
FlowCon: Elastic Flow Configuration for Containerized Deep
Learning Applications

Wenjia Zheng∗
Fordham University
Bronx, NY, USA

wzheng33@fordham.edu

Michael Tynes∗
Fordham University
Bronx, NY, USA

mtynes@fordham.edu

Henry Gorelick
Fordham University
Bronx, NY, USA

hgorelick@fordham.edu

Ying Mao
Fordham University
Bronx, NY, USA

ymao41@fordham.edu

Long Cheng
University College Dublin
Dublin, Republic of Ireland

long.cheng@ucd.ie

Yantian Hou
Boise State University

Boise, ID, USA
yantianhou@boisestate.edu

ABSTRACT
An increasing number of companies are using data analytics to
improve their products, services, and business processes. However,
learning knowledge effectively from massive data sets always in-
volves nontrivial computational resources. Most businesses thus
choose to migrate their hardware needs to a remote cluster com-
puting service (e.g., AWS) or to an in-house cluster facility which
is often run at its resource capacity. In such scenarios, where jobs
compete for available resources utilizing resources effectively to
achieve high-performance data analytics becomes desirable. Al-
though cluster resource management is a fruitful research area
having made many advances (e.g., YARN, Kubernetes), few projects
have investigated how further optimizations can be made specifi-
cally for training multiple machine learning (ML) / deep learning
(DL) models. In this work, we introduce FlowCon, a system which
is able to monitor loss functions of ML/DL jobs at runtime, and thus
to make decisions on resource configuration elastically. We present
a detailed design and implementation of FlowCon, and conduct
intensive experiments over various DL models. Our experimental
results show that FlowCon can strongly improve DL job comple-
tion time and resource utilization efficiency, compared to existing
approaches. Specifically, FlowCon can reduce the completion time
by up to 42.06% for a specific job without sacrificing the overall
makespan, in the presence of various DL job workloads.

CCS CONCEPTS
• Computing methodologies; • Applied computing; • Com-
puter systems organization;

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337868

KEYWORDS
cloud computing, deep learning, containerized application, resource
management, high performance analytics

ACM Reference Format:
Wenjia Zheng, Michael Tynes, Henry Gorelick, Ying Mao, Long Cheng,
and Yantian Hou. 2019. FlowCon: Elastic Flow Configuration for Container-
ized Deep Learning Applications. In 48th International Conference on Parallel
Processing (ICPP 2019), August 5–8, 2019, Kyoto, Japan. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3337821.3337868

1 INTRODUCTION
With the growth of big data from various domains such as the
Web, Internet of Things (IoTs) and Edge [20], deep learning (DL)
is becoming increasingly attractive to businesses and researchers
alikewhowish to extractmeaningful information frommassive data
sets. Popular network architectures such as Convolutional Neural
Networks (CNNs) [1] and Recurrent Neural Networks (RNNs) [12]
have been widely used in various applications due to their ability to
uncover hidden correlations, causal relationships, and other more
complicated patterns in massive datasetes. For example, Google
AdSense [3] utilizes clients’ browsing, searching and email history
to provide customized and targeted recommendations.

Deep learning methods, and machine learning methods more
generally, aim to fit a function f̂ (x,θ) to a dataset. The function
can be used as a model to make predictions based on the data or
discover patterns in the data. To fit the model, model error is usually
defined by a loss function J (θ) and the target is to optimize the
model parameters to minimize the loss. Deep learning architectures
often have extremely large parameter sets, sometimes running into
the hundreds of millions, and thus require extremely large volumes
of data to train. Due to the sheer scale of such data, which in the big
data age is often measured in terabytes or even petabytes, today’s
big data practitioners generally collect, store, process, analyze, and
model their data in large datacenters or on the cloud. Training a
deep learning model on such a large volume of data is not only
time-consuming but also extremely resource-intensive. Particularly
when multiple models are being optimized on a shared computing
infrastructure, there is a large potential for significant contention
between with respect to CPU and memory.

This work aims to improve the resource contention problem for
large deep learning tasks in a cloud environment, and consequently

https://doi.org/10.1145/3337821.3337868
https://doi.org/10.1145/3337821.3337868

ICPP 2019, August 5–8, 2019, Kyoto, Japan W. Zheng et al.

to accelerate their training through efficient system-level resource
management. Specifically, we focus on containerized learning appli-
cations and containerized cloud architectures, where training tasks
are completed within a container : a lightweight, service-level vir-
tualized environment in which processes can be run. Containers
such as those provided by Docker [2] and Kubernetes [6] provide
a sandboxed, portable environment for the execution of arbitrary
code on arbitrary machinery. More importantly, the resource usage
of a container can be easily manipulated, which makes the tech-
nique quite popular in cloud computing. To illustrate the simplicity
of this, a programmer can use the command docker run <image>
to start a Docker container of type <image> on a physical machine,
and then update its resource usage limits with a similar command.

To date, popular open-source deep learning frameworks and
libraries, such as Pytorch [10], TensorFlow [13], and Keras [5],
provide their images for deep learning services. While, various
approaches have been proposed to optimize the efficiency of re-
source sharing across containers on cloud infrastructures in general,
few of these approaches are designed specified for deep learning.
Specifically, they fail to take into account the nature of DL train-
ing jobs, which have an objective to reduce the value of the loss
function iteratively until convergence to a minimum. This informa-
tion is extremely valuable for resource allocation because the rate
of convergence is not linear with the amount computing resource.
Convergence rates generally decrease with time, which implies that
the resource efficiency in terms of training gains per unit resource
will decrease with time for a given deep learning job. The current
cloud platforms and methods do not consider this information, and
thus they are liable to waste resources by allocating them to jobs
where the gains in loss with respect to time are small or perhaps
not appreciable (more details see Section 2).

In this paper, we propose a novel container workflow manage-
ment scheme, FlowCon, which aims to accelerate the overall system
performance of multiple learning tasks running on a containerized
cloud cluster through real-time resource allocation. As opposed to
a static or fixed configuration, FlowCon monitors the progress of
learning jobs and dynamically configures the resource limits for
each of them based on a novel metric we named growth efficiency.
The main contributions of this paper are summarized as follows:

• We introduce the concept of growth efficiency, a measure of
the magnitude of the change in the loss function with per
unit of compute resource, and propose FlowCon along with a
suite of algorithms to monitor the growth efficiency of deep
learning jobs.

• FlowCon is designed to elastically allocate and/or withdraw
the resources to/from each learning job at run time, allowing
jobs to convergemore quickly without significant scheduling
overhead.

