

may save transmission costs, or there exist cloudlets that can save

data transmission costs, respectively. In addition, it can be seen in

Fig. 6 (a) that algorithm Heu_Delay has a higher operational cost
than algorithms Appro_NoDelay and NoDelay. The reason is that

algorithms Appro_NoDelay and NoDelay does not consider the de-

lay requirement of each multicast request, allowing it to choose

cloudlets that can incur lower operational costs. Furthermore, as

shown in Fig. 6 (b), the average delay experienced by each multicast

request by algorithm Heu_Delay is much lower than its counter-

parts. Also, from Fig. 6 (c), we can see that the running time of algo-

rithm Heu_Delay is around 50 seconds for network size 200, which

is larger than those of algorithms Appro_NoDelay and NoDelay and
smaller than ExistingFirst, NewFirst, and LowCost.

We then evaluate the performance of algorithm Appro_NoDelay
and Heu_Delay against that of algorithms Consolidated, NoDelay,
ExistingFirst, NewFirst, and LowCost, in real networks AS1755

and AS4755, by varying the ratio of the number of cloudlets and

the number of switches, i.e., |CL|/|V | from 0.05 to 0.2. Fig. 7 illus-

trate the results. From Fig. 7 (a) and (d), we can see that algorithms

Heu_Delay and Appro_NoDelay achieve lower operational costs

than algorithms Consolidated, ExistingFirst, and NewFirst,
while algorithms Appro_NoDelay and NoDelay has the highest end-
to-end delay for each admitted requests. We can also see that the

average cost of implementing a multicast increases first when the

ratio |CL|/|V | increases from 0.05 to 0.1 and then decreases after-

wards. The rationale behind is that each multicast request may
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be assigned to more cloudlets for processing with the increase of

number of clouds, which increases the transmission cost from its

source to the cloudlets and from the cloudlets to its destinations.

However, with the further increase of cloudlets, it is more likely

these cloudlets are deployed in locations that are close to the source

and destinations of the multicast request. The transmission cost

thus can be further reduced.

5.3 Impact of the maximum delay requirement
We finally investigate the impact of the maximum delay require-

ment of each multicast request on the algorithms performance in

real network AS1755, by varying the maximum delay requirement

of each multicast request from 0.8 seconds to 1.8 seconds with an

increase of 0.2 seconds. It can be seen from Fig. 8 that the cost of

implementing a multicast request is decreasing with the increase

of the maximum delay requirement. The rationale behind is that

a higher delay requirement of a request allows the algorithm to

select cloudlets with lower costs but further from the source node

of the request. Obviously, the experienced delay will be higher, as

shown in Fig. 8.

(a) Average cost of implementing a multi-

cast request.

(b) Average delay experienced by a multi-

cast request.

Figure 8: The impact of the maximum delay requirement of
each multicast request on the performance of algorithms
Appro_NoDelay, Consolidated, NoDelay, ExistingFirst,
NewFirst, and LowCost.

6 CONCLUSION
In this paper, we studied the problem of NFV-enabled multicasting

in a mobile edge cloud, by exploring the sharing of VNF instances

of requests. If cloudlets in the mobile edge cloud have sufficient ac-

cumulative computing resource to process the traffic of a multicast

request while no delay requirement is considered, we proposed an

approximate solution with an approximation ratio that guarantees

how far the solution is from the optimal one; otherwise, we devel-

oped an efficient heuristic. We evaluated the performance of the

proposed algorithms against state-of-the-arts, and the results show

that the performance of our algorithms is promising.
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