• Evaluation of a FlowCon implementation in the popular con-
tainer platform, Docker, with intensive cloud-based experi-
ments using various DL frameworks demonstrate the effec-
tiveness of FlowCon. Specifically, compared to the default
system resource allocation scheme, FlowCon can reduce com-
pletion time of individual jobs by up to 42.06% without sac-
rificing the overall makespan.

The remainder of this paper is organized as follows. In Section
2, we introduce the background with a motivating example of this
paper. We present the system architecture of FlowCon in Section 3
and the relevant algorithms in Section 4. We carry out extensive
evaluation of FlowCon in Section 5. We report the related work in
Section 6 and conclude this paper in Section 7.

2 BACKGROUND AND MOTIVATION
In this Section, we briefly introduce containerized applications and
motivate our work with an example.

2.1 Containerized Applications
Containerization is a platform-independent virtualization method
that enables applications to provide services from a sandboxed
runtime environment without launching the overhead of a virtual
machine. We will use Docker as a representative containerization
platform. With Docker, a new container can be initialized on a
physical node by sending commands to the local docker daemon.

In a deployment environment, various required dependencies
of a deep learning job can be packaged into an image so that the
command docker run -d <DL_job> can be used to launch a
container running the deep learning job DL_job in the background.
Once a container is initialized, Docker provides the user with a
rich set of options to control and interact with the container. For
example, we can use docker exec <command/program_name> to
run a command or program in a run-time container and use docker
commit <container_id> to create a new image from a container’s
changes.

In terms of containerized deep learning applications, develop-
ers, researchers, and data scientists can use existing libraries and
frameworks to develop learning models. There are several major
players in this domain, such as TensorFlow [13], Pytorch [10] and
Keras [5]. They provide the platforms to that facilitate the ease
of implementation of contemporary ML/DL models like LSTM-
CNN [31], LSTM-RNN [32], and DCGAN [30]. The community of
developers behind these libraries and frameworks have devoted
considerable effort to build their own docker container images for
fast distribution and easy management of ML/DL jobs.

2.2 Motivation of FlowCon
In order to deploy applications into a production environment, it
is difficult to achieve resilience and scalability using only a single
compute node. Generally, a cluster (cloud) is used to provide the
infrastructure for running a large set of containers at scale. Many
toolkits have been designed for container orchestration in cluster
environments, such as the Docker Swarm and Kubernetes.

In current containerized cloud systems, running containers com-
pete for resources freely and the system maintains fairness among
all of them. Alternatively, users can set an upper limit to each of the
containers when initializing them. However, these mechanisms are
not optimal for deep learning tasks. There are two main reasons. (1)
Most models don’t need to be perfect in a distant future, they just have
to be good in the near future. Suppose we have a set of deep learning
tasks running on containers within a cluster. In some settings such
as real-time data analytics, a model would be frequently requested
by applications (e.g., prediction) even before convergence is reached.

FlowCon: Elastic Flow Configuration for Containerized Deep Learning Applications ICPP 2019, August 5–8, 2019, Kyoto, Japan

In this case, bringing the model to an acceptable (rather than per-
fect) level of accuracy is the most important. (2) More commonly,
some learning tasks converge faster than others, and their models can
reach an acceptable state with fewer iterations (i.e. less time). If we
want to bring all models to a usable state while minimizing wait
time, simply maintaining the fairness of all tasks will results in a
resource waste. This is because jobs that are already in an accept-
able state will continue to utilize as much resource as those with
much optimization left to do, even though the nearly-converged
jobs only make small gains in optimizing their loss function per
unit compute resource.

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative Time(%)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

VAE(Pytorch)
MNIST(Pytorch)
CNN-Lstm(Tensorflow)
RNN-GRU(Tensorflow)
Logistic Regression(Tensorflow)

Figure 1: Training progress of five models

As a motivating example, Figure 1 shows the training processes
of five different models. There, each model runs inside a container
on the same physical node. It can be seen that the training job with
RNN-GRU model on Tensorflow reaches 90.0% accuracy at 14.5%
of the cumulative time. When it completes training, the accuracy
increases to 93.2%. This observation indicates the first 14.5% of
the total time, the model achieves 96.8% of its maximum. Later,
it takes 85.5% of the total time for another 3.2% of the accuracy.
Suppose there are many other learning tasks running in parallel on
the same computing node and seeking computational resources. It
is reasonable to shift parts of the computational resource occupied
by RNN-GRU training to the other learning tasks. In this work, we
propose FlowCon to accomplish this goal.

3 THE FLOWCON SYSTEM
In this section, we present the design of FlowCon in detail, including
its architecture, system modules, and the optimization problem it
solves.

3.1 FlowCon Architecture
In a typical cluster of containers, e.g., Docker Swarm and CNCF
Kubernetes, there are multiple managers and workers in the system.
Managers accept specifications from the user and are responsible
for reconciling the desired state with the actual cluster state, and
workers are responsible for running jobs. Figure 2 presents the sys-
tem architecture of FlowCon. Themain components of FlowCon are
in the box that represents a worker.

Althoughmangers have the global view of the workers in the sys-
tem, FlowCon runs on the worker side to prevent overwhelming the
manager, who is responsible for collecting the status information
from all workers and assigning jobs to them. In our FlowCon system,
mangers only interact with the container pools on the workers,

which store the information of all running containers. With this
design, the overhead of running the FlowCon is distributed over the
whole cluster.

Container
Monitor

Executor

Worker
Monitor

Container Pool

Progress
Monitor

Resource
Monitor

Listener
New Cons

Finished Cons

Cluster
Manager

W
O
R
K
E
R

Figure 2: FlowCon System Architecture

3.2 FlowConModules
As demonstrated in Figure 2, FlowCon consists of three modules, a
Container Monitor, a Worker Monitor and an Executor. Each module
runs independently and exchanges information about jobs inside
the containers as well as the worker status. Their functionality is
detailed below.

3.2.1 Container Monitor. The FlowCon focuses on the containers
that provide variousmachine learning services. A containermonitor
in FlowCon keeps track of the ML/DL jobs inside each container and
collects the progress each of the job in terms of different evaluation
functions that are defined by the jobs themselves. Besides that, it
collects the resource usage of each container that is running in the
pool. At each container level, it records the consumption of four
resources: CPU, memory, block I/O, and network I/O.

3.2.2 Worker Monitor. A worker monitor measures the container
pool on the worker. There are two listeners, one called New Cons
and the other one called Finished Cons. Unlike the container mon-
itor, who focuses on the jobs inside a particular container, these
listeners target the status of container pools. The New Cons lis-
tener tracks the incoming containers and assigns the appropriate
resources to them. The Finished Cons listener monitors the contain-
ers with finished jobs and releases their resources to the system.

3.2.3 Executor. The Executor is a key module that collects and
analyzes the evaluation functions and resource usage data on the
worker. Based on the initial interval, it calculates the required pa-
rameters by using the data from Container Monitor and execute
the algorithm (described in Section 4) to update the resource config-
uration for each container. Upon receiving a report from one of the
listeners, the Executor will interrupt the current interval and start
running the algorithm to update the resource assignment based on
the new state of the container pool.

3.3 System Optimization Problem
FlowCon aims to improve resource efficiency, which is generally
assumed to be satisfactory in current cloud systems. However, when
considering a system with various deep learning applications, the
term “in use” fails to accurately reflect efficiency, as illustrated in
Figure 1.

ICPP 2019, August 5–8, 2019, Kyoto, Japan W. Zheng et al.

Based on the characteristics of deep learning applications, we
introduce a new definition of efficiency based on an application’s
evaluation function. Given a system with a set of running con-
tainers, {cid }, each container uses its own evaluation function to
assess its type of machine learning model (e.g., loss reduction and
inception score) Ecid (t). For each model, based on its E(t), we define
the progress score for the container cid to be Eq. 1, where ti − ti−1
is the measurement interval. The value of Pcid (ti) is the per-second
progress within the interval.

Pcid (ti) =
|Ecid (ti) − Ecid (ti−1)|

ti − ti−1
(1)

Here, Pcid (ti) reflects the progress over a given time interval, but
it does not account for the resources used towards that progress.
Therefore, we propose the growth efficiency for each container
cid with an active deep learning job. Eq. 2 presents the growth
efficiency with respect to different types of resources (e.g., CPU,
memory, network I/O and block I/O), denoted by ri , and Rcid ,ri (ti)
is a function that returns the average resource usage of cid within
the interval ti − ti−1 among each ri .

Gcid ,ri (ti) =
Pcid (ti)

Rcid ,ri (ti)
(2)

FlowCon aims to maximize the sum of growth efficiency for the
whole system in each interval, where each learning model has
its own evaluation function and can be calculated in real-time.
Assume that there are n containers, each runs one job in the system,
and Rimax denotes the overall resource capacity for ri . Then, our
performance optimization problem can be formalized as P below,
where Gcid ,ri can be computed from measurements of Ecid (ti) and
Rcid ,ri (ti).

P : Max
n∑
i
Gcid ,ri (3)

s.t.
n∑
i
ri 6 Rimax

4 SOLUTION OF FLOWCON
In this section, we present the design and elastic container config-
uration algorithms in FlowCon, which can adjust resource assign-
ment for containers at run time.

4.1 Resource Configuration for Containers
In a traditional cluster of virtual machines (VMs), each VM is as-
signed with a fixed amount of resources (e.g., CPU cores and mem-
ory), which are fixed when the guest operating system is installed.
While dedicated VM’s for each job enables better isolation, a cluster
of VMs fails to efficiently utilize resources for deep learning jobs
given their characteristics we presented in Section 2.

In a cluster of containers, system administrators have the option
to create, configure, and reconfigure containers in real time. If
the containers are started without a specific resource limit, they
will compete for resources at runtime just like processes in an
operating system. However, the resource plan can be updated at
any time after the initialization. For example, the command docker

Algorithm 1 Dynamic Resource Mgt. for Container cid on Worker
Wi

1: Initialization: cid ∈ {c1, c2, ..., cn },Wi , Time t , Watching ListWL,
Completing List CL, New List NL, α and itval .

2: for cid ∈Wi do
3: Calculate GWi ,cid (t)
4: if GWi ,cid (t) < α & cid ∈ NL then
5: NL.remove(cid)
6: WL.insert(cid)
7: else if GWi ,cid (t) < α & cid ∈WL then
8: WL.remove(cid)
9: CL.insert(cid)
10: else if GWi ,cid (t) ≥ α then
11: NL.insert(cid)
12: WL.remove(cid)
13: CL.remove(cid)
14: if ∀cid ∈Wi , cid ∈ CL then
15: for cid ∈Wi , ri ∈ R do
16: Lcid ,ri = 1
17: itval = itval × 2
18: else
19: for cid ∈Wi , ri ∈ R do
20: if cid ∈ CL then

21: Lcid ,i =
GWi ,cid∑
cid GWi ,cid

22: Lcid ,i = Max {Lcid ,i ,
1

β×|cid |
}

23: else if cid ∈WL then
24: Lcid ,ri = Lcid ,i
25: else
26: Lcid ,i =

GWi ,cid∑
cid GWi ,cid

update <options> container_id can reset the resource limit as
desired. The sample options include --cpus for the number of cores,
--cpu-rt-runtime for CPU real-time runtime in microseconds,
--memory for memory usage in MB, --blkio-weight for a relative
weight of block I/O and etc. Finally, values of the limit that set by
the docker update commands are soft limits, which means that
the even if the container cannot maximize its own resource, the
unused option will be utilized by others.

4.2 Resource Assignment in FlowCon
In a cluster of containers, the manager accepts the commands from
users and selects a worker to host the containers, and containers
would compete for resources such as memory and CPU when they
are running in the same worker. By default, each container is as-
signed the same priority resulting in uniform resource distribution
among all containers in the worker. This sharing mechanism has
acceptable performance. However, as we have discussed, it fails
to consider the characteristics of deep learning applications. In
comparison, FlowCon utilizes a growth-efficiency based method as
presented in Algorithm 1, to update resource assignments of each
active container in a dynamical way.

As shown in Line 1 of Algorithm 1, eachWi first receives the
following parameters from its manager: the time t , the threshold α
and the algorithm interval itval . Moreover, it initializes three lists
as below to categorize each container:

• New List (NL): Young and quickly growing

FlowCon: Elastic Flow Configuration for Containerized Deep Learning Applications ICPP 2019, August 5–8, 2019, Kyoto, Japan

• Watching List (WL): Near convergence
• Completing List (CL): Converging and growing slowly

Based on the threshold and the growth efficiency that calculated by
the container monitor, the algorithm places each active container
into the proper list (Lines 2 - 13). If all containers are in theCL, then
each container’s resource limit is set to 1 allowing them to compete
freely for resources (Lines 14 - 16). While FlowCon is permitting
free competition, it is no longer necessary for the system to run
the algorithm at the initial interval. Instead, FlowCon utilizes an
exponential back-off scheme to double the itval in order to reduce
the overhead of running the algorithm (Line 17). Once the growth
efficiency is less than the preset threshold, FlowCon applies the
following rules:

• Each container in the CL has its resource limit set based on
its growth during the time interval

GWi ,cid∑
cid GWi ,cid

(Lines 18 -
21)
– If growth is exceedingly small, which is common after
convergence, the resource limit is set to a lower bound to
prevent abnormal behavior caused by limited resources
(Line 22).

• The resource limits of containers in the WL remain un-
changed (Line 24).

• Allocate more resources to containers in the NL (Line 26).

4.3 Listeners in FlowCon
The container monitor provides information that allows Algo-
rithm 1 to dynamically allocate resources based on the growth-
efficiency in each container and to reduce the scheduling overhead
with an exponential back-off scheme. However, there is latency be-
tween the time that a worker’s state changes (e.g., a new container
is initiated) and the point that it can reallocate resources. To im-
prove this issue, FlowCon deploys lightweight background-listeners
to track the container states in real-time.

With the same set of parameters, Algorithm 2 presents the work-
flow of listeners onWi . First, it initializes theCL,WL, NL and itval ,
and it uses i to record the number of iteration of the listener (Line
1). When the ith iteration is running, it uses the function T (i) to
fetch the total number of container on theWi (Line 2). In all runs
after the first run, the listener calculates the difference c , between
the most recent two iterations (Lines 3 - 4). If c > 0, it means that
there are c new containers now active in the system, so the listener
will stop and the algorithm finds out the cid of the new containers
and add them to the NL (Lines 5 - 7). In the meantime, it resets the
itval to the original value in order to break the exponential back-off
scheme, and then starts to run Algorithm 1 to update the resource
allocation as well as increases the iteration number i. (Lines 8 - 9).
The case when c < 0 indicates that some containers have completed
their jobs. The algorithm will then find the relevant containers by
their cid , remove them from their associated category (NL, CL or
WL) and release their resources (Lines 10 - 15). Finally, we reset
the itval , start running Algorithm 1 and increment the iteration
number i .

Algorithm 2 Listener on WorkerWi

1: Parameter Initialization: CL,WL, NL, itval , i = 0
2: T (i) = total number of container at iteration i
3: if i ̸= 0 then
4: c = T (i) −T (i − 1)
5: if c > 0 then
6: for cid ∈Wi & cid /∈ CL & /∈WL & /∈ NL do
7: NL.insert(cid)
8: itval = initial_value
9: Run Algorithm 1 and i + +
10: else if c < 0 then
11: for cid ∈ CL | ∈WL | ∈ NL and cid /∈Wi do
12: NL.remove(cid)
13: WL.remove(cid)
14: CL.remove(cid)
15: Release_resource cid
16: itval = initial_value
17: Run Algorithm 1 and i + +

5 EVALUATION
In this section, we evaluate the performance of FlowCon through a
set of cloud-executed experiments.

5.1 Experimental Framework
FlowCon uses Docker Community Edition (CE) 18.09 and is imple-
mented as a middleware between worker and manager. It receives
tasks from the manager, and then directs the given tasks to the
worker for execution.

The testbed is built on the NSF Cloudlab [9], which is hosted
by the Downtown Data Center - University of Utah. Specifically,
the test-bed uses the R320 physical node, which contains a Xeon
E5-2450 processor and 16GB Memory. To ensure a comprehensive
evaluation, we test FlowCon with various deep learning models
using both the Pytorch and Tensorflow platforms. Table 1 lists the
models used in the experiments.

Table 1: Tested Deep Learning Models

Model [11][14] Eval. Function Plat.
Variational Autoencoders (VAE) [15] Reconstruction Loss P/T

Modified-NIST (MNIST) [8] Cross Entropy P/T
Long Short-Term Memory (CFC) [7] Softmax T
Long Short-Term Memory (CRF) [39] Squared Loss P

Bidirectional-RNN [16] Softmax T
Gated Recurrent Unit (GRU) [4] Quadratic Loss T

5.2 Experiment Setup and Evaluation Metrics
There are two key parameters in FlowCon: (1) α , the threshold
for classifying jobs into NL,WL and CL; and (2) itval , the inter-
val for running the Algorithm 1. We evaluate the performance of
FlowCon with different parameter configurations and compare it
with the original Docker system (denoted as NA in this section)
within the following three scenarios:

• Fixed scheduling: the time to launch a job is controlled by
the administrator.

• Random scheduling: the launch times are randomized to sim-
ulate random submissions of jobs by users in a real cluster.

ICPP 2019, August 5–8, 2019, Kyoto, Japan W. Zheng et al.

 0

 100

 200

 300

 400

 500

20 30 40 50 60 NA

C
o
m

p
le

ti
o
n
 T

im
e

(S
ec

o
n
d
)

Interval (Second)

VAE (Pytorch)
MNIST (Pytorch)

MNIST (Tensorflow)

Figure 3: α = 5% and different
values of intervals

 0

 100

 200

 300

 400

 500

20 30 40 50 60 NA

C
o
m

p
le

ti
o
n
 T

im
e

(S
ec

o
n
d
)

Interval (Second)

VAE (Pytorch)
MNIST (Pytorch)

MNIST (Tensorflow)

Figure 4: α = 10% and differ-
ent values of intervals

 0

 100

 200

 300

 400

 500

1% 3% 5% 10% 15% NA

C
o
m

p
le

ti
o
n
 T

im
e

(S
ec

o
n
d
)

α

VAE (Pytorch)
MNIST (Pytorch)

MNIST (Tensorflow)

Figure 5: itval = 20 and differ-
ent values of α

 0

 100

 200

 300

 400

 500

1% 3% 5% 10% 15% NA

C
o
m

p
le

ti
o
n
 T

im
e

(S
ec

o
n
d
)

α

VAE (Pytorch)
MNIST (Pytorch)

MNIST (Tensorflow)

Figure 6: itval = 30 and differ-
ent values of α

• Scalability: we evaluate FlowCon with an increased number
of learning jobs.

The following three metrics are considered in our experiments.

• Overall makespan: the total length of the schedule for all the
jobs in the system.

• Individual job completion time: the completion time of each
individual jobs in the system.

• CPU usage: all of our tested deep learning models are compu-
tation intensive jobs, we focus on analyzing the CPU usage
for better understanding FlowCon.

As described in Section 3, all the components of FlowCon and
the relevant algorithms reside in worker node. Therefore, in our ex-
periments, we focus on the performance of each individual worker
in the system. It should be highlighted here again that the objective
of FlowCon is to reduce the individual job’s completion time and,
at the meanwhile, avoid sacrificing the makespan.

5.3 Fixed Scheduling Results
We fix the schedule of three jobs that VAE on Pytorch starts at
0s, MNIST on Pytorch begins at 40s, and MNIST on Tensorflow
launches at 80s. We test our system with different input parameters
to understand its performance in various settings.

Makespan: Figure 3 and Figure 4 present the results with dif-
ferent itval in the case of α is 5% and 10% respectively. It can
be observed that different itval values have a small effect on the
makespan (dominated by VAE), and FlowCon improves makespan
by 1% to 5% compared to NA. This is particularly evident when α =
5%, as the makespans are 386.1s, 372.4s, 384.8s, 389.0s, 388.1s and
394.0s respectively. The reason lies in the fact that FlowCon moves
some jobs to have their resource limits constrained, thus slowing

Table 2: Completion TimeReduction ofMNIST (Tensorflow)

α , itval (Fig. 4) Reduction α , itval (Fig. 5) Reduction
10%, 20 26.2% 1%, 20 32.1%
10%, 30 32.4% 3%, 20 31.0%
10%, 40 14.3% 5%, 20 21.4%
10%, 50 15.3% 10%, 20 19.0%
10%, 60 3.1% 15%, 20 19.8%

them down, the jobs which were allocated more resources finished
more quickly, thus reducing the overlap between jobs.

In Figure 3, when comparing α = 5%, itval = 20 with NA, the
overlap of the two jobs, VAE (Pytorch) and MNIST (Tensorflow), is
213.2s and 240.5s; while the overlap of three jobs is 59.4s and 84.7s.
FlowCon decreases the overlap of three jobs by 29.87%. Due to the
decrease of the overlap, the completion time of VAE (Pytorch) (the
same value as overall makespan in this experiment) will not increase
even if we reallocate its resources to another job at runtime. Figure 4
features a key similarity to Figure 3. Using a fixed itval and a varied
α , as depicted in Figure 5 and Figure 6, produces similar results as
well. Specifically, in Figure 5 and Figure 6, when itval = 20 and
itval = 30, with different values of α , FlowCon obviously improves
the makespan by 1% to 4% across all settings.

Individual: When the completion time of a specific job is in-
vestigated, we find a significant improvement in FlowCon. For
example, in Figure 3, when α = 5% and itval = 30, FlowCon reduces
the completion time of MNIST (Tensorflow) by 31.9%, from 84.7s to
57.7s. To show more details about how individual learning jobs can
benefit from FlowCon, we extract the results of MNIST (Tensorflow)
from Figure 4 and Figure 5, and present the reduction of its comple-
tion time in Table 2 by comparing FlowCon with NA. We can see
that FlowCon performs better than NA in all the parameter settings.
When α = 10% with itval = 60, the performance improvement is
the smallest one, only 3.1%. This is because that the value of itval
is large, and the algorithms need more time to adjust the resource
plan for jobs with a large interval. When we fix the value of itval
to 20 and vary the value of α , it can be seen that the time reduction
generally decreases with the increase of α . The explanation for
this result is that jobs stay longer in NL for α = 1%, causing the
algorithm to make updates more frequently. For the case α = 15%,
jobs stay longer in CL, in which the limits are set to 1, and running
tasks will compete for resources freely.

CPU usage: Figure 7 and Figure 8 illustrate the detailed CPU
usage of FlowCon (α = 5% with itval = 20) and NA in the presence
of the three jobs, respectively. The results in Figure 8 verify that
the system equally distributes CPU resources among active jobs
when without any configuration (NA). For example, from 40s to
80s and 180s to 280s, the CPU usages of VAE (Pytorch) and MNIST
(Pytorch) are approximately equivalent. In comparison, Figure 7
shows both that FlowCon can dynamically set the upper resource
limit for each job (actually the resource usage also reflects each job’s
growth-efficiency). Specifically, when MNIST (Pytorch) is launched
at time 40s, FlowCon takes two actions: (1) sets VAE’s (Pytorch)
resource limit to 0.25 since it is growing slowly, and (2) sets MNIST’s
(Pytorch) resource limit to 1, allowing for the maximum resource.
In this case, VAE (Pytorch) will receive 25% while MNIST (Pytorch)
will use 75% of the total resources.

FlowCon: Elastic Flow Configuration for Containerized Deep Learning Applications ICPP 2019, August 5–8, 2019, Kyoto, Japan

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300 350

C
P

U
 U

sa
g
e

Time

MNIST (Tensorflow)
MNIST (Pytorch)

VAE (Pytorch)

Figure 7: CPU usage of FlowCon (α = 5%, itval = 20, 3
jobs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300 350

C
P

U
 U

sa
g
e

Time

MNIST (Tensorflow)
MNIST (Pytorch)

VAE (Pytorch)

Figure 8: CPU usage of NA (3 jobs)

5.4 Random Scheduling Results
For the random scheduling case, we have used five different deep
learning models, LSTM-CFC, VAE, VAET, MNIST and GRU, in our
experiments. We randomly select a starting time point from 0s -
200s to submit a training job, and the responsible jobs are marked
as 1, 2, 3, 4 and 5 respectively in the following results.

Makespan: Figure 9 shows the results of system makespan.
Similar to the fixed scheduling case, the results here demonstrate,
once again, that FlowCon improves the overall makespan, by 1% -
5%. Given the same resource availabilities, FlowCon achieves the
reduction of makespan by reducing the overlap between jobs.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

3%,30 3%,60 5%,30 5%,60 NA

C
o
m

p
le

ti
o
n
 T

im
e

(S
ec

o
n
d
)

α and interval

Job-1
Job-2
Job-3
Job-4
Job-5

Figure 9: Five different jobs with random submission

Individual: Considering the complete time for each individual
job in Figure 9, we can observe that FlowCon reduces the completion
time for 4 jobs, 5 jobs, 4 jobs, and 4 jobs out of 5 learning jobs for the

case with α = 3%, itval = 30; α = 3%, itval = 60; α = 5%, itval = 30;
and α = 5%, itval = 60, respectively. The biggest loss happens at the
fourth job (denoted as Job-4 and others are similar) with α = 5% and
itval = 60. There, Job-4 completes in 472.4s, which is 11.80% slower
than NA, the completion time of which is 422.5s. The reason is that:
although resource allocation to Job-4 greatly decreases when Job-5
begins, the interval of itval = 60 prevents FlowCon immediately
reallocating resources from Job-4 to Job-5. However, we can see that
FlowCon obviously reduces the completion time of Job-5, by 19.00%,
from 489.4s to 396.4s. The largest performance improvement occurs
with the setting α = 3% and itval = 30. In this case, Job-3 completes
42.06% faster. Additionally, the makespan of Job-4 increases 2.1s
(424.6s vs. 422.5s), and Job-5 completes 17.92% faster (401.6s vs.
489.4s). Therefore, a smaller value of itval will allow FlowCon to
reassign the resources more quickly.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

C
P

U
 U

sa
g
e

Time

5
4
3
2
1

Figure 10: CPU usage of FlowCon (α = 3%, itval = 30, 5 jobs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

C
P

U
 U

sa
g
e

Time

5
4
3
2
1

Figure 11: CPU Usage of NA (5 jobs)

CPU usage: The random schedule with a larger number of jobs
produces more challenges for resource assignments. Figure 10 and
Figure 11 present the CPU usage of FlowCon with α = 3% and
itval = 30 and NA in a system of 5 randomly submitted jobs.
Unlike Figure 8, the resource usage illustrated in Figure 11 is not
equally distributed. For example, from 50s to 80s and from 650s
to 730s, the first and the second job are active and use 19% and
79% of the resources, respectively. The reason is that: although
the first job (LSTM-CFC) is running alone, it does not maximize
the CPU usage (e.g., from 0s to 50s as in Figure 11). Generally,
when a container cannot maximize its own resource limit, a portion
of the resources may be wasted depending on other jobs in the

ICPP 2019, August 5–8, 2019, Kyoto, Japan W. Zheng et al.

system. FlowCon addresses this issue with two techniques: (1) sets
a soft resource limit to containers. If a container cannot reach
its upper limit, then the resources can be used by others; and (2)
although the limits of active containers are correlated and based
on the growth-efficiency, the sum of all limits can be greater than
1, since containers in CL employ a lower bound: 1

β×|cid |
(Line 22

in Algorithm 1).

Remark: Based on the experimental results and analysis in Section
5.3 and 5.4, we can conclude that FlowCon can improve both the
system makespan and the completion time of individual learning
jobs with different parameter settings, compared to the original
Docker system. In the meantime, the values of α and itval can affect
the degree of improvement. Since itval indicates the frequency at
which Algorithm 1 runs, it is proportional to the overhead including
(1) the algorithm resource usage and (2) the delay for reducing
the resources of active jobs. Consequentially, as the frequency of
running Algorithm 1 decreases, the room for elastic configuration
for the running containers will be reduced. Furthermore, the value
of α directs how FlowCon categorizes containers in each iteration of
the algorithm. Therefore, the best α setting depends on the number
of active containers in the system, the machine (deep) learning
model in each container and the corresponding datasets.

5.5 Scalability of FlowCon
In this subsection, we conduct experiments to evaluate the perfor-
mance of FlowCon at a larger scale.

 0

 300

 600

 900

 1200

 1500

1 2 3 4 5 6 7 8 9 10

C
o
m

p
le

ti
o
n
 T

im
e

(S
ec

o
n
d
)

Job ID

FlowCon-10%-20
NA

Figure 12: Ten jobs with random submission

5.5.1 10-Job Experiments. Figure 12 shows the completion time
comparisons of FlowCon with α = 10%, itval = 20 and NA with
10 jobs that are randomly submitted from 0s - 200s. Under such
settings, the makespans are 1350.7s and 1384.9s for FlowCon and
NA, respectively. This follows the same trend demonstrated in pre-
vious experiments where FlowCon achieves a small improvement in
makespan. Considering jobs individually, FlowCon reduces the com-
pletion time of 9 out of 10 jobs. Job-2’s completion time increases by
15.4s (1.1%) since the interval between Job-2 and Job-3 is very small
(13s), and this quickly leads to resource reduction. However, for the
other 9 jobs in the experiment, FlowCon produces makespan reduc-
tions from 1.8% to 41.2%, with the largest improvement occurring
in Job-10: from 188.3s to 110.8s.

Since the FlowCon updates the container’s configuration based
on the associated value of growth efficiency, we take a deeper look at

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 200 400 600 800 1000 1200

G
ro

w
th

 E
ff

ic
ie

n
cy

Time

FlowCon-Job-2
NA-Job-2

Figure 13: Growth Efficiency
Comparison of Job-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 100 200 300 400 500 600 700 800

G
ro

w
th

 E
ff

ic
ie

n
cy

Time

FlowCon-Job-6
NA-Job-6

Figure 14: Growth Efficiency
Comparison of Job-6

the data from the 10-job experiment. We pick up two representative
jobs, Job-2 and Job-6, where Job-6 wins and Job-2 losses a bit in
terms of completion time. Figure 13 and Figure 14 illustrate the
growth efficiency over the time of Job-2 and Job-6 respectively, in
both FlowCon andNA. As we can see from Figure 13, FlowCon gains
a lot in growth efficiency at the very beginning. The reason lies
in the fact that in FlowCon, Job-2 does not need to compete for
resources freely due to an upper limit of resources that applies to
every job. The more resources allocate to it, the faster it grows.
Even when Job-3 joins the system, resources for Job-2 will not
reduce too much since it is still in theWL. In comparison, in NA,
every job has the same priority and they compete for the resource
whenever it becomes available. When Job-2 converges in FlowCon,
more resources will be moved to newer jobs due to a smaller value
of the limit, which results in a loss when compares to NA at the
time point 320s. We find a different trend in Figure 14. There, at the
first 2 iterations, Job-6, in FlowCon, records sightly lower values
of growth efficiency. This is because FlowCon needs more time
to update the configuration when there are 5 active jobs in the
system. It should be noted that the time for resource usages is
shorter than the completion time in Figure 12 for a specific container.
The difference is caused by our calculation methods. We compute
completion time whenever the container is marked as exited and
we record the resource usage whenever the Algorithm 1 is called,
where the interval could become larger due to the exponential
back-off in Algorithm 2.

Figure 15 and Figure 16 present the CPU usage of FlowCon and
NA in the same experiment. From Figure 16, we can clearly see
the jitter with NA. The jitter is a result of uncontrolled resource
competition: whenever there is an idle slot, the system will allocate
resources to the first job in the queue. FlowCon also produces jitter,
however, the resource usage for each container is much smoother
by comparison. This is due to the fact that FlowCon employs a soft,
upper resource limit to the containers, and therefore the room for
free competition is reduced. The majority of jitter in FlowCon oc-
curs in the interval between 0s to 200s. In this interval, jobs are
submitted to the system randomly. After one container joins the
system, resource assignment for each container will be updated to
reflect this change in the system’s status.

5.5.2 15-Job Experiments. We further increase the number of jobs
to 15. Again, jobs are randomly submitted to the system during the
interval 0s to 200s. As the number of concurrent jobs increases, so
does the degree of competition for resources. The results are pre-
sented in Figure 17. There, we find the same trend as previous ones:

FlowCon: Elastic Flow Configuration for Containerized Deep Learning Applications ICPP 2019, August 5–8, 2019, Kyoto, Japan

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

N
o
rm

al
iz

ed
 C

P
U

 U
sa

g
e

 Time

10
9
8
7
6
5
4
3
2
1

Figure 15: CPU usage of FlowCon (α = 10%, itval = 20, 10 jobs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

N
o
rm

al
iz

ed
 C

P
U

 U
sa

g
e

 Time

10
9
8
7
6
5
4
3
2
1

Figure 16: CPU usage of NA (10 jobs)

 0

 300

 600

 900

 1200

 1500

 1800

 2100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
m

p
le

ti
o
n
 T

im
e

(S
ec

o
n
d
)

Job ID

FlowCon-10%-40
NA

Figure 17: Fifteen jobs with random submission

FlowCon reduces makespan from 1980.1s to 1950.9s (1.5%). Compar-
ing with Figure 9 and Figure 12 highlights the makespan reduction.
The more competition in the system, the greater the challenge for
elastic configuration at runtime. Furthermore, when considering
individual jobs in Figure 17, FlowCon reduces the completion time
for 11 jobs out of the 15 jobs. For those 4 jobs, completion time (in
seconds) increases: (1) Job-2, from 959.4 to 985.1; (2) Job-4: from
1059.6 to 1053.3; (3) Job-5: from 196.2 to 207.5; and (4) Job-6, from
906.4 to 907.9. However, we can see these increments are quite
small, e.g., Job-5’s completion time increases the most, only by 5.7%.
In comparison, in the other 11 jobs, the degree of reduction ranges
from 1.2% to 11.9% and the largest degree of reduction occurs in
Job-10, from 308.1s to 271.4s.

6 RELATEDWORK
Learning from massive datasets to drive businesses is drastically re-
structuring our economy. Thus, industry players who wish to thrive
in this data-driven environment are compelled to leverage machine
learning-based tools to stay ahead of the competition and provide
superior experiences to their clients. Efficient platforms for building
such tools are thus of central importance to individuals who wish
to build these models quickly and at low-cost. FlowCon provides
such a paradigm to build DL models in shared computing centers
(or clouds), and our experiments have shown that it performs more
efficient than current frameworks.

Because of the massive utility of deep learning, developing new
models is an extremely active research area with numerous new
approaches being proposed continually [25, 33]. However, very few
of the models are developed explicitly to be efficient, rather most
attention is given to their accuracy and quality. Some recent ad-
vances include Xception [18], which has been presented to replace
Inception modules using depthwise separable convolution and has
been demonstrated to have faster convergence on the well-known
JFT dataset. Deep convolutional generative adversarial networks
(DCGANs) [30] present another cutting-edge method which, in
this recent application, learns a hierarchy of representations from
object parts to scenes in both the generator and discriminator. Star-
GAN [17] allows simultaneous training of multiple datasets with
different domains within a single network, which results in superior
quality of translated images compared to existing models. These
models are exceptionally powerful but are extremely resource inten-
sive to train. Some attention has been given to developing explicitly
resource efficient models. For example, in the work [22], the au-
thors evaluate a series of models under constrained time cost, and
propose models that are fast for practical applications yet are more
accurate than existing fast models. However, models like these are
currently exceptionally rare and it is up to computing platform
providers to efficiently schedule training jobs, which as mentioned
above is a very understudied facet of cloud computing resource
allocation optimization which FlowCon aims to address directly.

This work studies the resource scheduling for containerized ap-
plications in cloud computing. The most of the relevant research
solutions to container deployment are server consolidation or VM
placement [28, 29, 34, 35, 37], which often focus on minimizing the
total number of servers or the waste of resources. On the other hand,
to efficiently use cloud resources, a lot of task scheduling solutions
have been proposed. For example, the work [19] focuses on opti-
mizing the makespan, the total average waiting time and the used
hosts. Moreover, a lot of efforts have also been put on the designs
of cloud scheduling systems. For example, the work [26] proposes
a dependency-aware and resource-efficient scheduling which can
achieve low response time and high resource utilization. In contrast
to all these techniques, we focus on handling containerized deep
learning applications rather than a general workload.

In terms of distributed machine (deep) learning, most frequently
researchers and engineers train their models in a large cloud or
cluster environment. Generally, when more resources are given to
a specific job, the training time will decrease [21, 24, 27]. However,
since resources are limited, providers must have a well-defined
methodology for deciding which training jobs to prioritize. A very

ICPP 2019, August 5–8, 2019, Kyoto, Japan W. Zheng et al.

limited amount of work has been done on this topic to-date. Re-
cently, the authors of Gandiva [36] developed a new cluster schedul-
ing framework that leverages the intra-job relationships of multiple
experimental variations of the same deep learning job running
concurrently to improve efficiency by prioritizing or killing some
subsets of the set of related jobs being trained in a GPU cluster. Also
working with deep learning on GPUs, the work [23] analyzes the
effects of various scheduling decisions, including gang-scheduling
and failure handling during training, on the resource utilization in
a large multi-tenant GPU cluster. The most directly rated to our
proposed solution is SLAQ [38]. The approach schedules concurrent
machine learning training jobs based on quality improvement for
resource usage, by allocating cluster resources iteratively. However,
SLAQ fails to allocate the resources at real-time.

7 CONCLUSION
In this work, we have proposed FlowCon, which aims to facilitate
dynamic resource allocation for containerized deep learning train-
ing jobs at runtime. We have presented the detailed system design
of FlowCon, and conducted extensive experiments with six different
deep learning models on two frameworks, Pytorch and Tensorflow,
in a cloud computing environment. Our experimental results have
shown that FlowCon is very efficient. Specifically, compared to a
current system, it has achieved significant performance improve-
ment in the presence of various deep learning workloads, by up
to 42.06% reduction in completion time for individual jobs without
sacrificing the overall system makespan.

ACKNOWLEDGMENTS
Long Cheng thanks the support of the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 799066.

REFERENCES
[1] Convolutional Neural Network. https://en.wikipedia.org/wiki/Convolutional_

neural_network
[2] Docker. https://www.docker.com/
[3] Google AdSense. https://www.google.com/adsense
[4] GRU. https://en.wikipedia.org/wiki/Gated_recurrent_unit
[5] Keras. https://keras.io/
[6] Kubernetes. https://kubernetes.io/
[7] LSTM. https://en.wikipedia.org/wiki/Long_short-term_memory
[8] MNIST. http://yann.lecun.com/exdb/mnist/
[9] NSF Cloudlab. https://cloudlab.us/
[10] Pytorch. https://pytorch.org/
[11] Pytorch Examples/Dataset. https://github.com/pytorch/pytorch
[12] Recurrent Neural Network. https://en.wikipedia.org/wiki/Recurrent_neural_

network
[13] TensorFlow. https://www.tensorflow.org/
[14] Tensorflow Examples and Datasets. https://github.com/floydhub/dl-docker
[15] VAE. https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
[16] Mathias Berglund, Tapani Raiko, Mikko Honkala, Leo Kärkkäinen, Akos Vetek,

and Juha T Karhunen. 2015. Bidirectional recurrent neural networks as generative
models. In Advances in Neural Information Processing Systems. 856–864.

[17] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and
Jaegul Choo. 2018. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition. 8789–8797.

[18] François Chollet. 2017. Xception: Deep learning with depthwise separable con-
volutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition.
1251–1258.

[19] Lucio Grandinetti, Ornella Pisacane, and Mehdi Sheikhalishahi. 2013. An ap-
proximate ϵ -constraint method for a multi-objective job scheduling in the cloud.
Future Generation Computer Systems 29, 8 (2013), 1901–1908.

[20] Hank H Harvey, Ying Mao, Yantian Hou, and Bo Sheng. 2017. Edos: Edge assisted
offloading system for mobile devices. In 2017 26th International Conference on
Computer Communication and Networks. 1–9.

[21] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.
Applied machine learning at Facebook: a datacenter infrastructure perspective. In
Proc. IEEE International Symposium on High Performance Computer Architecture.
620–629.

[22] Kaiming He and Jian Sun. 2015. Convolutional neural networks at constrained
time cost. In Proc. IEEE Conference on Computer Vision and Pattern Recognition.
5353–5360.

[23] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian, Amar Phanishayee, Wen-
cong Xiao, and Fan Yang. 2018. Multi-tenant GPU clusters for deep learning
workloads: Analysis and implications. Technical Report. MSR-TR-2018.

[24] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. 2016. Deepx: A software accelerator for
low-power deep learning inference on mobile devices. In Proc. 15th International
Conference on Information Processing in Sensor Networks. 23.

[25] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso
Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram
Van Ginneken, and Clara I Sánchez. 2017. A survey on deep learning in medical
image analysis. Medical Image Analysis 42 (2017), 60–88.

[26] Jinwei Liu and Haiying Shen. 2016. Dependency-aware and resource-efficient
scheduling for heterogeneous jobs in clouds. In Proc. 2016 IEEE International
Conference on Cloud Computing Technology and Science. 110–117.

[27] Y. Mao, V. Green, J. Wang, H. Xiong, and Z. Guo. 2018. DRESS: Dynamic RESource-
Reservation Scheme for Congested Data-Intensive Computing Platforms. In Proc.
11th IEEE International Conference on Cloud Computing. 694–701.

[28] Ying Mao, Jenna Oak, Anthony Pompili, Daniel Beer, Tao Han, and Peizhao
Hu. 2017. Draps: Dynamic and resource-aware placement scheme for docker
containers in a heterogeneous cluster. In Proc. 36th IEEE International Performance
Computing and Communications Conference. 1–8.

[29] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. 2013. Adaptive resource
configuration for cloud infrastructure management. Future Generation Computer
Systems 29, 2 (2013), 472–487.

[30] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[31] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. 2015. Convo-
lutional, long short-term memory, fully connected deep neural networks. In
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing.
4580–4584.

[32] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term
memory recurrent neural network architectures for large scale acoustic model-
ing. In Proc. 15th Annual Conference of the International Speech Communication
Association.

[33] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural Networks 61 (2015), 85–117.

[34] Mark Stillwell, David Schanzenbach, Frédéric Vivien, and Henri Casanova. 2010.
Resource allocation algorithms for virtualized service hosting platforms. J.
Parallel and Distrib. Comput. 70, 9 (2010), 962–974.

[35] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. 2011. SLA-based resource
allocation for software as a service provider (SaaS) in cloud computing environ-
ments. In Proc. 11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. 195–204.

[36] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. 2018. Gandiva: Introspective cluster scheduling for deep learning.
In Proc.13th USENIX Symposium on Operating Systems Design and Implementation.
595–610.

[37] Zhen Xiao, Weijia Song, and Qi Chen. 2013. Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE Transactions on Parallel
and Distributed Systems 24, 6 (2013), 1107–1117.

[38] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J Freedman. 2017. SLAQ:
Quality-driven scheduling for distributed machine learning. In Proc. 2017 ACM
Symposium on Cloud Computing. 390–404.

[39] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,
Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr. 2015. Conditional
random fields as recurrent neural networks. In Proc. IEEE International Conference
on Computer Vision. 1529–1537.

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://www.docker.com/
https://www.google.com/adsense
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://keras.io/
https://kubernetes.io/
https://en.wikipedia.org/wiki/Long_short-term_memory
http://yann.lecun.com/exdb/mnist/
https://cloudlab.us/
https://pytorch.org/
https://github.com/pytorch/pytorch
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://www.tensorflow.org/
https://github.com/floydhub/dl-docker
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Containerized Applications
	2.2 Motivation of FlowCon

	3 The FlowCon System
	3.1 FlowCon Architecture
	3.2 FlowCon Modules
	3.3 System Optimization Problem

	4 Solution of FlowCon
	4.1 Resource Configuration for Containers
	4.2 Resource Assignment in FlowCon
	4.3 Listeners in FlowCon

	5 Evaluation
	5.1 Experimental Framework
	5.2 Experiment Setup and Evaluation Metrics
	5.3 Fixed Scheduling Results
	5.4 Random Scheduling Results
	5.5 Scalability of FlowCon

	6 Related Work
	7 Conclusion
	References

